JPS59223230A - Manufacture of oriented thin lead titanate film - Google Patents

Manufacture of oriented thin lead titanate film

Info

Publication number
JPS59223230A
JPS59223230A JP9630883A JP9630883A JPS59223230A JP S59223230 A JPS59223230 A JP S59223230A JP 9630883 A JP9630883 A JP 9630883A JP 9630883 A JP9630883 A JP 9630883A JP S59223230 A JPS59223230 A JP S59223230A
Authority
JP
Japan
Prior art keywords
lead titanate
orientation
substrate
thin lead
titanate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9630883A
Other languages
Japanese (ja)
Other versions
JPH0524088B2 (en
Inventor
Shunichiro Kawashima
俊一郎 河島
Kenji Iijima
賢二 飯島
Hiroshi Ouchi
宏 大内
Ichiro Ueda
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9630883A priority Critical patent/JPS59223230A/en
Publication of JPS59223230A publication Critical patent/JPS59223230A/en
Publication of JPH0524088B2 publication Critical patent/JPH0524088B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To form a thin lead titanate film having the direction of its C-axis in the direction of polarization in general and an increased degree of orientation by cooling a thin lead titanate film formed on a substrate at a low cooling rate. CONSTITUTION:A thin lead titanate film formed on a substrate of magnesium oxide or the like having a positive coefft. of thermal expansion is cooled from a temp. above the Curie temp. at <=200 deg.C/hr low cooling rate. By selecting the material of the substrate and the cooling rate, a thin lead titanate film having a high degree of orientation and little strain in the (001) direction, that is, the direction of its C-axis is formed. The film can be utilized as a piezoelectric element, a pyroelectric element or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はチタン酸鉛薄膜の配向度を向上させる製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manufacturing method for improving the degree of orientation of a lead titanate thin film.

従来例の構成とその問題点 近年、強誘電体薄膜は表面弾性波フィルター。Conventional configuration and its problems In recent years, ferroelectric thin films have been used as surface acoustic wave filters.

光変調素子、光シャッタ、光導波路、焦電素子に広く応
用されるようになつ゛ている0このような強誘電体薄膜
の中でも、チタン酸鉛薄膜は、誘電率が他の強誘電体に
比べて小さい、残留分極が大きい、および圧電特性がす
ぐれているという特徴をもっているため、高周波用圧電
素子または、焦電形熱検出素子として利用価値が高い。
Among these ferroelectric thin films, lead titanate thin films have come to be widely applied to light modulation elements, optical shutters, optical waveguides, and pyroelectric devices. It has the characteristics of being small in comparison, having a large residual polarization, and having excellent piezoelectric properties, so it has high utility value as a high-frequency piezoelectric element or a pyroelectric heat detection element.

強誘電体をに 圧電素子ま者ハ焦電素子として使用する場合、その分極
処理が必要となる。チタン酸鉛は、室温においては正方
晶系であり、格子定数14a=3.899人、 c=4
 、1532八で、C軸とa軸の格子定数との比の大き
いことが特長である。したがって゛、薄膜の面に垂直な
方向に分極する場合、分極前□に薄膜面に垂直な方向に
a軸方向をもった部分が多いと、分極前後でのひずみが
大きく、分極処理が困難であったり、分極できたとして
も内部応力がかかシ、実用上問題である。したがって、
チタン酸鉛薄膜を圧電素子や焦電素子として利用するに
は、その薄膜面に垂直な方向、すなわち分極方向にC軸
方bl’4 めJ。
When a ferroelectric material is used as a piezoelectric element or a pyroelectric element, polarization treatment is required. Lead titanate is tetragonal at room temperature, with lattice constants 14a = 3.899, c = 4
, 15328, and is characterized by a large ratio of the lattice constants of the C-axis and the a-axis. Therefore, when polarizing in the direction perpendicular to the surface of the thin film, if there are many parts with the a-axis direction perpendicular to the thin film surface before polarization, the distortion before and after polarization will be large and the polarization process will be difficult. Even if polarization is possible, internal stress is generated, which is a practical problem. therefore,
In order to use a lead titanate thin film as a piezoelectric element or a pyroelectric element, it is necessary to align the direction perpendicular to the thin film surface, that is, the polarization direction, along the C axis.

点(約490″C)より高い温度から冷却する際。When cooling from a temperature above the point (approximately 490″C).

冷却速度を200°C/時以下にすることにより。By keeping the cooling rate below 200°C/hour.

(001)配向度を向上させることを特徴とする。(001) is characterized by improving the degree of orientation.

