JPS59222298A - Method for controlling filthy water treating plant - Google Patents

Method for controlling filthy water treating plant

Info

Publication number
JPS59222298A
JPS59222298A JP58092462A JP9246283A JPS59222298A JP S59222298 A JPS59222298 A JP S59222298A JP 58092462 A JP58092462 A JP 58092462A JP 9246283 A JP9246283 A JP 9246283A JP S59222298 A JPS59222298 A JP S59222298A
Authority
JP
Japan
Prior art keywords
sludge
flow rate
aeration tank
air
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58092462A
Other languages
Japanese (ja)
Other versions
JPH0440080B2 (en
Inventor
Ryosuke Miura
良輔 三浦
Itaru Takase
高瀬 格
Kazuo Shibazaki
柴崎 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58092462A priority Critical patent/JPS59222298A/en
Publication of JPS59222298A publication Critical patent/JPS59222298A/en
Publication of JPH0440080B2 publication Critical patent/JPH0440080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To control stably concn. of dissolved oxygen (DO) and the amt. of total activated sludge by interlocking the control of flow rate of feed air to an aeration tank and the control of flow rate of returned sludge from a settling basin, and compensating interference of the low rate of the feed air and the flow rate of the returned sludge with each other. CONSTITUTION:Filthy water is introduced into an aeration tank 1-1 through a channel passage A, and a mixture of the filthy water and the activated sludge flowed therefrom is introduced into a settling basin 1-2 through a channel passage A1, and the solid component is separated from the liquid, and the supernatant liquid is discharged through a channel passage A2. A part of the activated sludge 1-8 precipitated in the settling basin 1-2 is withdrawn through a drawing pipe 1-9, and a part of the drawn sludge is returned to the aeration tank 1-1 through a channel passage B, and a part thereof is discharged through a channel passage C to the outside as excess sludge. Air is fed to the aeration tank 1-1 from an air feeding device 1-5 through an air dispersing device 1-6, and the flow rate of the feed air QA* is controlled to a set value QA by a controller 5.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明け、曝気槽と沈澱池を備え活性汚泥法によって汚
水を二次処理する汚水処理プラントの制御方法にかかり
、特に曝気槽への送風流量と沈澱池からの返送汚泥流量
とを連勉して制御する方法I:l−関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for controlling a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of sewage by an activated sludge method, and particularly relates to a method for controlling a sewage treatment plant that is equipped with an aeration tank and a sedimentation tank and performs secondary treatment of sewage by an activated sludge method. This relates to method I: l-, which continuously studies and controls the flow rate of sludge and the flow rate of sludge returned from the settling tank.

[発明の技術的背景とその問題点] 前沈澱などの一次処理を受けた汚水は、曝気槽に送らね
、活性汚泥と混合接触しながら睦気されて二次処理が行
なわれ、増殖した活性汚泥と共に沈澱池へ送られる。
[Technical background of the invention and its problems] Sewage that has undergone primary treatment such as pre-sedimentation is not sent to an aeration tank, but is aerated while being mixed with activated sludge and subjected to secondary treatment. It is sent to the settling pond along with the sludge.

処理された汚水は沈澱池で固液分離され、上好水は外部
へ取出され、固形物および活性汚泥は沈澱池内5二沈澱
すると共に活性汚泥の一部は曝気槽に返送される。
The treated sewage is separated into solid and liquid in a settling tank, the top water is taken out to the outside, solids and activated sludge are settled in the settling tank, and part of the activated sludge is returned to the aeration tank.

t′だ余剰汚泥は外部≦二排出される。After t', excess sludge is discharged to the outside.

上記二次処理において、汚水の浄化を効率的C1行なう
ため(−は、曝気槽への送風流量QA +沈澱池からの
返送汚泥流針Qn(以下返送流量と呼ぶ)、および余剰
汚泥引抜流量Qw (以下引抜流量と呼ぶ)を適切に制
御する必裟がある。
In the above secondary treatment, in order to efficiently purify sewage C1 (- is the air flow rate QA to the aeration tank + the return sludge flow needle Qn from the settling tank (hereinafter referred to as the return flow rate), and the excess sludge withdrawal flow rate Qw (hereinafter referred to as the withdrawal flow rate) must be appropriately controlled.

