JPH0516917B2 - - Google Patents

Info

Publication number
JPH0516917B2
JPH0516917B2 JP59234161A JP23416184A JPH0516917B2 JP H0516917 B2 JPH0516917 B2 JP H0516917B2 JP 59234161 A JP59234161 A JP 59234161A JP 23416184 A JP23416184 A JP 23416184A JP H0516917 B2 JPH0516917 B2 JP H0516917B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
oxygen concentration
sludge
water treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59234161A
Other languages
Japanese (ja)
Other versions
JPS61114795A (en
Inventor
Toshihiko Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59234161A priority Critical patent/JPS61114795A/en
Publication of JPS61114795A publication Critical patent/JPS61114795A/en
Publication of JPH0516917B2 publication Critical patent/JPH0516917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複数系列の汚水処理設備における溶存
酸素濃度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dissolved oxygen concentration control device in a plurality of lines of sewage treatment equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

下水処理場の汚水浄化作用において、曝気槽に
おける生物反応を安定化するため、曝気槽内の溶
存酸素濃度をある値に維持することが重要であ
り、そのため溶存酸素濃度一定制御が行われる。
その際、曝気槽内の溶存酸素濃度を検出するため
溶存酸素濃度計を設置する必要があるが、水処理
の系列数が多くなると溶存酸素濃度計を系列数に
合わせて多数設置する必要が生ずる。
In the sewage purification process of sewage treatment plants, it is important to maintain the dissolved oxygen concentration in the aeration tank at a certain value in order to stabilize biological reactions in the aeration tank, and for this reason, dissolved oxygen concentration is controlled to be constant.
At that time, it is necessary to install dissolved oxygen concentration meters to detect the dissolved oxygen concentration in the aeration tank, but as the number of water treatment lines increases, it becomes necessary to install a large number of dissolved oxygen concentration meters to match the number of lines. .

仮に、ある系列にのみ溶存酸素濃度計を設置
し、1台の溶存酸素濃度計信号に基づいて複数系
列の送風量を制御した場合には、複数系列の最初
沈澱池に汚水が流入する際の汚水が流れる水路抵
抗の違いによる各系列への流入汚水量の不均一が
原因で、各系列の溶存酸素濃度値が同一となら
ず、流入水量の大きい系列では溶存酸素濃度値が
低下し、逆に流入水量の小さな系列では溶存酸素
濃度値が高くなり過ぎるなどの結果となり、汚水
浄化に悪影響を及ぼす。
If a dissolved oxygen concentration meter is installed only in a certain series and the air flow rate of multiple series is controlled based on the signal from one dissolved oxygen concentration meter, the Due to the unevenness of the amount of sewage flowing into each series due to the difference in waterway resistance, the dissolved oxygen concentration values of each series are not the same, and the dissolved oxygen concentration value decreases in series with a large amount of inflow water. In series where the amount of inflow water is small, the dissolved oxygen concentration value becomes too high, which has a negative impact on wastewater purification.

しかしながら、全ての系列に溶存酸素濃度計を
設置することはきわめて不経済であり、溶存酸素
濃度計の保守作業が増大するなどの問題が発生す
る。
However, it is extremely uneconomical to install dissolved oxygen concentration meters in all lines, and problems such as increased maintenance work for the dissolved oxygen concentration meters occur.

〔発明の目的〕[Purpose of the invention]

本発明はかかる不具合を解消した、ある系列に
のみ設置された溶存酸素濃度計により、各系列の
溶存酸素濃度を同一に制御する溶存酸素濃度制御
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dissolved oxygen concentration control device that eliminates such problems and controls the dissolved oxygen concentration of each series to the same level using a dissolved oxygen concentration meter installed only in a certain series.

