JPS59228758A - Image sensor - Google Patents

Image sensor

Info

Publication number
JPS59228758A
JPS59228758A JP58104445A JP10444583A JPS59228758A JP S59228758 A JPS59228758 A JP S59228758A JP 58104445 A JP58104445 A JP 58104445A JP 10444583 A JP10444583 A JP 10444583A JP S59228758 A JPS59228758 A JP S59228758A
Authority
JP
Japan
Prior art keywords
image sensor
resin
polyimide resin
multilayer wiring
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58104445A
Other languages
Japanese (ja)
Inventor
Kazumi Komiya
小宮 一三
Toshinori Nozawa
野沢 敏矩
Hiromitsu Taniguchi
谷口 博光
Toshio Yamashita
敏夫 山下
Masaru Ono
大野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Nippon Telegraph and Telephone Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Nippon Telegraph and Telephone Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP58104445A priority Critical patent/JPS59228758A/en
Publication of JPS59228758A publication Critical patent/JPS59228758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain an excellent moisture resistance and temperature resistance impact strength by covering the main surface of a substrate with polyimide resin, and covering the wiring unit with Si resin. CONSTITUTION:After a large-sized image sensor substrate is cleaned by ultrasonic wave, and polyimide regin having photosensitivity is covered on the overall surface. Then, a pattern is formed to cover a wiring unit 5 for wiring a multilayer and all polyimide resin portion except the hatched part of the lead leading part 6 of a common side electrode, and heat treated. Then, it is bonded to the part 5 with a film lead 7, and a multilayer wiring unit 8 is formed, which is covered with Si resin. Since the polyimide resin is cured at relatively low temperature after coated on the unti 8, the unit 8 is not deteriorated. Since the Si resin has extremely small moisture absorption rate as compared with the polyimide regin, the resistivity does not decrease even if allowed to stand for a long period in a high moisture atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多層配線を必要とするイメージセンサ−に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an image sensor requiring multilayer wiring.

従来例の構成とその問題点 従来から例えばカードリーダー等に用いられているイメ
ージセンサ−として、ケースの中ニ光十ンサーアレーを
入れ、まずシリコン系樹脂で被覆し、エポキシ系樹脂を
流し込んで保護膜とするものがある。又光導電セルを保
護するためシリコン系樹脂をスプレー法や浸漬法で被覆
したものがある。
Conventional structure and problems Conventionally, for example, as an image sensor used in a card reader, etc., a double optical sensor array is placed inside a case, first coated with silicone resin, and then epoxy resin is poured in to form a protective film. There is something that says. There are also types in which the photoconductive cell is coated with a silicone resin by spraying or dipping to protect it.

しかしシリコン系樹脂は接着性に劣シ、被覆表面の清浄
度が高くないと良い接着性は得られない欠点を有する6
又シリコン系樹脂は、水分透過率が高い為に、気泡やピ
ンホールが問題になシ、ファクシミリ等に使用する大形
イメージセンサ−の様に大面積基板上の微細成形した光
センサーアV−に対して気泡やピンホールのない均一な
保護膜を得ることは困難であった。更にシリコン系樹脂
は硬化後も柔らかく、傷が付き易い欠点をも有している
However, silicone-based resins have the disadvantage of poor adhesion, and good adhesion cannot be obtained unless the coating surface is highly clean6.
In addition, silicone resin has a high moisture permeability, so bubbles and pinholes are not a problem, and it can be used as a finely molded optical sensor on a large-area substrate, such as a large image sensor used in facsimile machines. However, it has been difficult to obtain a uniform protective film without bubbles or pinholes. Furthermore, silicone resins have the disadvantage that they are soft even after curing and are easily scratched.

これらのシリコン系樹脂の欠点を防ぐ為に前記カードリ
ーダーに用いられている光センサーアレ−は更に、エポ
キシ系樹脂で保護膜を形成しているが、エポキシ系樹脂
の厚みによシ温度サイクルあ゛ 試験に要いて、クラックが生ずる場合がある。又前記フ
ァクシミリ等に使用する大形イメージセンサ−の様に大
面積基板のものに列してエポキシ系樹脂を被覆すると、
温度変化によるエポキシ系樹脂の膨張、収縮によシ光セ
ンサーアレー基板に反シが生じ更にはクラックが生ずる
場合がある。
In order to prevent these drawbacks of silicone resin, the optical sensor array used in the card reader is further coated with an epoxy resin, but due to the thickness of the epoxy resin, temperature cycling may be difficult.゛Due to testing, cracks may occur. Also, if a large-area substrate, such as the large image sensor used in facsimiles, is coated with epoxy resin,
Expansion and contraction of the epoxy resin due to temperature changes may cause the optical sensor array substrate to warp and even crack.