実施例の説明 薄膜は通常の高周波スパッタリング法で作製する。基板
には酸化マグネシウム単結晶の(1oo)面、チタン酸
ストロンチウム単結晶の(10o)面。
DESCRIPTION OF THE EMBODIMENTS Thin films are prepared by conventional high frequency sputtering methods. The substrates are a (1oo) plane of a magnesium oxide single crystal and a (10o) plane of a strontium titanate single crystal.

ブルミナ磁器、サファイヤのR面、白金板、金板を用い
下地電極として白金をスパッタした後にチタン酸鉛をス
パッタした。基板温度は550°Cからeoo’cで、
膜厚は2〜3μmである。配向度AはX線回折図形、よ
り推定した。すなわち、X線回折図形において(100
,)面と(Ool)面の反射強度をそれぞれ工100j
IO01とした時、次の式で定義される偵Al<001
)方向の配向の目安とした0第1図に冷却速度1800
°C/時、2oO”C/時、50″C/時、10″C/
時とした時の酸化マグネシウム上のチタン酸鉛薄膜の配
向度Aの値を示した0 基板をかえた時の(001)配向度Aの冷却温度依存性
を下表に示した0 表: (001)配向度Aの冷却速度依存性第1図およ
び上表に示したように、冷却速度力=Boo″C/時で
ある時に比べて、冷却速度をl」\さくするほど(00
1)配向度が大きくなること力玉わかる。この効果は冷
却する時に、チタン酸鉛はキュリ一温度以上では立方晶
系でa軸とa軸の格子定数が等しいが、キュリ一温度以
下ではC軸方向の線膨張係数が負であシ、C軸方向の線
膨張係数が正であるという特異な性質をもっているので
、正の熱膨張係数を持った材料を基板に使うと、冷却さ
れる時に基板の面に平行にa軸が向く方(C軸配向)が
ひずみが少ない。冷却速度を小さくすることによって、
このひずみの少ない状態が達成されるためである。なお
、ここでC軸方向とは(ool)方向のことであシ、C
軸方向とは(100)方向のことである。次に(Ool
)配向することの工業上の有用性の一例として、焦電効
果に及ぼす(ool)配向度の効果を示す。第2図は横
軸に配向度を、また縦軸に焦電係数をそれぞれ示したも
のでるる。なお、基板に酸化マグネシウムを使用し、そ
の分極は200°Cで100 kv/cmノ電界を10
分印加して行なった。第2図より配向度Aが大きい焦電
係数が大きいことがわかる。
Platinum was sputtered as a base electrode using Blumina porcelain, an R surface of sapphire, a platinum plate, and a gold plate, and then lead titanate was sputtered. The substrate temperature is from 550°C to eoo'c,
The film thickness is 2 to 3 μm. The degree of orientation A was estimated from the X-ray diffraction pattern. That is, in the X-ray diffraction pattern (100
, ) surface and (Ool) surface are respectively calculated as 100j.
When IO01 is defined by the following formula, Al<001
) The cooling rate of 1800 is shown in Figure 1 as a guide for the orientation of the direction.
°C/hour, 2oO"C/hour, 50"C/hour, 10"C/hour
The following table shows the cooling temperature dependence of the (001) orientation A when the substrate is changed. 001) Cooling rate dependence of orientation degree A As shown in FIG.
1) It can be seen that the degree of orientation increases. When cooled, lead titanate has a cubic crystal system with equal lattice constants for the a-axis and the a-axis at temperatures above one Curie temperature, but below one Curie temperature, the coefficient of linear expansion in the C-axis direction is negative. It has a unique property that the coefficient of linear expansion in the C-axis direction is positive, so if a material with a positive coefficient of thermal expansion is used for the substrate, the a-axis will be oriented parallel to the surface of the substrate when it is cooled ( C-axis orientation) has less distortion. By reducing the cooling rate,
This is because this state of less distortion is achieved. Note that the C-axis direction here refers to the (ool) direction,
The axial direction refers to the (100) direction. Then (Ool
) As an example of the industrial utility of orientation, the effect of the degree of (ool) orientation on the pyroelectric effect is shown. In FIG. 2, the horizontal axis shows the degree of orientation, and the vertical axis shows the pyroelectric coefficient. In addition, magnesium oxide is used for the substrate, and its polarization is determined by applying an electric field of 100 kv/cm at 200°C.
The test was carried out by applying a It can be seen from FIG. 2 that the pyroelectric coefficient is large when the degree of orientation A is large.