しかしながら上記3つの制御量の操作d、相力に干渉し
合うので、総合的な制御が心安であるが、従来の方法で
は相互の干渉について十分な考慮が払われていない。
However, since the operations of the three control variables and the mutual forces interfere with each other, comprehensive control is safe, but in conventional methods, sufficient consideration is not given to mutual interference.

[発明の目的] 本発明は、送風流itQムと返送流量QRとを連動して
制御し、これによって曝気槽内の溶存酸素濃度(以下D
O嬢度と呼ぶ)を安定層つ高精度C制御できる汚水処理
プラントの制御方法を提供することを目的としている。
[Object of the invention] The present invention controls the air flow itQm and the return flow rate QR in conjunction with each other, thereby increasing the dissolved oxygen concentration (hereinafter referred to as D) in the aeration tank.
The purpose of the present invention is to provide a control method for a sewage treatment plant that is capable of stabilizing and highly accurate C control.

[発明の概要] 本発明は、曝気槽と沈澱池を備え活性汚泥法によって汚
水を二次処理する汚水処理プラントの制御方法l二おい
て、曝気槽内のDO9度を目標DO濃度と比較して送風
流量の一次設定値を出力する第1の制御器と、沈澱池内
の汚泥量と目標汚泥量を比較して返送汚泥流量を出力す
る第2の制御器と、上記送風流量および返送汚泥流1゛
の各−次設定値を入力し両者を連動した所定の演算によ
って送風流量および返送汚泥流量の二次設定値を算出す
る補償演算器を設け、上記各二次設定値C対応して送風
流量および返送汚泥流量を制御し、これによって送風流
’4tと返送流セ1との相互干渉を袖丁、)シて1嘱気
+1〜内のDOg%jと全体の活性汚泥妬とを女定に制
御するものである。
[Summary of the Invention] The present invention provides a control method for a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater by an activated sludge method, in which DO9 degree in the aeration tank is compared with a target DO concentration. a first controller that outputs a primary setting value of the air flow rate; a second controller that compares the sludge amount in the sedimentation tank with a target sludge amount and outputs a return sludge flow rate; A compensation calculator is provided which calculates the secondary setting values of the air blowing flow rate and the return sludge flow rate by inputting each of the secondary setting values of 1゛ and performing a predetermined calculation that interlocks the two. The flow rate and the return sludge flow rate are controlled, thereby preventing the mutual interference between the blast flow and the return flow, and reducing the DOg%j within 1 + 1 and the total activated sludge. It is controlled at a constant rate.

[発明の実施例] 本発明の一実施例を第1図に示す。[Embodiments of the invention] An embodiment of the present invention is shown in FIG.

第1図1二おいて、lは二次処理を行なう汚水処理プラ
ントであり、汚水は管路Aを通って曝気槽1−1に流入
する。
In FIG. 12, 1 is a sewage treatment plant that performs secondary treatment, and sewage flows through pipe A into an aeration tank 1-1.

曝気槽1−1から流出した汚水と活性汚泥の混合液は管
路A1を通って沈澱池1−2に流入[7て固液分離され
、上澄液は管路A2からルア出される。
The mixed liquid of sewage and activated sludge flowing out from the aeration tank 1-1 flows into the sedimentation tank 1-2 through the pipe A1 [7] where it is separated into solid and liquid, and the supernatant liquid is discharged through the pipe A2.

また沈澱池1−2内に沈澱した活性汚/IP、 1−8
の一部は引抜管1−9で引抜かれ、その一部は管路Bを
通って曝気@1−1に返送されると共に、一部は管路C
ろ・通って余剰汚泥として外部(−排出される。
In addition, activated soil/IP precipitated in settling tank 1-2, 1-8
A part of the water is drawn out through the drawing pipe 1-9, a part of which is returned to the aeration @1-1 through the pipe B, and a part of which is sent to the pipe C
It passes through the sludge and is discharged outside as surplus sludge.

