JPS61114795A - Apparatus for controlling concentration of dissolved oxygen - Google Patents

Apparatus for controlling concentration of dissolved oxygen

Info

Publication number
JPS61114795A
JPS61114795A JP59234161A JP23416184A JPS61114795A JP S61114795 A JPS61114795 A JP S61114795A JP 59234161 A JP59234161 A JP 59234161A JP 23416184 A JP23416184 A JP 23416184A JP S61114795 A JPS61114795 A JP S61114795A
Authority
JP
Japan
Prior art keywords
sludge
dissolved oxygen
series
oxygen concentration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59234161A
Other languages
Japanese (ja)
Other versions
JPH0516917B2 (en
Inventor
Toshihiko Ishizaki
石崎 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59234161A priority Critical patent/JPS61114795A/en
Publication of JPS61114795A publication Critical patent/JPS61114795A/en
Publication of JPH0516917B2 publication Critical patent/JPH0516917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To properly control the amount of a wind, by correcting the dissolved oxygen concn. control signal based on the signal of the dissolved oxygen densitometer arranged only to one system corresponding to the ratijo of the amounts of sewages flowed into systems. CONSTITUTION:The suspended matter in sewage is sedimented under its own wt. in a sedimentation basin 3 and removed while withdrawn through a sludge withdrawal valve 6 by an initial sedimented sludge withdrawal pump 7. Subsequently, sewage is mixed with activated sludge to be flowed into a final sedimentation basin 5 while receives aeration. A dissolved oxygen densitometer 16 is provided to the aeration tank of one system and the output signal from said densitometer 16 is inputted to a dissolved oxygen concn. regulator 14 as a feedback signal. The regulator 14 performs the comparing operation of a preset dissolved oxygen concn. objective value and the feedback signal to output the control signal MV1 corresponding to the difference between both of them. By the magnitude of this output, the opening degree of the wind amount regulator is controlled.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複数系列の汚水処理設備における溶存酸素濃度
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dissolved oxygen concentration control device in a plurality of lines of sewage treatment equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

下水処理場の汚水浄化作用において、曝気槽における生
物反応を安定化するため、曝気槽内の溶存酸素濃度をあ
る値C;維持することが重要であり。
In the sewage purification process of sewage treatment plants, it is important to maintain the dissolved oxygen concentration in the aeration tank at a certain value C in order to stabilize biological reactions in the aeration tank.

そのため溶存酸素濃度一定制佃が行われる。その際、曝
気槽内の溶存酸素濃度を検出するため溶存酸素M変針を
設置する必要があるが、水処理の系列数が多くなると溶
存酸素濃度計を系列数3;合わせて多数設置する必要が
生ずる。
Therefore, the dissolved oxygen concentration is kept constant. At that time, it is necessary to install a dissolved oxygen meter to detect the dissolved oxygen concentration in the aeration tank, but as the number of water treatment lines increases, it is necessary to install three dissolved oxygen concentration meters in total. arise.

仮に、ある系列f;のみ溶存酸素m度肝を設置し、1台
の溶存酸素濃度計信号C;基づいて複数系列の送風量を
制御した場合には、複数系列の最初沈澱池に汚水が流入
する際の汚水が流れる水路抵坑の違いによる各系列への
流入汚水量の不均一が原因で、各系列の溶存酸素濃度値
が同一とならず、流入水藍の大きい系列で)1溶存酸素
濃度値が低下し。
If a dissolved oxygen meter is installed in only one series F, and the air flow rate of multiple series is controlled based on the signal C of one dissolved oxygen meter, sewage will flow into the first settling tank of multiple series. Due to the unevenness of the amount of inflowing sewage to each series due to the difference in the channel resistance through which the sewage flows, the dissolved oxygen concentration values of each series are not the same, and the dissolved oxygen concentration (in series with large inflow water) value decreases.

逆に流入水ILp小さな系列では溶存酸素濃度値が高く
なり過ぎるなどの結果となり、汚水浄化に悪影響を及ぼ
す。
On the other hand, in a series where the inflow water ILp is small, the dissolved oxygen concentration value becomes too high, which adversely affects wastewater purification.

