JPH0516917B2 - - Google Patents
Info
- Publication number
- JPH0516917B2 JPH0516917B2 JP59234161A JP23416184A JPH0516917B2 JP H0516917 B2 JPH0516917 B2 JP H0516917B2 JP 59234161 A JP59234161 A JP 59234161A JP 23416184 A JP23416184 A JP 23416184A JP H0516917 B2 JPH0516917 B2 JP H0516917B2
- Authority
- JP
- Japan
- Prior art keywords
- dissolved oxygen
- oxygen concentration
- sludge
- water treatment
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 42
- 229910052760 oxygen Inorganic materials 0.000 claims description 42
- 239000001301 oxygen Substances 0.000 claims description 42
- 239000010802 sludge Substances 0.000 claims description 36
- 238000000605 extraction Methods 0.000 claims description 20
- 239000010865 sewage Substances 0.000 claims description 19
- 238000005273 aeration Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000004062 sedimentation Methods 0.000 claims description 7
- 238000009423 ventilation Methods 0.000 claims 2
- 238000000746 purification Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は複数系列の汚水処理設備における溶存
酸素濃度制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dissolved oxygen concentration control device in a plurality of lines of sewage treatment equipment.
下水処理場の汚水浄化作用において、曝気槽に
おける生物反応を安定化するため、曝気槽内の溶
存酸素濃度をある値に維持することが重要であ
り、そのため溶存酸素濃度一定制御が行われる。
その際、曝気槽内の溶存酸素濃度を検出するため
溶存酸素濃度計を設置する必要があるが、水処理
の系列数が多くなると溶存酸素濃度計を系列数に
合わせて多数設置する必要が生ずる。
In the sewage purification process of sewage treatment plants, it is important to maintain the dissolved oxygen concentration in the aeration tank at a certain value in order to stabilize biological reactions in the aeration tank, and for this reason, dissolved oxygen concentration is controlled to be constant.
At that time, it is necessary to install dissolved oxygen concentration meters to detect the dissolved oxygen concentration in the aeration tank, but as the number of water treatment lines increases, it becomes necessary to install a large number of dissolved oxygen concentration meters to match the number of lines. .
仮に、ある系列にのみ溶存酸素濃度計を設置
し、1台の溶存酸素濃度計信号に基づいて複数系
列の送風量を制御した場合には、複数系列の最初
沈澱池に汚水が流入する際の汚水が流れる水路抵
抗の違いによる各系列への流入汚水量の不均一が
原因で、各系列の溶存酸素濃度値が同一となら
ず、流入水量の大きい系列では溶存酸素濃度値が
低下し、逆に流入水量の小さな系列では溶存酸素
濃度値が高くなり過ぎるなどの結果となり、汚水
浄化に悪影響を及ぼす。 If a dissolved oxygen concentration meter is installed only in a certain series and the air flow rate of multiple series is controlled based on the signal from one dissolved oxygen concentration meter, the Due to the unevenness of the amount of sewage flowing into each series due to the difference in waterway resistance, the dissolved oxygen concentration values of each series are not the same, and the dissolved oxygen concentration value decreases in series with a large amount of inflow water. In series where the amount of inflow water is small, the dissolved oxygen concentration value becomes too high, which has a negative impact on wastewater purification.
しかしながら、全ての系列に溶存酸素濃度計を
設置することはきわめて不経済であり、溶存酸素
濃度計の保守作業が増大するなどの問題が発生す
る。 However, it is extremely uneconomical to install dissolved oxygen concentration meters in all lines, and problems such as increased maintenance work for the dissolved oxygen concentration meters occur.
本発明はかかる不具合を解消した、ある系列に
のみ設置された溶存酸素濃度計により、各系列の
溶存酸素濃度を同一に制御する溶存酸素濃度制御
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dissolved oxygen concentration control device that eliminates such problems and controls the dissolved oxygen concentration of each series to the same level using a dissolved oxygen concentration meter installed only in a certain series.