また曝気拍1− I Cは送風装部1−5から散気装置
1−6を介して空気が送込゛A−れ、その送風流量9人
は調節計51−よって設定値QA*l二制御される、ま
た管路Bには返送装置1−1f)が設けられており、調
節計6によって返送流量QRが設定値輸1になるように
制御される。
In addition, at the aeration pulse 1-IC, air is sent from the ventilation unit 1-5 through the diffuser 1-6, and the air flow rate for 9 people is determined by the controller 51-, so the set value QA*l2. A return device 1-1f) is provided in the conduit B, and the controller 6 controls the return flow rate QR to a set value 1.

また管路Cには余剰引抜装置1−13が設けられており
、これによって引抜流和”QWが調整される。
Further, a surplus drawing device 1-13 is provided in the conduit C, and the drawing flow rate "QW" is adjusted by this.

また曝気槽1−1の内部C二はDO濃度計】−7が設け
られており、検出したDo濃度は第1制御器21二人力
される。
In addition, a DO concentration meter ]-7 is installed in the interior C2 of the aeration tank 1-1, and the detected Do concentration is inputted by the first controller 21.

また管路人には流入汚水流量計1−3、流入汚水濃度計
1−4が、管路Bには返送汚泥流量計1− II 、返
送汚泥濃度計1−12が、また管wICには余剰引抜流
l:計1−14が設けられており、それらの検出信号Q
s+ X8T Qn+ xRおよびQwは汚泥量シミュ
レータ4に人力され、曝気槽1−1の流動混合モデルと
沈澱池1−2の汚泥挙動モデルと1″−基ずく所定の演
算によって沈澱池汚泥量BSが算出され、第2制御器3
に入力される。
In addition, the pipe operator has an inflow sewage flow meter 1-3 and an inflow sewage concentration meter 1-4, pipe B has a return sludge flow meter 1-II, and a return sludge concentration meter 1-12, and the pipe wIC has a surplus sludge flow meter 1-2. A total of 1 to 14 extraction flows are provided, and their detection signals Q
s+ The second controller 3
is input.

第1制御器2では、検出しfcDoJ度DOとあらかじ
め設定した目標濃度DO*とが比較され、次の演算によ
って送風流量の一次設定値S2nが順次出力される。
The first controller 2 compares the detected fcDoJ degree DO with a preset target concentration DO*, and sequentially outputs the primary setting value S2n of the air flow rate through the following calculations.

E  −DO本−1)O−−−−−−(1’)n l △s1n=xclp(gln”1(n−1))” ’I
’、、 、E、n、、、(2)Sin = ”’l (
n−1)+△sln   −−−−−(81ここでKl
 p+ llb TI Iは制御定数でおる。
E -DO book-1) O------(1')n l △s1n=xclp(gln"1(n-1))"'I
',, ,E,n,,,(2)Sin = ”'l (
n-1) + △sln --- (81 where Kl
p+ llb TI I is a control constant.

また第2制@1器3では上記沈澱池汚泥針BSがあらか
じめ設定した目標沈#池汚泥齢BS*と比較され、次の
演算によって返送i#、 量の一次設定値S2nがj臓
次出力される。
In addition, in the second system @ 1 unit 3, the sedimentation basin sludge needle BS is compared with the preset target sedimentation basin sludge age BS*, and the following calculation is performed to return i# and the primary set value S2n of the amount to the j visceral output. be done.

E、n=B8*−BS   、−−−−−−(4)8s
n−82(n−1)+△8.n−−−−−−<a)ここ
でK11I’+ h2+ T2には制御定数である。
E, n=B8*-BS, --------(4)8s
n-82(n-1)+△8. n------<a) Here, K11I'+ h2+ T2 is a control constant.

上記−次設定値S1n、SBn (以下sl、 s2と
記す)はそれぞれ補償演算器7の第1の演算回路11,
1:((二人力され、それぞれの設定定数AI、 B1
. A2. B2を用いて下記演算が行なわれる。
The above-mentioned -order setting values S1n and SBn (hereinafter referred to as sl and s2) are obtained by the first calculation circuit 11 of the compensation calculation unit 7,
1: ((Two people are working, each setting constant AI, B1
.. A2. The following calculation is performed using B2.

