JPS63178408A - Manufacture of ferro dielectric thin film - Google Patents

Manufacture of ferro dielectric thin film

Info

Publication number
JPS63178408A
JPS63178408A JP62010572A JP1057287A JPS63178408A JP S63178408 A JPS63178408 A JP S63178408A JP 62010572 A JP62010572 A JP 62010572A JP 1057287 A JP1057287 A JP 1057287A JP S63178408 A JPS63178408 A JP S63178408A
Authority
JP
Japan
Prior art keywords
thin film
manufacture
dielectric thin
elements
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62010572A
Other languages
Japanese (ja)
Inventor
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62010572A priority Critical patent/JPS63178408A/en
Publication of JPS63178408A publication Critical patent/JPS63178408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電形赤外線検出素子、圧電素子、電気光学素
子に用いられる強誘電体薄膜の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a ferroelectric thin film used in pyroelectric infrared detection elements, piezoelectric elements, and electro-optical elements.

従来の技術 強誘電体のエレクトロニクス分野における応用は、赤外
線検出素子、圧電素子、光変調素子、メモリ素子などさ
まざまなものがある。近年の半導体技術の進歩による電
子部品の小型化にともない、強誘電体素子も薄膜化が進
みつつある。
BACKGROUND ART There are various applications of ferroelectric materials in the electronics field, such as infrared detection elements, piezoelectric elements, light modulation elements, and memory elements. As electronic components become smaller due to advances in semiconductor technology in recent years, ferroelectric elements are also becoming thinner.

ところで、強誘電体の自発分極ps の変化を出力とし
て取りだす、例えば焦電形赤外線検出素子や圧電素子等
では、強誘電体材料のPsが一方向に揃っている(配向
している)とき、最も大きい出力が得られる。また出力
は薄膜が高密度であるほど太きい。
By the way, in, for example, a pyroelectric infrared detection element or a piezoelectric element that outputs changes in the spontaneous polarization ps of a ferroelectric material, when the Ps of the ferroelectric material is aligned (orientated) in one direction, Maximum output can be obtained. Also, the higher the density of the thin film, the greater the output.

現在までに、例えば、スパッタリング法でマグネシア(
MgO)上に、PbTi03を形成させる方法が報告さ
れている( [、Iijima (飯島賢二)他、J、
ムpI)l 、Phys 、(ジャーナル・オブ・アプ
ライド・フィジックス) Vol 、 60.p 、3
61.1986年〕。
To date, for example, magnesia (
A method for forming PbTi03 on MgO) has been reported ([, Iijima (Kenji Iijima) et al., J.
Phys, (Journal of Applied Physics) Vol. 60. p, 3
61.1986].

発明が解決しようとする問題点 スパッタで形成したPbTio3薄膜は、C軸に配向し
ている(例えば、配向率98%)が、その微細構造をみ
ると表面は、極めて粗く、破断面も柱状構造ですきまが
見え、あまり高密度とはいえない(前記文献)。従って
薄膜化にも限界がある。
Problems to be Solved by the Invention The PbTio3 thin film formed by sputtering is oriented along the C axis (for example, the orientation rate is 98%), but when looking at its microstructure, the surface is extremely rough, and the fractured surface also has a columnar structure. Since gaps are visible, it cannot be said that the density is very high (see the above-mentioned document). Therefore, there is a limit to how thin the film can be made.

一方、一般に化学気相成長法(CVD法)で作成した薄
膜は、熱平衡条件に近い条件で作成されるため、表面が
平担で高密度であることが期待される。従って、スパッ
タリング法よりも薄い薄膜が作成できる。
On the other hand, thin films formed by chemical vapor deposition (CVD) are generally formed under conditions close to thermal equilibrium conditions, and are therefore expected to have a flat surface and high density. Therefore, thinner films can be created than with the sputtering method.

本発明は、化学気相成長によりその特長である平担性と
高密度性をそなえた高性能のpbrio 5薄膜を作成
する方法を提供することを目的とするものである。
An object of the present invention is to provide a method for producing a high-performance pbrio 5 thin film with its characteristics of flatness and high density by chemical vapor deposition.

問題点を解決するための手段 この目的を達成するために本発明は原料に、酸化鉛(P
bO)と有機金属Ti (チタニウム・テトラ−n−プ
トキシド: Ti(C4H,0)4)を用イ、基板にマ
グネシア単結晶(MgO)上にスパッタリングにより、
白金を成膜したものを用い、cvn法でPbTi03薄
膜を成長させるものである。
Means for Solving the Problems In order to achieve this object, the present invention uses lead oxide (P) as a raw material.
bO) and organometallic Ti (titanium tetra-n-poxide: Ti(C4H,0)4) were sputtered onto a magnesia single crystal (MgO) substrate.
A PbTi03 thin film is grown by the CVN method using a platinum film.

作用 CVD法で成膜させることにより、1000ムの厚みで
も、十分な絶縁耐圧を有する強誘電体薄膜が作成できた
By forming the film using the active CVD method, a ferroelectric thin film having a sufficient dielectric strength even with a thickness of 1000 μm was created.