これらの欠点を有するシリコン系樹脂の代表的なもので
あるシリコンフェスを浸漬法で被覆し、多層配線を行な
ったファクシミリ等に使用する大形イメージセンサ−を
、信頼性試験のひとつである耐湿試験、例えば60℃、
90%RHの雰囲気中へ2時間放置した場合は、光セン
サーの抵抗値が、減少したシ増加したものが発生して、
光センサ−アレーの抵抗値にバラツキを生じた。これは
光センサ−アレーとシリコンフェスの接着性不良箇所や
、気泡又はピンホールが、光センサー近傍に存在し、水
分が、気泡やピンホールから侵入して光センサー上に結
露して、この結露の状態により光センサーの抵抗値の増
減が生じたものである。
A large image sensor used in facsimiles, etc., which is coated with silicon face, which is a typical type of silicone-based resin that has these drawbacks using a dipping method, and has multilayer wiring, was subjected to a moisture resistance test, which is one of the reliability tests. , for example 60℃,
When left in an atmosphere of 90% RH for 2 hours, the resistance value of the optical sensor will decrease and increase.
Variations occurred in the resistance value of the optical sensor array. This is due to poor adhesion between the optical sensor array and the silicone face, or air bubbles or pinholes near the optical sensor, and moisture enters through the air bubbles or pinholes and condenses on the optical sensor. The resistance value of the optical sensor increases or decreases depending on the condition.

又光センサ−アレーの配線部でショーI−が発生し、正
常な抵抗値を示さなくなった。これは、前述の欠陥部分
が、多層配線部に存在した場合に発生し、配線間に水分
が結露してリーク電流が流れ、マトリックス結線してい
る為に、全ての光センサーの抵抗値に悪影響を与えた事
によるものである。
Also, a show I- occurred in the wiring section of the optical sensor array, and it no longer showed a normal resistance value. This occurs when the above-mentioned defective part exists in the multilayer wiring part, and moisture condenses between the wirings, causing a leakage current to flow, which has a negative effect on the resistance value of all optical sensors due to the matrix connection. This is due to the fact that it was given.

又別の大形イメージセンザーに於いてシリコン系樹脂を
浸漬法で被覆した後、エポキシ系樹脂のひとつであるハ
イゾルを浸漬法で被覆したものについても60℃、90
係の雰囲気に放置すると、前述の光センサーの抵抗値の
増減、光センサ−アレーのンヨートが発生した。更にこ
の試料を信頼性試験のひとつである1、−20℃〜80
℃の温度サイクル試験を行なった結果、被覆面にクラン
クが生じた。
Another large image sensor was coated with silicone resin by dipping and then coated with Hysol, an epoxy resin, at 60°C and 90°C.
When left in a similar atmosphere, the aforementioned resistance value of the optical sensor increased and decreased, and the optical sensor array was damaged. Furthermore, this sample was subjected to one of the reliability tests.
As a result of a temperature cycle test at ℃, a crank appeared on the coated surface.

この様に従来のイメージセンサ−は、ファクシミリ等に
使用する大形イメージセンザーの様な大面積基板上の光
センサ−アレーの信頼性、特に耐湿性、温度衝撃に対し
て充分な形果を得ることは困難であった。
In this way, conventional image sensors have achieved sufficient reliability, especially in terms of moisture resistance and temperature shock, for optical sensor arrays on large-area substrates, such as large image sensors used in facsimile machines. It was difficult to obtain.

発明の目的 本発明は、上記従来の欠点を解決し、ファクシミリ等に
使用する大形のイメージセンサ−1特に耐湿性、温度衝
撃に対して特に有効なイメージセンサ−を提供すること
を目的とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional drawbacks and to provide a large-sized image sensor for use in facsimiles, etc., which is especially effective against moisture resistance and temperature shock. It is something.

発明の構成 本発明の第1のイメージセンサ−は、(1)基&の一主
面上に光センサ一部と配線部とが形成され、かつフィル
ムリードが前記配線部の結線部において電気的に接続さ
れるとともに、前記結線部を除いて前記基板の一生面が
ポリイミド系樹脂で被覆され、前記結線部がシリコン系
樹脂で被覆されたものである。
Structure of the Invention A first image sensor of the present invention includes: (1) a part of the optical sensor and a wiring part are formed on one main surface of the base plate, and a film lead is electrically connected to the connection part of the wiring part. The entire surface of the substrate except for the wire connection portion is coated with a polyimide resin, and the wire connection portion is coated with a silicone resin.