上記出力信号′DI+DS1および81.8gはさら;
−第2の演狗回路12.14に入力され、そハぞれ下記
の演算が行なわれる。
The above output signals 'DI+DS1 and 81.8g are further;
- The signals are input to the second input circuit 12 and 14, and the following calculations are performed respectively.

QA*= (1+Di ) 81   −−−−−− 
(9)Qn*−(1+DB ) Sn   −−−−−
一叫上記出力信号QA*、Q−は二次設定値とし、てそ
れぞれ調節計5.6に入力され、それぞれ送風流量QA
および返送流量QRが上記の二次設定値に制御される。
QA*= (1+Di) 81 -------
(9) Qn*-(1+DB) Sn ------
The above output signals QA* and Q- are the secondary set values and are input to the controller 5.6, respectively, and the air flow rate QA is
And the return flow rate QR is controlled to the above secondary set value.

上Hピの方法でに、送風流mlの設定値QA*および返
送針の設定値QR*がそれぞわ、(B)式および(6)
式から算出I7た一次設定値S1. S2を組付せた互
に連動した値となっている。
Using the method described above, the set value QA* of the air flow ml and the set value QR* of the return needle are calculated using equations (B) and (6), respectively.
The primary setting value S1 calculated from the formula I7. The values are interlocked with each other when S2 is assembled.

例えばQh’は(8)式と(9)式から下■己01)式
のようになる。
For example, Qh' becomes the following equation from equations (8) and (9).

すなわちQ人*けSIに比ジ11すると共に 820J
曽加C二よってその比例係数が低減し、これによって送
風流量QAは返送流量QRと連卵jして制御されるとと
(:iる。
In other words, compared to Q person*ke SI, it is 11 and 820J
Assuming that the proportional coefficient is reduced by Soka C2, and thereby the air flow rate QA is controlled in conjunction with the return flow rate QR.

QR* 、二ついても同様である。The same applies even if there are two QR*.

つぎに本発明の制御装置がいかなる具体的な効果をもた
らすかについて、活性汚泥法の汚水処理プラントの主波
な外乱である汁入汚水の流量変動にだいする応答Vtを
用いて説明する。
Next, the specific effects brought about by the control device of the present invention will be explained using the response Vt to fluctuations in the flow rate of sewage water, which is the main disturbance in an activated sludge method sewage treatment plant.

第2図は曝気槽に流入する汚水のb(1、損が急赦に増
加した時、従来法であるDO濃度一定tlil」御と沈
澱゛池汚泥廿−鼠制(財)を独立(一連動させず1′−
送風量と返送量を運転した場合と本発明の制仙j方μm
で運転■7た場合と比較した後場運転結果のグラフであ
る。
Figure 2 shows the control of the sewage flowing into the aeration tank (1) when the loss suddenly increases, the conventional method of controlling the DO concentration at a constant level, and the independent control of the sedimentation pond sludge center (1). 1'- without interlocking
When operating the air flow amount and return amount, and the difference in direction μm of the present invention
This is a graph of the results of rear driving compared to the case of driving at ■7.

第2図(A) 14流入した汚水の時IHI変化、(B
)は曝気槽のDO濃度の変化、(C)は沈澱′池に存在
する汚泥量の変動をそれぞれ軍し、(a)は従来法によ
る結果であり、(b)は本発明の制御方法による結果で
ある。
Figure 2 (A) 14 IHI change when sewage flows in, (B
) is the change in the DO concentration in the aeration tank, and (C) is the change in the amount of sludge present in the settling pond. (a) is the result obtained by the conventional method, and (b) is the result obtained by the control method of the present invention. This is the result.

従来方法による制御では、流入汚水量の増大に追随する
ために送風量も増大するが返送量も増大するためDO濃
度が急徴に低下し、酔索不足C二なりまた減少時には送
風量は減少しかつ返送量も低下するがその応答遅れ(二
よって逆(二I)O濃度が高くなって過曝気状態になっ
てしまう。
In conventional control methods, the amount of air blown increases to keep up with the increase in the amount of inflowing sewage, but as the amount of returned water also increases, the DO concentration rapidly decreases, and when there is a shortage of sewage, the amount of air blown decreases. In addition, although the amount of returned air is reduced, the response is delayed (as a result, the inverse (2)O concentration increases, resulting in an overaerated state).