しかしながら、全ての系列に溶存酸素濃度を設置するこ
とはきわめて不経済であり、溶存酸素濃度計の保守作業
が増大するなどの問題が発生する。
However, it is extremely uneconomical to install dissolved oxygen concentration monitors in all lines, and problems such as increased maintenance work for dissolved oxygen concentration meters occur.

〔発明の目的〕[Purpose of the invention]

本発明はかかる不具合を解消した。ある系列にのみ設置
された溶存酸素α度肝C:より、各系列の溶存酸素濃度
を同−に制御する溶存酸素濃度側砲装置を提供すること
を目的とする。
The present invention has solved this problem. An object of the present invention is to provide a dissolved oxygen concentration side cannon device that controls the dissolved oxygen concentration of each series in the same way.

〔発明の概要〕[Summary of the invention]

本発明に複数系列の最初沈殿池、曝気槽、最終沈殿池よ
りなる下水処理設備において、タイマー回路と汚泥濃度
計と警報設定器を有し、最初沈殿池よりの汚泥引抜きを
タイマーC:より開始し、引抜き汚泥濃度が低下したこ
とにより汚泥引抜きを停止する初沈汚泥引抜き制御手段
と初沈汚泥引抜き流量測定装置からの汚泥引抜き量デー
タから。
The present invention has a sewage treatment facility consisting of a plurality of series of initial settling tanks, aeration tanks, and final settling tanks, which has a timer circuit, a sludge concentration meter, and an alarm setting device, and starts sludge extraction from the first settling tank from timer C. Based on the sludge extraction amount data from the initial settling sludge extraction control means and the initial settling sludge extraction flow rate measuring device, which stop sludge extraction when the concentration of the extracted sludge has decreased.

各系列への流入汚水敞分配比を演算し、その結果から、
ある系列にのみ設置された溶存酸素濃度計信号に基づぐ
溶存酸素11度制御の出力を各系列毎C:補正し、各系
列の送風量をそれぞれ制御することにより、各系列の溶
存酸素濃度値を同−C;する溶存酸素濃度制御装置であ
る。
Calculate the distribution ratio of inflow sewage to each series, and from the results,
By correcting the output of dissolved oxygen 11 degree control based on the dissolved oxygen concentration meter signal installed only in a certain series for each series, and controlling the air flow rate of each series, the dissolved oxygen concentration of each series can be adjusted. This is a dissolved oxygen concentration control device that maintains a value of -C;

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例!二ついて説明する。 Next is an example of the present invention! Let me explain about two things.

図面に於て、汚水は沈砂池I C流入し汚水ポンプ2に
より最初沈殿池3に揚水される。最初沈殿池3でに汚水
中の浮遊物が自重沈降し、汚泥引抜弁6.初沈汚泥引抜
ポンプ7により引抜かれ除去される。最初沈殿池3を通
った汚水tま曝気Pa4で最終沈殿池5より返送される
活性汚泥と混合され。
In the drawing, sewage flows into a settling tank IC and is first pumped to a settling tank 3 by a sewage pump 2. First, suspended matter in the sewage settles under its own weight in the settling tank 3, and the sludge withdrawal valve 6. The sludge is pulled out and removed by the initial settling sludge extraction pump 7. The sewage t that has passed through the initial settling tank 3 is mixed with the activated sludge returned from the final settling tank 5 through aeration Pa4.

プロワ−8により送風される空気により曝気された後、
最終沈殿池5へ流入する。最終沈殿池5では曝気槽4で
生物反応により分解された有機質が凝渠沈降し、汚水浄
化が終了する。
After being aerated with air blown by blower 8,
It flows into the final settling tank 5. In the final settling tank 5, the organic matter decomposed by the biological reaction in the aeration tank 4 coagulates and settles, completing the sewage purification.

汚水ポンプ2によって揚水された汚水は各系列の最初沈
殿池3 C流入する。最初沈殿池3からの汚泥引抜きは
タイマー回路和よりの指令により一定周期毎に行われる
。即ち、タイマー回路12から汚泥引抜き指令が出力さ
れると、汚泥引抜きポンプ7が運転され、各系列の汚泥
引抜き弁6が開く。
The sewage pumped up by the sewage pump 2 flows into the first settling tank 3C of each series. The sludge is first removed from the settling tank 3 at regular intervals according to a command from the timer circuit. That is, when a sludge drawing command is output from the timer circuit 12, the sludge drawing pump 7 is operated and the sludge drawing valves 6 of each series are opened.