本発明は複数系列の最初沈殿池、曝気槽、最終
沈殿池よりなる下水処理設備において、タイマー
回路と汚泥濃度計と警報設定器を有し、最初沈殿
池よりの汚泥引抜きをタイマーにより開始し、引
抜き汚泥濃度が低下したことにより汚泥引抜きを
停止する初沈汚泥引抜き制御手段と初沈汚泥引抜
き流量測定装置からの汚泥引抜き量データから、
各系列への流入汚水量分配比を演算し、その結果
から、ある系列にのみ設置された溶存酸素濃度計
信号に基づく溶存酸素濃度制御の出力を各系列毎
に補正し、各系列の送風量をそれぞれ制御するこ
とにより、各系列の溶存酸素濃度値を同一にする
溶存酸素濃度制御装置である。
The present invention provides a sewage treatment facility consisting of a plurality of series of initial settling tanks, aeration tanks, and final settling tanks, which includes a timer circuit, a sludge concentration meter, and an alarm setting device, and starts sludge extraction from the first settling tank by the timer. Based on the sludge extraction amount data from the initial settling sludge extraction control means that stops sludge extraction when the extraction sludge concentration has decreased, and the initial settling sludge extraction flow rate measuring device,
The inflow sewage volume distribution ratio to each train is calculated, and based on the result, the output of the dissolved oxygen concentration control based on the dissolved oxygen concentration meter signal installed only in a certain train is corrected for each train, and the air flow rate of each train is calculated. This is a dissolved oxygen concentration control device that makes the dissolved oxygen concentration values of each series the same by controlling the respective series.
次に本発明の一実施例について説明する。 Next, one embodiment of the present invention will be described.
図面に於て、汚水は沈砂池1に流入し汚水ポン
プ2により最初沈殿池3に揚水される。最初沈殿
池3では汚水中の浮遊物が自重沈降し、汚泥引抜
弁6、初沈汚泥引抜ポンプ7により引抜かれ除去
される。最初沈殿池3を通つた汚水は曝気槽4で
最終沈殿池5より返送される活性汚泥と混合さ
れ、ブロワー8により送風される空気により曝気
された後、最終沈殿池5へ流入する。最終沈殿池
5では曝気槽4で生物反応により分解された有機
質が凝集沈降し、汚水浄化が終了する。 In the drawing, sewage flows into a settling tank 1 and is first pumped to a settling tank 3 by a sewage pump 2. In the initial sedimentation tank 3, suspended matter in the sewage settles under its own weight, and is pulled out and removed by a sludge extraction valve 6 and an initial settling sludge extraction pump 7. Sewage that has passed through the first settling tank 3 is mixed with activated sludge returned from the final settling tank 5 in an aeration tank 4, and after being aerated with air blown by a blower 8, flows into the final settling tank 5. In the final settling tank 5, the organic matter decomposed by the biological reaction in the aeration tank 4 coagulates and settles, completing the sewage purification.
汚水ポンプ2によつて揚水された汚水は各系列
の最初沈殿池3に流入する。最初沈殿池3からの
汚泥引抜きはタイマー回路12よりの指令により
一定周期毎に行われる。即ち、タイマー回路12
から汚泥引抜き指令が出力されると、汚泥引抜き
ポンプ7が運転され、各系列の汚泥引抜き弁6が
開く。汚泥引抜きが行われている間の引抜き汚泥
濃度が汚泥濃度計9により測定され、汚泥濃度が
設定された値まで低下すると警報接点が警報設定
器13より出力される。この警報接点信号は、汚
泥引抜き停止指令としてタイマー回路12に入力
され、この時点で汚泥引抜きが停止する。この間
の汚泥引抜き量は流量計10により測定され、演
算装置17に入力される。ここで測定された汚泥
引抜き量は各系列に流入した汚水量に比例してい
ると考えて良い。従つて、各系列の汚泥引抜き量
をそれぞれX1,X2,……Xoとすると、各系列へ
流入した流量の全流入量に対する割合は次式で表
わされる。 The sewage pumped up by the sewage pump 2 flows into the first settling tank 3 of each series. The sludge is first removed from the settling tank 3 at regular intervals according to a command from the timer circuit 12. That is, the timer circuit 12
When a sludge extraction command is output from the sludge extraction command, the sludge extraction pump 7 is operated and the sludge extraction valves 6 of each series are opened. While the sludge is being extracted, the sludge concentration is measured by the sludge concentration meter 9, and when the sludge concentration decreases to a set value, an alarm contact is output from the alarm setting device 13. This alarm contact signal is input to the timer circuit 12 as a sludge extraction stop command, and sludge extraction is stopped at this point. The amount of sludge drawn during this period is measured by the flow meter 10 and input to the calculation device 17. The amount of sludge extracted here can be considered to be proportional to the amount of sewage flowing into each series. Therefore, if the sludge removal amount of each train is X 1 , X 2 , . . .