発明の効果 以上のように、本発明はチタン酸鉛の(001)配向度
を向上させるのに効果がアシ、工業的価値が大なるもの
である。
Effects of the Invention As described above, the present invention is effective in improving the degree of (001) orientation of lead titanate, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基板に酸化マグネシウムを用いた時の配向度A
の冷却速度依存性を示す図、第2図は焦電係数の配向度
依存性を示す図である。
Figure 1 shows the degree of orientation A when magnesium oxide is used as the substrate.
FIG. 2 is a diagram showing the dependence of the pyroelectric coefficient on the degree of orientation.

Claims (1)

【特許請求の範囲】[Claims] (1)正の熱膨張係数を有する基板上に作製されたチタ
ン酸鉛薄膜を、キュリ一温度より高い温度から冷却する
際、冷却速度を200’C/時以下として(ool)配
向度を向上させることを特徴とするチタン酸鉛配向薄膜
の製造方法。 (噂 基板の材料が酸化マグネシウム、チタン酸ス゛ト
ロンチウム、アルミナ磁器、サフフイヤ、白金。 または金であることを特徴とする特許請求の範囲第1項
記載のチタン酸鉛配向薄膜の製造方法。
(1) When cooling a lead titanate thin film fabricated on a substrate with a positive coefficient of thermal expansion from a temperature higher than the Curie temperature, the degree of orientation is improved by setting the cooling rate to 200'C/hour or less (ool). A method for producing an oriented lead titanate thin film, characterized in that: (Rumor) The method for producing a lead titanate oriented thin film according to claim 1, wherein the material of the substrate is magnesium oxide, strontium titanate, alumina porcelain, sapphire, platinum, or gold.
JP9630883A 1983-05-30 1983-05-30 Manufacture of oriented thin lead titanate film Granted JPS59223230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9630883A JPS59223230A (en) 1983-05-30 1983-05-30 Manufacture of oriented thin lead titanate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9630883A JPS59223230A (en) 1983-05-30 1983-05-30 Manufacture of oriented thin lead titanate film

Publications (2)

Publication Number Publication Date
JPS59223230A true JPS59223230A (en) 1984-12-15
JPH0524088B2 JPH0524088B2 (en) 1993-04-06

Family

ID=14161395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9630883A Granted JPS59223230A (en) 1983-05-30 1983-05-30 Manufacture of oriented thin lead titanate film

Country Status (1)

Country Link
JP (1) JPS59223230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603337A1 (en) * 1985-02-04 1986-08-14 Hitachi, Ltd., Tokio/Tokyo PIEZOELECTRIC CONVERTER AND METHOD FOR THE PRODUCTION THEREOF

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603337A1 (en) * 1985-02-04 1986-08-14 Hitachi, Ltd., Tokio/Tokyo PIEZOELECTRIC CONVERTER AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPH0524088B2 (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US3808674A (en) Epitaxial growth of thermically expandable films and particularly anisotropic ferro-electric films
JPS61177900A (en) Piezo-electric element and its manufacture
JPS62205266A (en) Ferroelectric thin film element and its production
JPS62158311A (en) Thin film capacitor and manufacture of the same
JPS59223230A (en) Manufacture of oriented thin lead titanate film
JPS61185808A (en) Making process of orientation thin film for ferrodielectric compound
JP3079509B2 (en) Thin film laminated crystal and manufacturing method thereof
JPH045874A (en) Ferroelectric thin-film and manufacture thereof
JPS61135172A (en) Manufacture of ferroelectric compound thin-film
JPS6241311B2 (en)
US2893107A (en) Barium titanate as a ferroelectric material
JPH11116397A (en) Oriented perovskite type potassium niobate thin membrane, and surface acoustic wave element having the thin membrane
JP2532410B2 (en) Dielectric thin film element
JPS59137318A (en) Manufacture of oriented thin film element of ferroelectric substance
Payne et al. Thin‐film Bi2WO6
JPH04132615A (en) Thin film of bismuth compound having laminar structure and its production
JP2615019B2 (en) Method for producing LiNbO single crystal piezoelectric substrate having domain-inverted region
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film
JPH05235428A (en) Ferroelectric thin film element and manufacture thereof
JPH0417659A (en) Production of thin oxide film
JPH0269395A (en) Production of thin film of lithium oxide-based single crystal
JPS626597A (en) Manufacture of piezoelectric element
JPH05347438A (en) Ferroelectric thin-film element
JPH06260018A (en) Ferroelectric thin film element and its manufacture
JPH04103756A (en) Production of zinc oxide film