沈澱池C二存在している汚泥量の変動は従来法では細か
な変動を伴うものの、目標値からの偏差は本発明による
制御結果より小さい0 1〜かし本発明C二よるDO濃にの応答は、返送音制御
がDo濃度と前述のように関係づけられているために干
渉を受けなく々って、その制御特性が大巾に改善されて
いることがわかる。
Although the fluctuation of the amount of sludge existing in settling tank C2 is accompanied by small fluctuations in the conventional method, the deviation from the target value is smaller than the control result according to the present invention. It can be seen that the response is no longer subject to interference because the return sound control is related to the Do concentration as described above, and its control characteristics are greatly improved.

[発明の効果] 以上説明したように本発明1″−よれば、曝気槽と沈澱
池を備え活性汚泥法l二よって汚水を二次処理する汚水
処理プラントにおいて、曝気槽への送風流量制御と沈澱
池からの返送汚泥流量制御とを連動して制御し、これ口
よって送風流量と返送流量との相互干渉を補償し、曝気
槽内のDO濃度と全体の活性汚泥曾とを安定に制御でき
る合理的々汚水処理プラントの制御方法がイ具らtする
[Effects of the Invention] As explained above, according to the present invention 1'', in a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater by the activated sludge method, it is possible to control the air flow rate to the aeration tank and It is controlled in conjunction with the return sludge flow rate control from the settling tank, thereby compensating for mutual interference between the air blowing flow rate and the return flow rate, and stably controlling the DO concentration in the aeration tank and the overall activated sludge flow. A rational method for controlling sewage treatment plants is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すプラント系統図、第2
(り1は本発明の効果の一例を示すグラフである0 1 汚水処理プランl−2,3制御1器4 汚泥量シミ
ュレータ 5.6 調節計7 補償演算器   11〜
I4  演算回路1−1 曝気槽   1−2 沈澱池 1−3 流入汚水濃度針 1−4 流入汚水濃度針 1−5 送風装置  1−6 散気装楢1−7DO伽度
計 1−8 活性汚泥 1−9 引抜管   1−10 返送装置1−11 返
送汚泥流惜計 1−12 返送汚泥娘度臼 1−13 余剰引抜装確 1−14 余狙I引抜流量計 第1図 第2図
Fig. 1 is a plant system diagram showing one embodiment of the present invention;
(1 is a graph showing an example of the effects of the present invention.0 1 Sewage treatment plan l-2, 3 controller 1 unit 4 sludge amount simulator 5.6 Controller 7 Compensation calculator 11~
I4 Arithmetic circuit 1-1 Aeration tank 1-2 Sedimentation tank 1-3 Inflow sewage concentration needle 1-4 Inflow sewage concentration needle 1-5 Air blower 1-6 Aeration equipment 1-7 DO gameter 1-8 Activated sludge 1-9 Drawing pipe 1-10 Returning device 1-11 Return sludge flow meter 1-12 Return sludge daughter flow meter 1-13 Excess drawing device 1-14 Extra aim I drawing flow meter Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 駆気槽と沈澱池を+l1ijえ活性汚泥法によって汚水
を二次処理する汚水処理プラントの制御方法において、
曝気槽内のDo濃度を目標Do濃陵と比較して送風流量
の一次設定値を出力する第1の制御器と、沈旅池内の汚
泥量と目標汚泥薪とを比較して返送汚泥流量−の−次設
定値を出力する第2の制御器と、上記送風流h↑および
返送汚泥流量の各−次設定値を入力し両者を連動した所
定の演錯−■二よって送風流量および返送汚泥流量の二
次設定イ直を夕)出する補償演算器を設け、上記各二次
設定値に対応して送風流量および返送汚泥流tを制御す
ることを特徴とする汚水処理プラントの制御方法。
In a control method for a sewage treatment plant that uses an aeration tank and a settling tank and performs secondary treatment of sewage using an activated sludge method,
A first controller that compares the Do concentration in the aeration tank with the target Do concentration and outputs a primary setting value of the air flow rate, and compares the amount of sludge in the settling basin with the target sludge firewood to determine the return sludge flow rate. A second controller that outputs the set value of the air flow h↑ and the flow rate of the returned sludge, and a predetermined operation in which the set values of the air flow h↑ and the flow rate of the returned sludge are input and the two are linked. 1. A control method for a sewage treatment plant, comprising: providing a compensation calculator for outputting secondary setting values of the flow rate, and controlling the air flow rate and return sludge flow t in accordance with each of the secondary setting values.
JP58092462A 1983-05-27 1983-05-27 Method for controlling filthy water treating plant Granted JPS59222298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58092462A JPS59222298A (en) 1983-05-27 1983-05-27 Method for controlling filthy water treating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58092462A JPS59222298A (en) 1983-05-27 1983-05-27 Method for controlling filthy water treating plant