〔発明の概要〕[Summary of the invention]

本発明は複数系列の最初沈殿池、曝気槽、最終
沈殿池よりなる下水処理設備において、タイマー
回路と汚泥濃度計と警報設定器を有し、最初沈殿
池よりの汚泥引抜きをタイマーにより開始し、引
抜き汚泥濃度が低下したことにより汚泥引抜きを
停止する初沈汚泥引抜き制御手段と初沈汚泥引抜
き流量測定装置からの汚泥引抜き量データから、
各系列への流入汚水量分配比を演算し、その結果
から、ある系列にのみ設置された溶存酸素濃度計
信号に基づく溶存酸素濃度制御の出力を各系列毎
に補正し、各系列の送風量をそれぞれ制御するこ
とにより、各系列の溶存酸素濃度値を同一にする
溶存酸素濃度制御装置である。
The present invention provides a sewage treatment facility consisting of a plurality of series of initial settling tanks, aeration tanks, and final settling tanks, which includes a timer circuit, a sludge concentration meter, and an alarm setting device, and starts sludge extraction from the first settling tank by the timer. Based on the sludge extraction amount data from the initial settling sludge extraction control means that stops sludge extraction when the extraction sludge concentration has decreased, and the initial settling sludge extraction flow rate measuring device,
The inflow sewage volume distribution ratio to each train is calculated, and based on the result, the output of the dissolved oxygen concentration control based on the dissolved oxygen concentration meter signal installed only in a certain train is corrected for each train, and the air flow rate of each train is calculated. This is a dissolved oxygen concentration control device that makes the dissolved oxygen concentration values of each series the same by controlling the respective series.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例について説明する。 Next, one embodiment of the present invention will be described.

図面に於て、汚水は沈砂池1に流入し汚水ポン
プ2により最初沈殿池3に揚水される。最初沈殿
池3では汚水中の浮遊物が自重沈降し、汚泥引抜
弁6、初沈汚泥引抜ポンプ7により引抜かれ除去
される。最初沈殿池3を通つた汚水は曝気槽4で
最終沈殿池5より返送される活性汚泥と混合さ
れ、ブロワー8により送風される空気により曝気
された後、最終沈殿池5へ流入する。最終沈殿池
5では曝気槽4で生物反応により分解された有機
質が凝集沈降し、汚水浄化が終了する。
In the drawing, sewage flows into a settling tank 1 and is first pumped to a settling tank 3 by a sewage pump 2. In the initial sedimentation tank 3, suspended matter in the sewage settles under its own weight, and is pulled out and removed by a sludge extraction valve 6 and an initial settling sludge extraction pump 7. Sewage that has passed through the first settling tank 3 is mixed with activated sludge returned from the final settling tank 5 in an aeration tank 4, and after being aerated with air blown by a blower 8, flows into the final settling tank 5. In the final settling tank 5, the organic matter decomposed by the biological reaction in the aeration tank 4 coagulates and settles, completing the sewage purification.

汚水ポンプ2によつて揚水された汚水は各系列
の最初沈殿池3に流入する。最初沈殿池3からの
汚泥引抜きはタイマー回路12よりの指令により
一定周期毎に行われる。即ち、タイマー回路12
から汚泥引抜き指令が出力されると、汚泥引抜き
ポンプ7が運転され、各系列の汚泥引抜き弁6が
開く。汚泥引抜きが行われている間の引抜き汚泥
濃度が汚泥濃度計9により測定され、汚泥濃度が
設定された値まで低下すると警報接点が警報設定
器13より出力される。この警報接点信号は、汚
泥引抜き停止指令としてタイマー回路12に入力
され、この時点で汚泥引抜きが停止する。この間
の汚泥引抜き量は流量計10により測定され、演
算装置17に入力される。ここで測定された汚泥
引抜き量は各系列に流入した汚水量に比例してい
ると考えて良い。従つて、各系列の汚泥引抜き量
をそれぞれX1,X2,……Xoとすると、各系列へ
流入した流量の全流入量に対する割合は次式で表
わされる。
The sewage pumped up by the sewage pump 2 flows into the first settling tank 3 of each series. The sludge is first removed from the settling tank 3 at regular intervals according to a command from the timer circuit 12. That is, the timer circuit 12
When a sludge extraction command is output from the sludge extraction command, the sludge extraction pump 7 is operated and the sludge extraction valves 6 of each series are opened. While the sludge is being extracted, the sludge concentration is measured by the sludge concentration meter 9, and when the sludge concentration decreases to a set value, an alarm contact is output from the alarm setting device 13. This alarm contact signal is input to the timer circuit 12 as a sludge extraction stop command, and sludge extraction is stopped at this point. The amount of sludge drawn during this period is measured by the flow meter 10 and input to the calculation device 17. The amount of sludge extracted here can be considered to be proportional to the amount of sewage flowing into each series. Therefore, if the sludge removal amount of each train is X 1 , X 2 , . . .