汚泥引抜きが行われている間の引抜き汚泥濃度が汚泥濃
度計9により測定され、汚泥濃度が設定された値まで低
下すると警報接点か警報設定器13より出力さrる。こ
の警報接点信号は、汚泥引抜き停止指令としてタイマー
回路12に人力され、この時点で汚泥引抜きが停止する
。この間の汚泥引抜きRに流量計10C:より測定され
、演算装置17に入力される。ここで測定された汚泥引
抜きtit各系列に流入した汚水@I:比例していると
考えて良い。
While the sludge is being extracted, the sludge concentration is measured by the sludge concentration meter 9, and when the sludge concentration decreases to a set value, an alarm contact or alarm setting device 13 outputs an output. This alarm contact signal is manually input to the timer circuit 12 as a command to stop sludge extraction, and at this point, sludge extraction is stopped. During the sludge drawing R during this period, the flow rate is measured by the flow meter 10C and input to the calculation device 17. It can be considered that the sludge extraction tit measured here is proportional to the sewage @I flowing into each series.

従って、各系列の汚泥引抜き鼠をそれぞれX、 、 X
、 。
Therefore, the sludge pulling rats of each series are X, , X, respectively.
, .

・・・・・・Xnとすると、各系列へ流入した@藍の全
流入門に対する割合は次式で表わされる。
......If Xn is the ratio of @indigo flowing into each series to the total number of indigo flows, it is expressed by the following formula.

演算装置13で上記の演算を行ない各系列への流入汚水
量の割合を算出する。
The arithmetic unit 13 performs the above calculation to calculate the proportion of the amount of wastewater flowing into each series.

一方、l系列の曝気槽には溶存酸素濃度16が設置され
この溶存酸素濃度計出カイざ号は、溶存酸素濃度調節計
14−フィードバック信号として入力される。
On the other hand, a dissolved oxygen concentration 16 is installed in the I-series aeration tank, and the dissolved oxygen concentration meter output signal is inputted as a feedback signal to the dissolved oxygen concentration controller 14.

溶存酸素濃度調節計14では、予め設定されている溶存
酸素濃度目標値とこのフィードバック信号を比較演算し
こその差に応じた制御信号MV、を出力する。この出力
の大きさC:より風量調節弁11の関度が制御され、曝
気槽4への送風龍が制御され、溶存酸素濃度値が目標値
となるよう動作する。このように1系列においては溶存
酸素濃度計16のフィードバック値C;基づき溶存酸素
一度制御が行われる。他の系列ζ:対しては、以下の如
く制御が行われる。
The dissolved oxygen concentration controller 14 compares and calculates a preset dissolved oxygen concentration target value with this feedback signal, and outputs a control signal MV corresponding to the difference. Based on the magnitude C of this output, the function of the air volume control valve 11 is controlled, the air blowing dragon to the aeration tank 4 is controlled, and the dissolved oxygen concentration value is operated to reach the target value. In this way, in one series, dissolved oxygen control is performed once based on the feedback value C of the dissolved oxygen concentration meter 16. For the other series ζ, control is performed as follows.

演算装置117 Cよって演算さ匹た各系列への流入汚
水量の割合に応じた信号と溶存酸素濃度調節計14の制
御信号MYらは演算制御装置151=入力される。
A signal corresponding to the ratio of the amount of inflowing sewage to each series calculated by the arithmetic unit 117C and a control signal MY of the dissolved oxygen concentration controller 14 are inputted to the arithmetic and control unit 151.

演算制御装置115では各系列への汚水流入量の割合に
応じて、この制御信号MY1を補正し、各系列の風量調
節弁への制御信号MT/、・・・MYnを決定する。
The arithmetic and control unit 115 corrects this control signal MY1 according to the ratio of the amount of wastewater flowing into each series, and determines control signals MT/, . . . MYn to the air volume control valves of each series.