本発明の第2のイメージセンサ−は基板の一主面上に光
センサ一部と配線部とが形成され、導電性薄膜が前記配
線部の結線部において前記配線部と電気的に接続される
とともに、前記結線部を含む前記基板の一生面がポリイ
ミド系樹脂で被覆されたものである。
In a second image sensor of the present invention, a part of the optical sensor and a wiring part are formed on one principal surface of a substrate, and a conductive thin film is electrically connected to the wiring part at a connection part of the wiring part. Further, the entire surface of the substrate including the connection portion is coated with polyimide resin.

このような本発明のイメージセンサーバ、光センサ−ア
レーの清浄度があ捷シ高く−なくても接着性が良く、水
分透過率が非常に小さく、消泡性に優れたポリイミド系
樹脂を保護膜に使用するものであるため気泡やピンホー
ルが問題にならず、しかも、ヌピンコート膜や印刷膜が
形成可能で、膜厚が1oミクロン以下と薄くできて温度
変化による被膜の膨張、収縮が問題とならない為に被覆
にクランクが起きたシしない。又、多層配線部の結線部
分を除いてあらかじめ全て被覆することが可能な為に、
被覆後の光センサ−アレーの取シ扱いに注意しない等の
利点がある。
Even if the image sensor bar and optical sensor array of the present invention are not very clean, they have good adhesion, very low moisture permeability, and protect the polyimide resin that has excellent defoaming properties. Since it is used for membranes, air bubbles and pinholes are not a problem, and it is possible to form Nupin coat membranes and printed membranes, and the membrane thickness can be as thin as 10 microns or less, so expansion and contraction of the membrane due to temperature changes is a problem. Since this does not occur, no cranking occurs in the coating. In addition, since it is possible to cover everything except the connection parts of the multilayer wiring section in advance,
There are advantages such as not having to be careful in handling the optical sensor array after coating.

更に、it−■族化合物半導体であるCd S −Se
膜で形成した光センサーに列して、エポキシ系樹脂の様
に悪影響を与える成分が含まれていない為に、直接被覆
しても全く悪影響を与えない利点も有しておシ、その為
に多層配線を必要とする光センザーアレーの多層配線部
の結線部を除いた部分と光センサ一部分を同時に同一樹
脂で被覆することが可能である。
Furthermore, CdS-Se, which is an it-■ group compound semiconductor,
In line with optical sensors formed from films, it also has the advantage of not having any harmful effects even when directly coated, as it does not contain components that can have a negative impact, such as epoxy resins. It is possible to simultaneously coat a portion of the multilayer wiring section of an optical sensor array that requires multilayer wiring, excluding the connection portion, and a portion of the optical sensor with the same resin.

本発明の第1のイメージセンサ−は、シリコン系樹脂で
配線の結線部を覆っておシ、このシリコン系樹脂は配線
の結線部を劣化させることの力い程度の温度の熱処理で
容易に硬化するだめ、結線部が形成された後に同結線部
を劣化させることなく被覆する樹脂として有効である。
The first image sensor of the present invention covers the wiring connection part with a silicone resin, and this silicone resin is easily hardened by heat treatment at a temperature that is high enough to cause deterioration of the wiring connection part. In fact, it is effective as a resin for covering the wire connection portion without deteriorating it after the wire connection portion is formed.

なお、多層配線を導電性薄膜で形成する本発明の第2の
イメージセンサ−の場合は、同多層配線の電気的接続部
に半田等を用いないだめ300℃程度の加熱でも同上結
線部が劣化せず、この場合には同結線部を含めたイメー
ジセンサ−基板の全面にポリイミド樹脂を使用すること
が有効である。
In addition, in the case of the second image sensor of the present invention in which multilayer wiring is formed of a conductive thin film, if solder or the like is not used for the electrical connections of the multilayer wiring, the connection parts will deteriorate even when heated to about 300 degrees Celsius. In this case, it is effective to use polyimide resin on the entire surface of the image sensor substrate including the connection portion.

実施例の説明 (実施例1) 以上、本発明のイメージセンサ−の実施例について説明
する。
Description of Examples (Example 1) Examples of the image sensor of the present invention will be described above.