Q1=X1/X1+X2+……Xo ……1系列 Q2=X2/X1+X2+……Xo ……2系列 〓 Qo=Xo/X1+X2+……Xo ……n系列 演算装置17で上記の演算を行ない各系列への
流入汚水量の割合を算出する。
Q 1 = X 1 X 1 + X 2 + ... _ . . .

一方、1系列の曝気槽には溶存酸素濃度計16
が設置されこの溶存酸素濃度計出力信号は、溶存
酸素濃度調節計14にフイードバツク信号として
入力される。
On the other hand, one series of aeration tank has 16 dissolved oxygen concentration meters.
is installed, and the output signal of this dissolved oxygen concentration meter is inputted to the dissolved oxygen concentration controller 14 as a feedback signal.

溶存酸素濃度調節計14では、予め設定されて
いる溶存酸素濃度目標値とこのフイードバツク信
号を比較演算し、その差に応じた制御信号MV1
を出力する。この出力の大きさにより風量調節弁
11の開度が制御され、曝気槽4への送風量が制
御され、溶存酸素濃度値が目標値となるよう動作
する。このように1系列においては溶存酸素濃度
計16のフイードバツク値に基づき溶存酸素濃度
制御が行われる。他の系列に対しては、以下の如
く制御が行われる。
The dissolved oxygen concentration controller 14 compares and calculates a preset dissolved oxygen concentration target value with this feedback signal, and outputs a control signal MV 1 according to the difference.
Output. The opening degree of the air volume control valve 11 is controlled based on the magnitude of this output, and the amount of air blown to the aeration tank 4 is controlled so that the dissolved oxygen concentration value becomes the target value. In this manner, dissolved oxygen concentration control is performed in one series based on the feedback value of the dissolved oxygen concentration meter 16. For other series, control is performed as follows.

演算装置17によつて演算された各系列への流
入汚水量の割合に応じた信号と溶存酸素濃度調節
計14の制御信号MV1は演算制御装置15に入
力される。演算制御装置15では各系列への汚水
流入量の割合に応じて、この制御信号MV1を補
正し、各系列の風量調節弁への制御信号MV2
…MVoを決定する。
A signal corresponding to the ratio of the amount of inflowing sewage to each series calculated by the calculation device 17 and a control signal MV 1 of the dissolved oxygen concentration controller 14 are input to the calculation and control device 15 . The arithmetic and control unit 15 corrects this control signal MV 1 according to the proportion of wastewater inflow to each series, and sends a control signal MV 2 to the air volume control valve of each series...
…Determine MV o .

即ち MV2=Q2/Q1×MV1 ……2系列 〓 MVo=Qo/Q1×MV1 ……n系列 上式により演算された各系列への制御信号は演
算制御装置15から出力され、各系列の風量調節
弁開度が制御される。
That is, MV 2 = Q 2 /Q 1 × MV 1 ... 2 series 〓 MV o = Q o /Q 1 × MV 1 ... n series The control signal for each series calculated by the above formula is sent from the arithmetic and control unit 15. It is output and the opening degree of the air volume control valve of each series is controlled.