Publications (2)

Publication Number Publication Date
JPS59222298A true JPS59222298A (en) 1984-12-13
JPH0440080B2 JPH0440080B2 (en) 1992-07-01

Family

ID=14055019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58092462A Granted JPS59222298A (en) 1983-05-27 1983-05-27 Method for controlling filthy water treating plant

Country Status (1)

Country Link
JP (1) JPS59222298A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328962A (en) * 1976-08-30 1978-03-17 Hokushin Electric Works Sewage treating apparatus by activated sludge
JPS547155A (en) * 1977-06-17 1979-01-19 Hitachi Ltd Attitude inversion mechanism of dual inlineetype electronic parts
JPS5422026A (en) * 1977-07-20 1979-02-19 Automob Antipollut & Saf Res Center Carburetor
JPS5442853A (en) * 1977-09-10 1979-04-05 Kubota Ltd Device of treating activated sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328962A (en) * 1976-08-30 1978-03-17 Hokushin Electric Works Sewage treating apparatus by activated sludge
JPS547155A (en) * 1977-06-17 1979-01-19 Hitachi Ltd Attitude inversion mechanism of dual inlineetype electronic parts
JPS5422026A (en) * 1977-07-20 1979-02-19 Automob Antipollut & Saf Res Center Carburetor
JPS5442853A (en) * 1977-09-10 1979-04-05 Kubota Ltd Device of treating activated sludge

Also Published As

Publication number Publication date
JPH0440080B2 (en) 1992-07-01

Similar Documents

Publication Publication Date Title
JP2016182551A (en) Treatment method for organic waste water and treatment system therefor
Krause et al. Simulation of a nitrification control concept considering influent ammonium load
JPS59222298A (en) Method for controlling filthy water treating plant
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JP2015104712A (en) Sewage treatment system and method
JP2002177980A (en) Fuzzy controller for activated sludge treatment and method for the same
JPH01242198A (en) Controlling device for stepped nitration denitrification process
JP7282149B2 (en) Water treatment device and water treatment method
JP7424997B2 (en) water treatment equipment
JP3460211B2 (en) Sewage treatment control device
JPS6028560B2 (en) Control method for activated sludge water treatment equipment
JPS5442853A (en) Device of treating activated sludge
JPS60132700A (en) Biological denitrification treatment of sewage in recirculation water channel type aeration tank
JPS55111897A (en) Apparatus for controlling accumulated sludge amount within final precipitation pond
JPH02258004A (en) Control method of chemical feeding to coagulator
JPH0446200B2 (en)
JPS5826073Y2 (en) water treatment equipment
JPS5962393A (en) Sewage treating device
JPH0438474B2 (en)
JP2023096041A (en) Water treatment apparatus and water treatment method
JPS61114795A (en) Apparatus for controlling concentration of dissolved oxygen
JPS60168593A (en) Ph control apparatus
JPS58205595A (en) Anaerobic digestion device
JPS60102996A (en) Air quantity controller for aerating tank
JPH04277086A (en) Automatic control device for return sludge in activated sludge treating equipment