Q1=X1/X1+X2+……Xo ……1系列
Q2=X2/X1+X2+……Xo ……2系列
〓
Qo=Xo/X1+X2+……Xo ……n系列
演算装置17で上記の演算を行ない各系列への
流入汚水量の割合を算出する。 Q 1 = X 1 / X 1 + X 2 + ... _ . . .
一方、1系列の曝気槽には溶存酸素濃度計16
が設置されこの溶存酸素濃度計出力信号は、溶存
酸素濃度調節計14にフイードバツク信号として
入力される。 On the other hand, one series of aeration tank has 16 dissolved oxygen concentration meters.
is installed, and the output signal of this dissolved oxygen concentration meter is inputted to the dissolved oxygen concentration controller 14 as a feedback signal.
溶存酸素濃度調節計14では、予め設定されて
いる溶存酸素濃度目標値とこのフイードバツク信
号を比較演算し、その差に応じた制御信号MV1
を出力する。この出力の大きさにより風量調節弁
11の開度が制御され、曝気槽4への送風量が制
御され、溶存酸素濃度値が目標値となるよう動作
する。このように1系列においては溶存酸素濃度
計16のフイードバツク値に基づき溶存酸素濃度
制御が行われる。他の系列に対しては、以下の如
く制御が行われる。 The dissolved oxygen concentration controller 14 compares and calculates a preset dissolved oxygen concentration target value with this feedback signal, and outputs a control signal MV 1 according to the difference.
Output. The opening degree of the air volume control valve 11 is controlled based on the magnitude of this output, and the amount of air blown to the aeration tank 4 is controlled so that the dissolved oxygen concentration value becomes the target value. In this manner, dissolved oxygen concentration control is performed in one series based on the feedback value of the dissolved oxygen concentration meter 16. For other series, control is performed as follows.
演算装置17によつて演算された各系列への流
入汚水量の割合に応じた信号と溶存酸素濃度調節
計14の制御信号MV1は演算制御装置15に入
力される。演算制御装置15では各系列への汚水
流入量の割合に応じて、この制御信号MV1を補
正し、各系列の風量調節弁への制御信号MV2…
…MVoを決定する。 A signal corresponding to the ratio of the amount of inflowing sewage to each series calculated by the calculation device 17 and a control signal MV 1 of the dissolved oxygen concentration controller 14 are input to the calculation and control device 15 . The arithmetic and control unit 15 corrects this control signal MV 1 according to the proportion of wastewater inflow to each series, and sends a control signal MV 2 to the air volume control valve of each series...
…Determine MV o .
即ち
MV2=Q2/Q1×MV1 ……2系列
〓
MVo=Qo/Q1×MV1 ……n系列
上式により演算された各系列への制御信号は演
算制御装置15から出力され、各系列の風量調節
弁開度が制御される。 That is, MV 2 = Q 2 /Q 1 × MV 1 ... 2 series 〓 MV o = Q o /Q 1 × MV 1 ... n series The control signal for each series calculated by the above formula is sent from the arithmetic and control unit 15. It is output and the opening degree of the air volume control valve of each series is controlled.
このよう本発明によれば、複数系列の水処理設
備において、1系列にのみ設置された溶存酸素濃
度計信号に基づく溶存酸素濃度制御信号を各系列
への流入汚水量の比に応じで補正し、各系列の風
量を適切に制御するので、良好な汚水浄化状態を
得ることができる。
As described above, according to the present invention, in water treatment equipment with multiple lines, the dissolved oxygen concentration control signal based on the dissolved oxygen concentration meter signal installed only in one line is corrected according to the ratio of the amount of wastewater flowing into each line. Since the air volume of each series is appropriately controlled, a good state of sewage purification can be obtained.