第1図は本発明の一実施例のイメージセンサ−を説明す
るだめの図で、大形イメージセンサ−の部分拡大斜視図
を示している。このイメージセンサ−は次のようにして
製造される。230X25X1.2tmmのガラス基板
1上に、アクセブクー不純物のCuを含んだCd5−C
dSe固溶体を蒸着法で被着した後、ホトエツチング技
術で、1ビツトのサイズが、32020ミフロン×8ク
ロンで、密度が8ビツト/腸で1728ビツトに微細加
工したCd5−3e膜2を形成する。次にCd S −
Se膜2に光感度を付与する為に、ドナー不純物のCt
雰囲気中で520’C,60分間の熱処理を行う。
FIG. 1 is a diagram for explaining an image sensor according to an embodiment of the present invention, and shows a partially enlarged perspective view of a large-sized image sensor. This image sensor is manufactured as follows. Cd5-C containing Cu as an impurity on a glass substrate 1 of 230 x 25 x 1.2 tmm.
After depositing the dSe solid solution by vapor deposition, a Cd5-3e film 2 is formed using a photoetching technique to form a microfabricated Cd5-3e film 2 with a size of 32020 microfrons x 8 microns and a density of 1728 bits/8 bits. Next, Cd S −
In order to impart photosensitivity to the Se film 2, donor impurity Ct
Heat treatment is performed in an atmosphere at 520'C for 60 minutes.

そしてC+1S−3e膜2を32ビツトずつ共通にした
共通側電極3と1ピッ1−ずつ分離した個別電極4とを
、400ミフロン×8ミクロンの受光部となる様に、N
i Or −Au蒸着膜の対向した電極をリフトオフ法
で形成し大形イメージセンサ−基板とする。
Then, the common side electrode 3 in which 32 bits of the C+1S-3e film 2 are shared in common and the individual electrodes 4 separated in 1-bit increments are connected to the
Opposing electrodes of the i Or -Au vapor deposited film are formed by a lift-off method to form a large image sensor substrate.

次にこの大形イメージセンサ−基板をアセ1−ン中に浸
漬して超音波洗浄を行なった後、光感温を有するポリイ
ミド樹脂を5〜6ミクロンの厚さで全面にヌピンコート
シ、ホトレジストの取シ扱いと同様の操作を行ない第1
図の多層配線用の結線部分6と、共通側電極のリード取
シ出し部分6の斜線部分を除く全ての部分がポリイミド
樹脂で被覆される様にパクーンを出し、30o℃でポリ
イミド樹脂のイミド化を促進する為に熱処理を行う。
Next, this large image sensor substrate was immersed in acetone and subjected to ultrasonic cleaning. After that, a photothermographic polyimide resin was coated on the entire surface with a thickness of 5 to 6 microns, and a photoresist was removed. Perform the same operation as for the first
The polyimide resin is heated to imidize the polyimide resin at 30°C. Heat treatment is performed to promote this.

次に第2図のフィルムリード7を使用して多層配線用の
結線部分5と半田等の低融点金属でボンディングを行い
、多層配線部8を形成し、その多層配線部8は、シリコ
ン系樹脂の代表的なものでアルシリコンワニヌで被覆す
る。なお、多層配線部8をシリコン系樹脂で被覆した場
合、シリコン系樹脂は、ポリイミド系樹脂樹脂と比較し
ても水分吸湿率が(η(めで小さいため艮+1.+J間
湿度の高い雰囲気中に放置しても抵抗率が低下せず、絶
縁性が要求される多層配線部8に用いることができる。
Next, using the film lead 7 shown in FIG. 2, bonding is performed with a low melting point metal such as solder to the connection part 5 for multilayer wiring to form a multilayer wiring part 8, which is made of silicon-based resin. It is a representative material and is coated with arsilicon varnish. Note that when the multilayer wiring section 8 is coated with a silicone resin, the silicone resin has a lower moisture absorption rate (η The resistivity does not decrease even if left as it is, and it can be used in the multilayer wiring section 8 that requires insulation.

ポリイミド系樹脂は、多層配線部8に塗付後、比較的低
い温度の熱処理で容易に硬化するので多層配線部8に半
田等の低融点金属を用いている場合にも、同多層配線部
8を劣化させることがない。
Polyimide resin is easily cured by heat treatment at a relatively low temperature after being applied to the multilayer wiring part 8, so even when a low melting point metal such as solder is used for the multilayer wiring part 8, the polyimide resin can be easily cured by heat treatment at a relatively low temperature. will not deteriorate.

なお、ガラス基板1の表面は多層配線用の結線部分5を
除いてあらかじめ全ての部分がポリイミド樹脂で被覆さ
れておシ、フィルムリード7と、多層配線用の結線部5
のボンデインク部分しか露出していないが、この露出し
だ部分は、配線間隔が、最も大きい部分であシ、水分が
侵入し結露状態が大きくない限り問題にならない。
Note that all parts of the surface of the glass substrate 1 are coated with polyimide resin in advance except for the connection parts 5 for multilayer wiring, and the film leads 7 and the connection parts 5 for multilayer wiring are coated with polyimide resin in advance.
Only the bonded ink portion of the wire is exposed, but this exposed portion is the part where the wiring spacing is the largest, so it will not be a problem as long as moisture does not enter and condensation is large.