〔発明の効果〕〔Effect of the invention〕

このよう本発明によれば、複数系列の水処理設
備において、1系列にのみ設置された溶存酸素濃
度計信号に基づく溶存酸素濃度制御信号を各系列
への流入汚水量の比に応じで補正し、各系列の風
量を適切に制御するので、良好な汚水浄化状態を
得ることができる。
As described above, according to the present invention, in water treatment equipment with multiple lines, the dissolved oxygen concentration control signal based on the dissolved oxygen concentration meter signal installed only in one line is corrected according to the ratio of the amount of wastewater flowing into each line. Since the air volume of each series is appropriately controlled, a good state of sewage purification can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す溶存酸素濃度制
御装置の構成図である。 1……沈砂池、2……汚水ポンプ、3……最初
沈殿池、4……曝気槽、5……最終沈殿池、6…
…汚泥引抜弁、7……初沈汚泥引抜ポンプ、8…
…送風機、9……汚泥濃度計、10……流量計、
11……風量調節弁、12……タイマー回路、1
3……警報設定器、14……溶存酸素濃度調節
計、15……演算制御装置、16……溶存酸素濃
度計、17……演算装置。
The drawing is a configuration diagram of a dissolved oxygen concentration control device showing an embodiment of the present invention. 1...Sand settling tank, 2...Sewage pump, 3...First settling tank, 4...Aeration tank, 5...Final settling tank, 6...
...Sludge extraction valve, 7...Initial settling sludge extraction pump, 8...
...Blower, 9...Sludge concentration meter, 10...Flowmeter,
11... Air volume control valve, 12... Timer circuit, 1
3...Alarm setting device, 14...Dissolved oxygen concentration controller, 15...Arithmetic control device, 16...Dissolved oxygen concentration meter, 17...Arithmetic device.

Claims (1)

【特許請求の範囲】 1 最初沈殿池、曝気槽、最終沈殿池を直列に連
結して成る水処理系統を複数列並設し、前記各最
初沈殿池に汚水を分配供給し、最初沈殿池で処理
済みの処理水を曝気槽にて最終沈殿池からの返送
汚泥と共に曝気処理し、曝気後の処理水を最終沈
殿池で沈殿処理する水処理装置での溶存酸素濃度
制御装置において、 前記各最初沈殿池からの初沈汚泥引き抜き系統
に設けられた初沈汚泥引き抜きポンプに対し、一
定周期で引き抜き指令を与えると共に、汚泥濃度
計からの測定値を入力し、この測定値が設定値に
低下すると対応する初沈汚泥引き抜きポンプを停
止させるタイマー回路と、 前記初沈汚泥引き抜きポンプによる引き抜き汚
泥流量を各水処理系統に設けた汚泥流量計から入
力し、これら各引き抜き汚泥流量から各水処理系
統への汚水流入割合を決定する演算装置と、 前記複数の水処理系統のいずれかの曝気槽に設
けられ、この曝気槽内の溶存酸素を測定する溶存
酸素濃度計と、 この溶存酸素濃度計からの測定値を入力し、こ
れが設定値となるように対応する曝気槽への通風
量を制御する溶存酸素濃度調節計と、 この溶存酸素濃度調節計による制御出力および
前記割合を入力し、この制御出力の値を各水処理
系統毎に前記割合に応じて補正し、その補正結果
を他の各水処理系統の通風量を制御する制御出力
として与える演算制御装置と、 を備えたことを特徴とする溶存酸素濃度制御装
置。
[Claims] 1. A water treatment system consisting of a primary sedimentation tank, an aeration tank, and a final sedimentation tank connected in series is installed in multiple rows, and sewage is distributed and supplied to each of the primary sedimentation tanks. In a dissolved oxygen concentration control device for a water treatment device in which treated treated water is aerated in an aeration tank together with sludge returned from a final sedimentation tank, and the aerated treated water is subjected to sedimentation treatment in a final sedimentation tank, each of the above-mentioned first steps A withdrawal command is given to the initial settling sludge extraction pump installed in the initial settling sludge extraction system from the settling tank at a fixed period, and the measured value from the sludge concentration meter is input, and when this measured value falls to the set value, A timer circuit that stops the corresponding initial settling sludge extraction pump, and inputting the sludge flow rate drawn by the initial settling sludge extraction pump from a sludge flow meter installed in each water treatment system, and transmitting each drawn sludge flow rate to each water treatment system. a computing device for determining the inflow rate of sewage; a dissolved oxygen concentration meter installed in an aeration tank of any of the plurality of water treatment systems for measuring dissolved oxygen in the aeration tank; and a dissolved oxygen concentration meter for measuring dissolved oxygen in the aeration tank; A dissolved oxygen concentration controller that inputs the measured value and controls the amount of ventilation to the corresponding aeration tank so that the measured value becomes the set value, and inputs the control output from this dissolved oxygen concentration controller and the ratio, and controls the control output. and an arithmetic control device that corrects the value of for each water treatment system according to the ratio and provides the correction result as a control output for controlling the ventilation amount of each other water treatment system. Dissolved oxygen concentration control device.
JP59234161A 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen Granted JPS61114795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59234161A JPS61114795A (en) 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234161A JPS61114795A (en) 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen

Publications (2)

Publication Number Publication Date
JPS61114795A JPS61114795A (en) 1986-06-02
JPH0516917B2 true JPH0516917B2 (en) 1993-03-05

Family

ID=16966611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234161A Granted JPS61114795A (en) 1984-11-08 1984-11-08 Apparatus for controlling concentration of dissolved oxygen

Country Status (1)

Country Link
JP (1) JPS61114795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439566B1 (en) * 2006-07-25 2014-09-11 가부시키가이샤 브리지스톤 A method of providing a terminally functionalized polymer with an azine compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5155157A (en) * 1974-11-08 1976-05-14 Hitachi Ltd
JPS5264156A (en) * 1975-11-25 1977-05-27 Hokushin Electric Works Air controller of aeration tank
JPS58183991A (en) * 1982-04-22 1983-10-27 Toshiba Corp Controller for aeration tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5155157A (en) * 1974-11-08 1976-05-14 Hitachi Ltd
JPS5264156A (en) * 1975-11-25 1977-05-27 Hokushin Electric Works Air controller of aeration tank
JPS58183991A (en) * 1982-04-22 1983-10-27 Toshiba Corp Controller for aeration tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439566B1 (en) * 2006-07-25 2014-09-11 가부시키가이샤 브리지스톤 A method of providing a terminally functionalized polymer with an azine compound

Also Published As

Publication number Publication date
JPS61114795A (en) 1986-06-02

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JP2001252691A (en) Water quality controlling device for sewage treatment plant
JP2012170883A (en) Activated sludge treating apparatus and treating method
JPH0516917B2 (en)
KR100978706B1 (en) Apparatus for treating waste water
JP3214489B2 (en) Sewage treatment method and sewage treatment device
JP3999869B2 (en) Biological water treatment equipment
JPS6397296A (en) Flow rate controller for return sludge
JP2006007132A (en) Apparatus for treating sewage
JPS62258799A (en) Controlling device for flow rate of return sludge
JPS60175597A (en) Excessive sludge withdrawal control apparatus
JP2950661B2 (en) Control unit for water treatment plant
JPS60106590A (en) Controller of sewage treatment
JPS62180796A (en) Control device for amount of sludge for activated sludge treatment plant
JPS58183991A (en) Controller for aeration tank
JP3104763B2 (en) Return sludge flow control device
JPH04277086A (en) Automatic control device for return sludge in activated sludge treating equipment
JP2004000986A (en) Method for controlling biological water treatment apparatus
JPH04256498A (en) Method and device for controlling water treatment
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JPS5811098A (en) Controller for flow rate of aeration air in sewage treating plant
JPH04367795A (en) Operation supporting device of sewage treatment station
JPS60102996A (en) Air quantity controller for aerating tank
JPH07232191A (en) Oxidation ditch-type waste water treating device and its centralized control system
JPS5843292A (en) Controlling method for air feed rate for aeration