即ち MY、=−3−LxMV!、、−・−−−−−2系列上
式1ユより演算された各系列への制御信号は演算制御装
置115から出力され、各系列の風量調節弁開度が制御
される。
That is, MY, =-3-LxMV! , , 2 series The control signal to each series calculated from the above equation 1U is output from the arithmetic and control unit 115, and the opening degree of the air volume control valve of each series is controlled.

〔発明の効果〕〔Effect of the invention〕

このよう本発明(=よりは、複数系列の水処理設備にお
いて、l系列にのみ設置された溶存酸素濃度計信号(;
基づく溶存酸素濃度制御信号を各系列への流入汚水量の
比C:応じで補正し、各系列の風量を適切I:副制御る
ことができる。
In this way, the present invention (= means that in a water treatment facility with multiple lines, the dissolved oxygen concentration meter signal (;
By correcting the dissolved oxygen concentration control signal based on the ratio C: of the amount of sewage flowing into each series, the air volume of each series can be appropriately sub-controlled.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発彷の=実施例を示す溶存酸素濃度制御装置の
構成図である。 l・・・沈砂池      2・・・汚水ポンプ3・・
・最初沈殿池    4・・・曝気槽5・・・最終沈殿
池    6・・・汚泥引抜弁7・・・初沈汚泥引抜ポ
ンプ8・・・送風機9・・・汚泥a度計    10・
・・流、1計11・・・風I’l1節弁    12・
・・タイマー回路13・・・警報設定器 14・・・溶存酸素濃度調節計15・・・演算制御装置
16・・・溶存酸素a度計  17・・・演算装置代理
人 弁理士 則 近 憲 佑 (ほか1名)
The drawing is a configuration diagram of a dissolved oxygen concentration control device showing an embodiment of the present invention. l...Sand basin 2...Sewage pump 3...
- Initial settling tank 4... Aeration tank 5... Final settling tank 6... Sludge withdrawal valve 7... Initial settling sludge withdrawal pump 8... Blower 9... Sludge a meter 10.
...Flow, 1 total 11...Wind I'l 1 section valve 12.
... Timer circuit 13 ... Alarm setting device 14 ... Dissolved oxygen concentration controller 15 ... Arithmetic control device 16 ... Dissolved oxygen a meter 17 ... Arithmetic device agent Patent attorney Noriyuki Chika (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 互に並列に設置された最初沈殿池、曝気槽及び最終沈殿
池より構成される複数系列の汚水処理プロセスにおいて
、前記最初沈殿池に沈降した汚泥を引抜く初沈汚泥引抜
ポンプと、この初沈汚泥引抜ポンプ及び前記最初沈殿池
の間の配管に接続された汚泥引抜弁と、前記最初沈殿池
汚泥引抜ポンプと直列に接続され引抜かれた汚泥の濃度
を計測する汚泥濃度計と、この汚泥濃度計を通過する汚
泥の流量を計測する汚泥流量計と、前記初沈汚泥引抜ポ
ンプの運転開始を各系列別に制御するタイマー回路と、
前記汚泥濃度計が検出する濃度信号の低下を各系列別に
警報する警報設定器と、前記汚泥流量計から出力される
各系列別の汚泥流量信号及び前記汚泥濃度計から出力さ
れる各系列別の汚泥濃度信号から各系列別の流入汚水量
分配比を演算する演算装置と、前記曝気槽に空気を送つ
て曝気する送風機と、この送風機が送り出す曝気送風量
を調節するために各系列毎に設けられた風量調節弁と、
前記系列の曝気槽内の溶存酸素濃度を測定する溶存酸素
濃度計と溶存酸素濃度計の信号を受け、前記系列の溶存
酸素濃度を設定値に保持すべく前記風量調節弁の開度を
制御する溶存酸素濃度調節計と、前記演算装置の演算結
果に基づき、他の系列の風量調節弁への制御信号を前記
溶存酸素濃度調節計の出力信号に対し補正して出力する
演算制御装置とを具備してなる溶存酸素濃度制御装置。
In a multi-line sewage treatment process consisting of an initial settling tank, an aeration tank, and a final settling tank that are installed in parallel with each other, an initial settling sludge extraction pump that pulls out the sludge that has settled in the initial settling tank, and a a sludge withdrawal valve connected to a pipe between the sludge withdrawal pump and the first settling tank; a sludge concentration meter connected in series with the first settling tank sludge withdrawal pump to measure the concentration of the drawn sludge; and the sludge concentration meter. a sludge flow meter that measures the flow rate of sludge passing through the meter; a timer circuit that controls the start of operation of the initial settling sludge extraction pump for each series;
an alarm setting device that alarms for each series a decrease in the concentration signal detected by the sludge concentration meter; a sludge flow rate signal for each series output from the sludge flow meter; and a sludge flow signal for each series output from the sludge concentration meter; A computing device that calculates the inflow sewage volume distribution ratio for each series from the sludge concentration signal, a blower that sends air to the aeration tank for aeration, and a blower provided for each series to adjust the amount of aeration air sent out by the blower. air volume control valve,
Receiving signals from a dissolved oxygen concentration meter and a dissolved oxygen concentration meter that measure the dissolved oxygen concentration in the aeration tank of the series, the opening degree of the air volume control valve is controlled to maintain the dissolved oxygen concentration of the series at a set value. It is equipped with a dissolved oxygen concentration controller and an arithmetic control device that corrects and outputs a control signal to the air volume control valves of other series with respect to the output signal of the dissolved oxygen concentration controller based on the calculation result of the arithmetic device. Dissolved oxygen concentration control device.
JP59234161A 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen Granted JPS61114795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59234161A JPS61114795A (en) 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234161A JPS61114795A (en) 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen

Publications (2)

Publication Number Publication Date
JPS61114795A true JPS61114795A (en) 1986-06-02
JPH0516917B2 JPH0516917B2 (en) 1993-03-05

Family

ID=16966611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234161A Granted JPS61114795A (en) 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen

Country Status (1)

Country Link
JP (1) JPS61114795A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2359530T3 (en) * 2006-07-25 2011-05-24 Bridgestone Corporation VULCANIZED UNDERSTANDING POLYMER WITH FUNCTIONED AZINA.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5155157A (en) * 1974-11-08 1976-05-14 Hitachi Ltd
JPS5264156A (en) * 1975-11-25 1977-05-27 Hokushin Electric Works Air controller of aeration tank
JPS58183991A (en) * 1982-04-22 1983-10-27 Toshiba Corp Controller for aeration tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5155157A (en) * 1974-11-08 1976-05-14 Hitachi Ltd
JPS5264156A (en) * 1975-11-25 1977-05-27 Hokushin Electric Works Air controller of aeration tank
JPS58183991A (en) * 1982-04-22 1983-10-27 Toshiba Corp Controller for aeration tank

Also Published As

Publication number Publication date
JPH0516917B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JPS5838235B2 (en) Aeration tank air flow control device
JPS61114795A (en) Apparatus for controlling concentration of dissolved oxygen
JP3214489B2 (en) Sewage treatment method and sewage treatment device
KR950014000A (en) Wastewater treatment method using continuous breathing apparatus and its device
JPH0757353B2 (en) Wastewater treatment equipment
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPS5838234B2 (en) Aeration tank air flow control device
JPS6397296A (en) Flow rate controller for return sludge
JP3999869B2 (en) Biological water treatment equipment
JP2006007132A (en) Apparatus for treating sewage
JPS62258799A (en) Controlling device for flow rate of return sludge
JPS61129092A (en) Apparatus for controlling air feed amount of aeration tank
JP3467905B2 (en) How to measure respiration rate
JPS60175597A (en) Excessive sludge withdrawal control apparatus
JPS60106590A (en) Controller of sewage treatment
JPH04277086A (en) Automatic control device for return sludge in activated sludge treating equipment
JPS5843292A (en) Controlling method for air feed rate for aeration
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JPH07275882A (en) Sewage treatment control apparatus
JPH03196900A (en) Method for measuring nitrification activity
JPS5826073Y2 (en) water treatment equipment
JP2022091331A (en) Sewage treatment system
JPS6054782A (en) Adsorption apparatus by activated carbon
JPH0759186B2 (en) Membrane separation reactor controller