実施例 (1oo )でへき関し鏡面研摩したMgO単結晶を基
板とし、下部電極として膜厚0.2μmのpt薄膜をス
パッタリングにより形成した。
Using the MgO single crystal which had been mirror-polished in Example (1oo) as a substrate, a PT thin film having a thickness of 0.2 μm was formed as a lower electrode by sputtering.

MgOのボート形るつぼに、酸化鉛(PbO)の粉末を
入れ、その上に、MgOのブロックを置き、このブロッ
ク上に基板を並べた。PbOを入れたボート形るつぼを
アルミナ炉心管の中央におき、その上にアルミナパイプ
を配置した。チタニウム・テトラ・n・ブトキシド液体
をバブラーに入れ、220℃に加熱した。キャリアガス
としてムrを用い、このT1の有機金属ガスをアルミナ
パイプを通して、反応炉に入れた。一方、H2Oはバブ
ラーに入れ、02ガスをキャリアガスにして、反応炉に
入れた。CVD法の条件を表1に示す。
Lead oxide (PbO) powder was placed in an MgO boat-shaped crucible, an MgO block was placed on top of the powder, and the substrates were arranged on top of this block. A boat-shaped crucible containing PbO was placed in the center of an alumina furnace tube, and an alumina pipe was placed above it. Titanium tetra n-butoxide liquid was placed in a bubbler and heated to 220°C. Using Mr as a carrier gas, this T1 organometallic gas was introduced into the reactor through an alumina pipe. On the other hand, H2O was put into a bubbler, 02 gas was used as a carrier gas, and the mixture was put into the reactor. Table 1 shows the conditions of the CVD method.

(以 下金 白) 表1 CVD法によるPbTi03薄膜の作成条件表2
に、基板温度、即ちpboを入れたるつぼの温度を変え
たときの、X線解析の結果を示す。
(Hereinafter referred to as Gold White) Table 1 Table 2 Conditions for creating PbTi03 thin film by CVD method
2 shows the results of X-ray analysis when the substrate temperature, that is, the temperature of the crucible containing pbo, is changed.

(以下金 白) 基板温度が400〜500 ’Cではアモルファス、7
00 ’C以上では酸化鉛相が現れる。従って、PbT
iO3の作成温度は55C)〜650℃であるといえる
(Hereinafter referred to as gold white) When the substrate temperature is 400 to 500'C, it becomes amorphous, 7
Above 00'C, a lead oxide phase appears. Therefore, PbT
It can be said that the production temperature of iO3 is 55C) to 650C.

CVI)で作成した薄膜の表面を走査形電子顕微鏡で観
察した。表面は、平担で柱状構造はみられなかった。表
面に白金電極を付け、誘電率ε1と焦電係数γを測定し
、スパッタ法で得た膜の値と比較した。ε、とγを表3
に示す。本方法で作成した膜のεrとγは明らかに大き
い。従って本方法で作成した素子は、スパッタ法で作成
した膜より高密度で、C1もγも大きく、焦電形赤外線
検出素子などに用いたとき高性能である。
The surface of the thin film prepared using CVI) was observed using a scanning electron microscope. The surface was flat and no columnar structure was observed. A platinum electrode was attached to the surface, and the dielectric constant ε1 and pyroelectric coefficient γ were measured and compared with the values of a film obtained by sputtering. Table 3 shows ε and γ.
Shown below. The εr and γ of the film prepared by this method are clearly large. Therefore, the element produced by this method has a higher density than a film produced by sputtering, has larger C1 and γ, and has higher performance when used in a pyroelectric infrared detection element.

表3 CVD法とスパッタ法の比較 次に、厚みを変えて、絶縁破壊電場EBを測定した。厚
みが1000A以上では、T!、Bが200kv/(7
)以上あった。スパッタ法により作成した薄膜では、厚
さが5000A以下になると急速にE、が低下した。こ
のように、CVD法ではかなり薄い平担な薄膜が作成で
きる。このことは、上記の赤外検出素子を作成する場合
に、有利である。
Table 3 Comparison of CVD method and sputtering method Next, the dielectric breakdown electric field EB was measured while changing the thickness. If the thickness is 1000A or more, T! , B is 200kv/(7
) There were more than that. In the thin film created by sputtering, E rapidly decreased when the thickness became 5000A or less. In this way, the CVD method can produce a fairly thin and flat thin film. This is advantageous when producing the above-mentioned infrared detection element.

発明の効果 本発明の強誘電体薄膜は高密度で、大きい焦電係数をも
ち、表面が平担でさらに薄くできる。これは高性能の赤
外線検出素子、圧電素子、電気光学素子をもたらす。
Effects of the Invention The ferroelectric thin film of the present invention has a high density, a large pyroelectric coefficient, a flat surface, and can be made even thinner. This results in high performance infrared sensing elements, piezoelectric elements, and electro-optical elements.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例における薄膜作成法の構成図である
。 1・・・・・・マグネジするつぼ、2・・・・・・マグ
ネシア磁器、3・・・・・・基板、4・・・・・・pb
o粉末、6・・・・・電気炉、6・・・・・・アルミナ
(’62C’3)パイプ、7・・・・ガスl(O□+H
20)、8−・−−ガス11(人r+T i (C4H
,O) 、 )。
The figure is a block diagram of a thin film forming method in an embodiment of the present invention. 1...magnetic pot, 2...magnesia porcelain, 3...substrate, 4...pb
o powder, 6... electric furnace, 6... alumina ('62C'3) pipe, 7... gas l (O□+H
20), 8-・--Gas 11 (person r+T i (C4H
,O), ).