更に第3図の個別側フィルムリード9を使用して個別側
端子を取り出し、共通側フィルムリート10を使用して
共通側端子を取り出して、大形イメージセンサ−11を
作製する。
Furthermore, the individual side terminals are taken out using the individual side film leads 9 of FIG. 3, and the common side terminals are taken out using the common side film lead 10, thereby producing a large image sensor 11.

この大形イメージセンサ−11を、信頼性試験のひとつ
である耐湿試験、例えば35℃,85%R H, 6 
0 0CI  9 o % R Hの雰囲気中へ500
時間放置した場合も、前述した従来のイメージセンサ−
での問題点は全く発生せず、ポリイミド樹脂と230X
25X1.2tmmの大きさのガラス基板1との接着性
が全面において優れ、更に気泡やピンホールがなく均一
な保護膜が形成されており、多層配線部8を被覆したシ
リコン系樹脂もイ〕効に作用していることが確認された
。又この大形イメージセンサー11を信頼性試験のひと
つである一20°C〜80°Cの温度サイク/L/試験
を、10回以上繰シ返えしても前述した従来の保護方法
で発生した問題点は全くないことを確認した。
This large image sensor 11 was subjected to a humidity test, which is one of the reliability tests, for example, 35°C, 85%RH, 6
500 into the atmosphere of 0 0 CI 9 o % R H
Even if left for a long time, the conventional image sensor mentioned above
There were no problems with polyimide resin and 230X.
The adhesion to the glass substrate 1 with a size of 25 x 1.2 tmm is excellent over the entire surface, and a uniform protective film is formed without bubbles or pinholes, and the silicone resin coating the multilayer wiring section 8 is also effective. It was confirmed that it was working. Furthermore, even if this large image sensor 11 is subjected to a temperature cycle/L/test from -20°C to 80°C, which is one of the reliability tests, more than 10 times, no damage will occur with the conventional protection method described above. It was confirmed that there were no problems at all.

この様に本実施例のイメージセンサ−はファクシミリ等
に使用する大形イメージセンサ−として用いても信頼性
の高いものであることがわかった。
In this manner, it was found that the image sensor of this example is highly reliable even when used as a large image sensor used in facsimiles and the like.

(実施例2) 本実施例では、前記実施例1の大形イメージセンサ−に
列して、光感度を有するポリイミド樹脂の変わシに印刷
可能なペースト状ポリイミド樹脂で被覆したものを示す
(Example 2) In this example, in addition to the large-sized image sensor of Example 1, a photosensitive polyimide resin is coated with a paste-like polyimide resin that can be printed.

まず、実施例1の大形イメージセンサ−基板に対して第
1図の多層配線用の結線部分6と共通電極のリード取シ
出し部分6の斜線部分を除く全ての部分を、印刷マスク
を使用して10ミクロンのポリイミド樹脂の印刷膜で被
覆し、3−00°Cでポリイミド樹脂のイミド化を促進
する為の熱処理を行う。その後の工程は実施例1と全く
同様である。
First, a printing mask was used to cover all parts of the large image sensor board of Example 1 except for the hatched parts of the multilayer wiring connection part 6 and the common electrode lead extraction part 6 in FIG. Then, it is coated with a 10 micron printed film of polyimide resin, and heat treated at 3-00°C to promote imidization of the polyimide resin. The subsequent steps are exactly the same as in Example 1.

この様にして作製した大形イメージセンサ−に対して、
実施例1と同様の耐湿試験、及び温度サイクル試験を行
なった結果、前述した従来のイメージセンサ−で発生し
た問題点は全くなく、この実施例2のイメージセンサ−
もファクシミリ等に使用する大形イメージセンサ−とし
て信頼性の高いものであることがわかった。
For the large image sensor manufactured in this way,
As a result of conducting the same moisture resistance test and temperature cycle test as in Example 1, it was found that the image sensor of Example 2 did not have any of the problems that occurred with the conventional image sensor described above.
It was also found that the sensor is highly reliable as a large image sensor used in facsimiles and the like.