図面は本発明の一実施例を示す溶存酸素濃度制
御装置の構成図である。
1……沈砂池、2……汚水ポンプ、3……最初
沈殿池、4……曝気槽、5……最終沈殿池、6…
…汚泥引抜弁、7……初沈汚泥引抜ポンプ、8…
…送風機、9……汚泥濃度計、10……流量計、
11……風量調節弁、12……タイマー回路、1
3……警報設定器、14……溶存酸素濃度調節
計、15……演算制御装置、16……溶存酸素濃
度計、17……演算装置。
The drawing is a configuration diagram of a dissolved oxygen concentration control device showing an embodiment of the present invention. 1...Sand settling tank, 2...Sewage pump, 3...First settling tank, 4...Aeration tank, 5...Final settling tank, 6...
...Sludge extraction valve, 7...Initial settling sludge extraction pump, 8...
...Blower, 9...Sludge concentration meter, 10...Flowmeter,
11... Air volume control valve, 12... Timer circuit, 1
3...Alarm setting device, 14...Dissolved oxygen concentration controller, 15...Arithmetic control device, 16...Dissolved oxygen concentration meter, 17...Arithmetic device.
Claims (1)
結して成る水処理系統を複数列並設し、前記各最
初沈殿池に汚水を分配供給し、最初沈殿池で処理
済みの処理水を曝気槽にて最終沈殿池からの返送
汚泥と共に曝気処理し、曝気後の処理水を最終沈
殿池で沈殿処理する水処理装置での溶存酸素濃度
制御装置において、 前記各最初沈殿池からの初沈汚泥引き抜き系統
に設けられた初沈汚泥引き抜きポンプに対し、一
定周期で引き抜き指令を与えると共に、汚泥濃度
計からの測定値を入力し、この測定値が設定値に
低下すると対応する初沈汚泥引き抜きポンプを停
止させるタイマー回路と、 前記初沈汚泥引き抜きポンプによる引き抜き汚
泥流量を各水処理系統に設けた汚泥流量計から入
力し、これら各引き抜き汚泥流量から各水処理系
統への汚水流入割合を決定する演算装置と、 前記複数の水処理系統のいずれかの曝気槽に設
けられ、この曝気槽内の溶存酸素を測定する溶存
酸素濃度計と、 この溶存酸素濃度計からの測定値を入力し、こ
れが設定値となるように対応する曝気槽への通風
量を制御する溶存酸素濃度調節計と、 この溶存酸素濃度調節計による制御出力および
前記割合を入力し、この制御出力の値を各水処理
系統毎に前記割合に応じて補正し、その補正結果
を他の各水処理系統の通風量を制御する制御出力
として与える演算制御装置と、 を備えたことを特徴とする溶存酸素濃度制御装
置。[Claims] 1. A water treatment system consisting of a primary sedimentation tank, an aeration tank, and a final sedimentation tank connected in series is installed in multiple rows, and sewage is distributed and supplied to each of the primary sedimentation tanks. In a dissolved oxygen concentration control device for a water treatment device in which treated treated water is aerated in an aeration tank together with sludge returned from a final sedimentation tank, and the aerated treated water is subjected to sedimentation treatment in a final sedimentation tank, each of the above-mentioned first steps A withdrawal command is given to the initial settling sludge extraction pump installed in the initial settling sludge extraction system from the settling tank at a fixed period, and the measured value from the sludge concentration meter is input, and when this measured value falls to the set value, A timer circuit that stops the corresponding initial settling sludge extraction pump, and inputting the sludge flow rate drawn by the initial settling sludge extraction pump from a sludge flow meter installed in each water treatment system, and transmitting each drawn sludge flow rate to each water treatment system. a computing device for determining the inflow rate of sewage; a dissolved oxygen concentration meter installed in an aeration tank of any of the plurality of water treatment systems for measuring dissolved oxygen in the aeration tank; and a dissolved oxygen concentration meter for measuring dissolved oxygen in the aeration tank; A dissolved oxygen concentration controller that inputs the measured value and controls the amount of ventilation to the corresponding aeration tank so that the measured value becomes the set value, and inputs the control output from this dissolved oxygen concentration controller and the ratio, and controls the control output. and an arithmetic control device that corrects the value of for each water treatment system according to the ratio and provides the correction result as a control output for controlling the ventilation amount of each other water treatment system. Dissolved oxygen concentration control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59234161A JPS61114795A (en) | 1984-11-08 | 1984-11-08 | Apparatus for controlling concentration of dissolved oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59234161A JPS61114795A (en) | 1984-11-08 | 1984-11-08 | Apparatus for controlling concentration of dissolved oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61114795A JPS61114795A (en) | 1986-06-02 |