Claims (1)

【特許請求の範囲】[Claims]  基板を鉛の酸化物(PbO)の粉体中に置き、Tiの
有機金属(チタニウム−テトラ−n−プトキシド、Ti
(C_4H_9O)_4)ガス中で、加熱しPbTiO
_3からなる強誘電体薄膜を基板上に形成させることを
特徴とする強誘電体薄膜の製造方法。
The substrate is placed in lead oxide (PbO) powder, and a Ti organometallic (titanium-tetra-n-poxide, Ti
(C_4H_9O)_4) Heat PbTiO in gas
A method for producing a ferroelectric thin film, the method comprising forming a ferroelectric thin film comprising _3 on a substrate.
JP62010572A 1987-01-20 1987-01-20 Manufacture of ferro dielectric thin film Pending JPS63178408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010572A JPS63178408A (en) 1987-01-20 1987-01-20 Manufacture of ferro dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010572A JPS63178408A (en) 1987-01-20 1987-01-20 Manufacture of ferro dielectric thin film

Publications (1)

Publication Number Publication Date
JPS63178408A true JPS63178408A (en) 1988-07-22

Family

ID=11753949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010572A Pending JPS63178408A (en) 1987-01-20 1987-01-20 Manufacture of ferro dielectric thin film

Country Status (1)

Country Link
JP (1) JPS63178408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686151A (en) * 1993-09-14 1997-11-11 Kabushiki Kaisha Toshiba Method of forming a metal oxide film
US5993901A (en) * 1993-01-20 1999-11-30 Murata Manufacturing Co., Ltd. Production of thin films of a lead titanate system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993901A (en) * 1993-01-20 1999-11-30 Murata Manufacturing Co., Ltd. Production of thin films of a lead titanate system
US5686151A (en) * 1993-09-14 1997-11-11 Kabushiki Kaisha Toshiba Method of forming a metal oxide film

Similar Documents

Publication Publication Date Title
Tuttle et al. Highly oriented, chemically prepared Pb (Zr, Ti) O3 thin films
Kwon et al. High strain,< 001> textured 0.675 Pb (Mg1/3Nb2/3) O3–0.325 PbTiO3 ceramics: Templated grain growth and piezoelectric properties
Ouchi Piezoelectric Properties and Phase Relations of Pb (Mg1/3Nb2/3) O3‐PbTiO3− PbZrO3 Ceramics with Barium or Strontium Substitutions
Aratani et al. Epitaxial-grade polycrystalline Pb (Zr, Ti) O 3 film deposited at low temperature by pulsed-metalorganic chemical vapor deposition
JPS62205266A (en) Ferroelectric thin film element and its production
Reddy et al. Ferroelectric and piezoelectric properties of Ba0. 85Ca0. 15Ti0. 90Zr0. 10O3 films in 200 nm thickness range
Zhou et al. Effects of annealing temperature on structure and electrical properties of sol–gel derived 0.65 PMN-0.35 PT thin film
Yogo et al. Synthesis of highly oriented K (Ta, Nb) O3 (Ta: Nb= 65: 35) film using metal alkoxides
US8182719B2 (en) Pyroelectric compound and method of its preparation
Xu et al. Influence of the Strain on Dielectric and Ferroelectric Properties of 0.5 BaZr0. 2Ti0. 8O3–0.5 Ba0. 7Ca0. 3TiO3
US6143679A (en) Layered crystal structure oxide
Leng et al. Structural and optical properties of BaxSr1− xTiO3 thin films on indium tin oxide/quartz substrates prepared by radio-frequency magnetron sputtering
JPS63178408A (en) Manufacture of ferro dielectric thin film
Chen et al. Sol-gel derived ferroelectric PZT thin films on doped silicon substrates
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
JPH045874A (en) Ferroelectric thin-film and manufacture thereof
Thomas et al. Structural, electrical and optical properties of sol–gel processed lead titanate thin films
JPS60161635A (en) Substrate for electronic device
JPS6241311B2 (en)
JPH0196368A (en) Manufacture of thin film of ferroelectric substance
JPS5935098A (en) Ferroelectric thin film
Ma et al. Crystallization evolution and ferroelectric behavior of Bi 3.25 La 0.75 Ti 3 O 12-based thin films prepared by rf-magnetron sputtering
JPS63279504A (en) Manufacture of ferroelectric thin film
Lakeman et al. Crystallization behavior and improved properties for sol-gel derived PZT and PLZT thin layers processed with a lead oxide cover coating
JPS63116304A (en) Ferrodielectric thin film element