(実施例3) 本実施例では、実施例1の大形イメージセンサ−に対し
て、第2図のフィルムリード7の変りにリフトオフ法で
形成した蒸着膜(導電薄膜)で多層配線用の結線部分5
とマトリックス結線を行ない、多層配線部8を形成しこ
の多層配線部8も他の部分と同様にポリイミド系樹脂で
被覆する実施例を説明する。
(Example 3) In this example, for the large image sensor of Example 1, a vapor-deposited film (conductive thin film) formed by a lift-off method is used instead of the film lead 7 shown in FIG. 2 for connection for multilayer wiring. part 5
An embodiment will be described in which matrix connection is performed to form a multilayer wiring section 8, and this multilayer wiring section 8 is also coated with a polyimide resin like the other parts.

実施例1で説明した光感度を有するポリイミド樹脂で、
第1図の多層配線用の結線部分6と、共通側電極のリー
ド取シ出し部分6の斜線部分を除いて全て被覆している
ものに、全…1にAZ−112Aホトレジヌ1−ヲヌピ
ンコートし、ホトマスクを使用してマトリックス結線が
可能なレシヌトパターンを形成した後、多層配線部8が
露出した幅13Mの帯状蒸着マスクを使用してN1Gr
 −Au  蒸着膜を被着し、リフトオフ法によシ、マ
トリックス結線を形成させて多層配線部8を完成さぜる
。その後、多′層配線部8に苅してポリイミド樹脂の希
釈したものをヌプレー法で被覆し、300°Cでポリイ
ミド樹脂の熱処理を行う。そして第3図の個別側フィル
ムリード9、共通側フィルム1゜を取り付けて、大形イ
メージセンサ−11を作製する。
A polyimide resin having the photosensitivity described in Example 1,
AZ-112A Photoresin 1-Wonupin coated all of the connecting portions 6 for multilayer wiring in FIG. 1 and the lead extraction portions 6 of the common side electrode except for the shaded areas. After forming a resin pattern that allows matrix connection using a photomask, N1Gr
-A deposited Au film is deposited, and matrix connections are formed using a lift-off method to complete the multilayer wiring section 8. Thereafter, the multilayer wiring portion 8 is coated with a diluted polyimide resin using the Nupre method, and the polyimide resin is heat-treated at 300°C. Then, the individual side film lead 9 and the common side film 1° shown in FIG. 3 are attached to fabricate a large image sensor 11.

この場合、多層配線部8は蒸着による導電性薄膜を用い
て形成しており、低融点金属を使用しないだめ、ポリイ
ミド樹脂で被覆された後、300°C程度の熱処理によ
っても劣化することはない。
In this case, the multilayer wiring section 8 is formed using a conductive thin film deposited by vapor deposition, and unless a low melting point metal is used, it will not deteriorate even when heat treated at about 300°C after being covered with polyimide resin. .

この様にして作製した大形イメージセンサ−に対して、
実施例1と同様の耐湿試験、及び温度サイクル試験を行
なった結果、前述した従来のイメージセンサ−で発生し
た問題点は全くなく、この実施例3のイメージセンサ−
もファクシミリ等ニ使用する大形イメージセンサ−とし
て信頼性の高いものであることがわかった。
For the large image sensor manufactured in this way,
As a result of conducting the same moisture resistance test and temperature cycle test as in Example 1, the image sensor of Example 3 did not have any of the problems that occurred with the conventional image sensor described above.
It was also found that the sensor is highly reliable as a large image sensor used in facsimile machines and the like.

(実施例4) 本実施例は、前記実施例2で説明した印刷可能なペース
ト状ポリイミド樹脂で第1図の多層配線用の結線部分5
と〕(通電])υイのリードJ■り出し部分6の斜線部
分を除く全ての部分を、印刷マスクを使用して10ミク
ロンの印刷膜で被覆し、300℃でポリイミドのイミド
化を促進する為の熱処理を行ない、更に印刷マスクを使
用して、印刷用導電性ベース1−の印刷膜で多層配線用
の結線部分5とマトリックス結線して、150°Cで6
0分間の熱処理を行ない多層配線部8を形成する。その
後、多層配線部8に対して、再度印刷マスクを使用して
10ミクロンのポリイミド樹脂の印刷膜で被覆し、30
0℃でポリイミド樹脂の熱処理を行なう。
(Example 4) This example uses the printable paste-like polyimide resin described in Example 2 to form the connection portion 5 for multilayer wiring shown in FIG.
(Electrification)) Cover all parts except the shaded part of the protruding part 6 of υA with a 10 micron printed film using a printing mask to promote imidization of polyimide at 300°C. Then, using a printing mask, the printed film of the printed conductive base 1- is matrix-connected to the connection part 5 for multilayer wiring, and then heated at 150°C.
A heat treatment is performed for 0 minutes to form the multilayer wiring section 8. After that, the multilayer wiring part 8 is coated with a printed film of polyimide resin of 10 microns using the printing mask again, and
The polyimide resin is heat-treated at 0°C.