JPH0516917B2 true JPH0516917B2 (en) | 1993-03-05 |
Family
ID=16966611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59234161A Granted JPS61114795A (en) | 1984-11-08 | 1984-11-08 | Apparatus for controlling concentration of dissolved oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61114795A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101439566B1 (en) * | 2006-07-25 | 2014-09-11 | 가부시키가이샤 브리지스톤 | A method of providing a terminally functionalized polymer with an azine compound |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4933465A (en) * | 1972-07-28 | 1974-03-27 | ||
JPS5155157A (en) * | 1974-11-08 | 1976-05-14 | Hitachi Ltd | |
JPS5264156A (en) * | 1975-11-25 | 1977-05-27 | Hokushin Electric Works | Air controller of aeration tank |
JPS58183991A (en) * | 1982-04-22 | 1983-10-27 | Toshiba Corp | Controller for aeration tank |
-
1984
- 1984-11-08 JP JP59234161A patent/JPS61114795A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4933465A (en) * | 1972-07-28 | 1974-03-27 | ||
JPS5155157A (en) * | 1974-11-08 | 1976-05-14 | Hitachi Ltd | |
JPS5264156A (en) * | 1975-11-25 | 1977-05-27 | Hokushin Electric Works | Air controller of aeration tank |
JPS58183991A (en) * | 1982-04-22 | 1983-10-27 | Toshiba Corp | Controller for aeration tank |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101439566B1 (en) * | 2006-07-25 | 2014-09-11 | 가부시키가이샤 브리지스톤 | A method of providing a terminally functionalized polymer with an azine compound |
Also Published As
Publication number | Publication date |
---|---|
JPS61114795A (en) | 1986-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6369595A (en) | Method and device for controlling operation in intermittent-aeration activated sludge process | |
JP2001252691A (en) | Water quality controlling device for sewage treatment plant | |
JP2012170883A (en) | Activated sludge treating apparatus and treating method | |
JPH0516917B2 (en) | ||
KR100978706B1 (en) | Apparatus for treating waste water | |
JP3214489B2 (en) | Sewage treatment method and sewage treatment device | |
JP3999869B2 (en) | Biological water treatment equipment | |
JPS6397296A (en) | Flow rate controller for return sludge | |
JP2006007132A (en) | Apparatus for treating sewage | |
JPS62258799A (en) | Controlling device for flow rate of return sludge | |
JPS60175597A (en) | Excessive sludge withdrawal control apparatus | |
JP2950661B2 (en) | Control unit for water treatment plant | |
JPS60106590A (en) | Controller of sewage treatment | |
JPS62180796A (en) | Control device for amount of sludge for activated sludge treatment plant | |
JPS58183991A (en) | Controller for aeration tank | |
JP3104763B2 (en) | Return sludge flow control device | |
JPH04277086A (en) | Automatic control device for return sludge in activated sludge treating equipment | |
JP2004000986A (en) | Method for controlling biological water treatment apparatus | |
JPH04256498A (en) | Method and device for controlling water treatment | |
JP6805024B2 (en) | Water treatment equipment and treatment methods for water treatment processes | |
JPS5811098A (en) | Controller for flow rate of aeration air in sewage treating plant | |
JPH04367795A (en) | Operation supporting device of sewage treatment station | |
JPS60102996A (en) | Air quantity controller for aerating tank | |
JPH07232191A (en) | Oxidation ditch-type waste water treating device and its centralized control system | |
JPS5843292A (en) | Controlling method for air feed rate for aeration |