次に第3図の個別側フィルムリード9、共通側フィルム
リード10を取り付けて、大形イメージセンサ−を作製
したものである。
Next, the individual side film lead 9 and the common side film lead 10 shown in FIG. 3 were attached to fabricate a large-sized image sensor.

この大形イメージセンサ−に対して他の実施例と同様の
耐湿試験、及び温度サイクル試験を行なった結果、前述
した従来のイメージセンサ−で発生した問題的は全くな
く、実施例4のイメーシセンザーもファクシミリ等に使
用する大形イメージセンサーとして信頼性の高いもので
あることがわかった。
As a result of conducting the same moisture resistance test and temperature cycle test on this large image sensor as in the other embodiments, it was found that there were no problems that occurred with the conventional image sensor described above. The sensor was also found to be highly reliable as a large image sensor used in facsimiles, etc.

発明の効果 以上の実施例で述べた様に、本発明のイメージセンサ−
は、ポリイミド系樹脂を用いているため光センサ−アレ
ーの清浄度が高くなくても接着性に問題が々く、消泡性
に優れているので、気泡やピンホールが問題にならない
Effects of the Invention As described in the above embodiments, the image sensor of the present invention
Because polyimide resin is used, there are many problems with adhesion even if the cleanliness of the optical sensor array is not high, but since it has excellent antifoaming properties, air bubbles and pinholes do not become a problem.

しかも、大面積の光センサ−アレーに対して均一な保護
膜を形成することが可能であり、耐湿性。
Moreover, it is possible to form a uniform protective film on a large-area optical sensor array and is moisture resistant.

温度衝撃に対して特に有効である。更に、■−■族化合
物半導体であるCAS−8e膜に列して悪影響を与える
成分を含んでいない為に、多層配線を必要とする光セン
サ−アレーの多層配線用結線部分5を除いた部分と光セ
ンサ一部分を同時に同一樹脂で被覆することが可能であ
シ、又、Cd5−8e 膜に共通側電極3、個別側電極
4を形成後、直ちに被覆する保護方法であシ、その後の
光センサ−アレー〇をシ扱いに注意を要しないなどの利
点をも有している。
Particularly effective against temperature shock. In addition, since it does not contain any components that adversely affect the CAS-8e film, which is a ■-■ group compound semiconductor, the parts of the optical sensor array excluding the multilayer wiring connection part 5 that requires multilayer wiring. It is possible to simultaneously coat a part of the optical sensor with the same resin, and it is also possible to coat the Cd5-8e film immediately after forming the common side electrode 3 and the individual side electrode 4. It also has the advantage that no care is required when handling the sensor array.

さらに、多層配線結線部が高温の熱処理によシ劣化しや
すい場合は、低温の熱処理で硬化するシリコン系樹脂で
同多層配線の結線部を被覆し、高温の熱処理による劣化
が問題にならない場合は、他の部分と同様に同結線部も
ボリイミ)−゛糸樹脂で覆うようにしているので、多層
配線結線部の劣化を効果的に防止できる。
In addition, if the multilayer wiring connections are susceptible to deterioration due to high temperature heat treatment, cover the multilayer wiring connections with a silicone resin that hardens with low temperature heat treatment, and if deterioration due to high temperature heat treatment is not a problem, Since the connection section is also covered with a polyimide resin like other parts, deterioration of the multilayer wiring connection section can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は製造工程時における本発明の実施例の大形イメ
ージセンザー基板の部分拡大斜視図、第2図は本発明の
実施例の大形イメージセンザー基板の部分拡大斜視図、
第3図は本発明の実施例の大形イメージセンサ−の斜視
図である。 1・・・・・・ガラス基板、2・・・・Cd S −S
e膜、3・・・・・・共通側電極、4・・・・・・個別
側電極、5・・・・・・多層配線用結線部分、6・・・
・・・共通側リード取p出し部分、7・・・・・・多層
配線用フィルムリード、8・・・・・多層配線部、9・
・・・・個別側フィルムリート、10・・・・・・共通
側フィルムリード、11・・・・・・大形イメージセン
サ−0
FIG. 1 is a partially enlarged perspective view of a large image sensor substrate according to an embodiment of the present invention during the manufacturing process, FIG. 2 is a partially enlarged perspective view of a large image sensor substrate according to an embodiment of the present invention,
FIG. 3 is a perspective view of a large image sensor according to an embodiment of the present invention. 1...Glass substrate, 2...Cd S-S
e-film, 3...Common side electrode, 4...Individual side electrode, 5...Connection part for multilayer wiring, 6...
...Common side lead extraction part, 7...Film lead for multilayer wiring, 8...Multilayer wiring part, 9.
...Individual side film lead, 10...Common side film lead, 11...Large image sensor -0

Claims (1)

【特許請求の範囲】[Claims] (1)基板の一生面上に光センサ一部と配線部とが形成
され、かつフィルムリードが前記配線部の結線部におい
て電気的に接続されるとともに、前記結線部を除いて前
記基板の一生面がポリイミド系樹脂で被覆され、前記結
線部がシリコン系樹脂で被覆されたことを特徴とするイ
メージセンサ−0(2)基板の一生面上に光センサ一部
と配線部とが形成され、導電性薄膜が前記配線部の結線
部において前記配線部と電気的に接続されるとともに、
前記結線部を含む前記基板の一生面がポリイミド系樹脂
で被覆されたことを特徴とするイメージセンサ−0
(1) A part of the optical sensor and a wiring part are formed on the whole surface of the board, and the film lead is electrically connected at the connection part of the wiring part, and the whole part of the board except for the connection part is formed. Image sensor-0 characterized in that the surface is coated with a polyimide resin and the connection portion is coated with a silicone resin.(2) A part of the optical sensor and a wiring portion are formed on the entire surface of the substrate, A conductive thin film is electrically connected to the wiring portion at a connection portion of the wiring portion, and
Image sensor-0, characterized in that the entire surface of the substrate including the connection portion is coated with polyimide resin.
JP58104445A 1983-06-10 1983-06-10 Image sensor Pending JPS59228758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104445A JPS59228758A (en) 1983-06-10 1983-06-10 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104445A JPS59228758A (en) 1983-06-10 1983-06-10 Image sensor

Publications (1)

Publication Number Publication Date
JPS59228758A true JPS59228758A (en) 1984-12-22

Family

ID=14380836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104445A Pending JPS59228758A (en) 1983-06-10 1983-06-10 Image sensor

Country Status (1)

Country Link
JP (1) JPS59228758A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111669A (en) * 1978-02-21 1979-09-01 Nippon Electric Co Hybrid ic circuit device
JPS54116890A (en) * 1978-03-03 1979-09-11 Hitachi Ltd Photoelectric converter
JPS55127022A (en) * 1979-03-24 1980-10-01 Sanyo Electric Co Ltd Forming of plastic insulating film
JPS5796575A (en) * 1980-12-08 1982-06-15 Fuji Xerox Co Ltd Thin-film image sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111669A (en) * 1978-02-21 1979-09-01 Nippon Electric Co Hybrid ic circuit device
JPS54116890A (en) * 1978-03-03 1979-09-11 Hitachi Ltd Photoelectric converter
JPS55127022A (en) * 1979-03-24 1980-10-01 Sanyo Electric Co Ltd Forming of plastic insulating film
JPS5796575A (en) * 1980-12-08 1982-06-15 Fuji Xerox Co Ltd Thin-film image sensor

Similar Documents

Publication Publication Date Title
JP4068293B2 (en) Rearrangement chip size package and manufacturing method thereof
US4172907A (en) Method of protecting bumped semiconductor chips
KR0159986B1 (en) Manufacture for heat sink having semiconductor and the manufacture
US4152195A (en) Method of improving the adherence of metallic conductive lines on polyimide layers
KR100427993B1 (en) Solid-state imaging device and manufacturing method thereof
US5408121A (en) Semiconductor device, an image sensor device, and methods for producing the same
US20050248014A1 (en) Resin-encapsulated semiconductor apparatus and process for its fabrication
JPH0682765B2 (en) Liquid crystal display element
JPH0332914B2 (en)
JPH05190584A (en) Transfer-molded semiconductor package, in which adhesive property is improved
JP2002057252A (en) Semiconductor device and method of manufacturing the same
KR900001656B1 (en) Forming method of passivation film
JPS628035B2 (en)
JP2001237348A (en) Semiconductor device and method of manufacturing the same
JPS59228758A (en) Image sensor
JPS59232424A (en) Semiconductor device and manufacture of the same
JPS60206192A (en) Thin film hybrid circuit and method of producing same
JP2633285B2 (en) In-vehicle hybrid integrated circuit device
JP2006012895A (en) Semiconductor device and its manufacturing method
JPS63271939A (en) Manufacture of semiconductor device
JPH07326709A (en) Multichip semiconductor package and its preparation
JP2871716B2 (en) Method for manufacturing resin-molded semiconductor device
JPH0878457A (en) Manufacture of semiconductor device
JPS5949687B2 (en) semiconductor equipment
JP3933519B2 (en) Method for manufacturing printed wiring board