JPH07275882A - Sewage treatment control apparatus - Google Patents

Sewage treatment control apparatus

Info

Publication number
JPH07275882A
JPH07275882A JP6100590A JP10059094A JPH07275882A JP H07275882 A JPH07275882 A JP H07275882A JP 6100590 A JP6100590 A JP 6100590A JP 10059094 A JP10059094 A JP 10059094A JP H07275882 A JPH07275882 A JP H07275882A
Authority
JP
Japan
Prior art keywords
control system
output
sludge
target value
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6100590A
Other languages
Japanese (ja)
Other versions
JP3460211B2 (en
Inventor
Itsuro Fujita
逸朗 藤田
Toshinori Kanetani
利憲 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP10059094A priority Critical patent/JP3460211B2/en
Publication of JPH07275882A publication Critical patent/JPH07275882A/en
Application granted granted Critical
Publication of JP3460211B2 publication Critical patent/JP3460211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To enable control not bringing about the lowering of the quality of treated water during a period forming a self-regression model and to stabilize a system by providing an MLSS objective value adder, a total sludge amt. objective value adder and a dissolved oxygen objective value adder. CONSTITUTION:In this sewage treatment control apparatus equipped with an upper control system using a linear model including even the lower control system related to an activated sludge treatment control apparatus as a part of a treatment apparatus, an MLSS objective adder 45 inputting an MLSS objective value calculated from manual analytical data and the output of the optimizing device 31 of the operation device 27 of the upper control system to output them to an excessive sludge amt. operation device 39 is provided. A total sludge amt. objective value adder 47 inputting a total sludge amt. objective value calculated from the manual analytical data and the output of the optimizing device 31 of the operation device 27 to output them to a return sludge amt. operation device 41 is provided and, further, a dissolved oxygen objective value adder 49 inputting a dissolved oxygen objective value calculated from the manual analytical data and the output of the optimizing device 49 to output them to an aeration air amt. operation device 43 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市下水や産業廃水の
ように、有機物を含む汚水を浄化する活性汚泥法による
下水処理の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for sewage treatment by an activated sludge method for purifying sewage containing organic substances such as urban sewage and industrial wastewater.

【0002】[0002]

【従来の技術】従来の下水処理制御装置の構成を図2に
示す。管路1より曝気槽2に流入する下水の水量、p
H、流入水懸濁物質濃度、および流入水有機物濃度を流
入下水量測定計10、pH測定計11、懸濁物質濃度計
12、有機物濃度計13で検出してその検出信号を演算
装置27に出力する。曝気槽2内に流入した下水と沈澱
槽から返送された返送汚泥との混合液の溶存酸素濃度、
MLSS、および水温を溶存酸素濃度計14、MLSS
計15、水温計16で検出してその検出信号を演算装置
27に出力する。曝気槽2から流出した混合液の有機物
濃度およびMLSSを有機物濃度計17およびMLSS
計18で検出してその検出信号を演算装置27に出力す
る。混合液が沈澱槽3で沈降分離された処理水を管路7
より装置外に放出され、その処理水の懸濁物質濃度、有
機物濃度およびpHを懸濁物質濃度計19、有機物濃度
計20およびpH測定計21で検出してその検出信号を
演算装置27に出力する。返送汚泥量、返送汚泥濃度、
余剰汚泥量、余剰汚泥濃度、および曝気風量を返送汚泥
量測定計22、返送汚泥濃度計23、余剰汚泥引抜量測
定計24、余剰汚泥濃度計25、および曝気風量測定装
置26で検出してその検出信号を演算装置27に出力す
る。MLSS計15と余剰汚泥引抜量測定計24によっ
て検出した信号を余剰汚泥量演算装置39に出力する。
流入下水量測定計10、MLSS計18および返送汚泥
濃度計23によって検出した信号を、返送汚泥量演算装
置41に出力する。溶存酸素濃度計14と曝気風量測定
装置26によって検出した信号を曝気風量演算装置43
に出力する。4は曝気槽に汚泥を返送する管路、5は曝
気槽内に設けた散気管、6はブロワーで、制御装置32
により送風量を制御するようにしてある。8は管路4に
設けた返送汚泥ポンプで、制御装置33により返送汚泥
量を制御するようにしてある。9は沈殿槽の汚泥を外部
に放出する引抜汚泥ポンプで、制御装置34により汚泥
の引抜量を制御するようにしてある。27は演算装置
で、自己回帰モデル演算装置28、選択装置29、修正
自己回帰モデル演算装置30、最適化装置31、計測値
記憶装置35、予測値演算装置36、予測値記憶装置3
7、および比較装置38から構成されており、各計測器
で計測した計測値の検出信号を記憶装置35に記憶す
る。40は、余剰汚泥量加算装置で、余剰汚泥量演算装
置39からの信号と最適化装置31の信号を入力して制
御装置34に出力するようにしてある。42は返送汚泥
量加算装置で、返送汚泥量演算装置41の信号と最適化
装置31の信号を入力して制御装置33に出力するよう
にしてある。44は曝気風量演算装置43の信号と最適
化装置31の信号を入力して制御装置32に出力するよ
うにしてある。この演算装置27では、記憶装置に記憶
している信号から自己回帰モデル演算装置28でつぎの
順序で自己回帰モデルの作成を行う。下水処理装置にお
いて現在のプロセスの状態は過去のプロセスの状態の線
形結合によってその大部分を表現できる。いま時刻nに
おけるプロセスの状態をk次元の全変数ベクトルX
(n)で表すとその自己回帰表現は次のようになる。
2. Description of the Related Art The structure of a conventional sewage treatment control device is shown in FIG. Amount of sewage flowing from the pipeline 1 into the aeration tank 2, p
The H, inflow water suspended matter concentration, and inflow water organic matter concentration are detected by the inflow sewage amount meter 10, the pH meter 11, the suspended matter concentration meter 12, and the organic matter concentration meter 13, and the detection signals are sent to the arithmetic unit 27. Output. The dissolved oxygen concentration of the mixed liquid of the sewage flowing into the aeration tank 2 and the returning sludge returned from the sedimentation tank,
MLSS and water temperature are dissolved oxygen concentration meter 14, MLSS
It is detected by the total 15 and the water temperature gauge 16 and the detection signal is output to the arithmetic unit 27. The organic matter concentration and MLSS of the mixed liquid flowing out from the aeration tank 2 are measured by the organic matter concentration meter 17 and the MLSS.
The detection is performed by the total 18 and the detection signal is output to the arithmetic unit 27. The treated water separated and settled in the settling tank 3 from the mixed solution is supplied to the pipe 7
Is discharged to the outside of the apparatus, and the suspended matter concentration, organic matter concentration and pH of the treated water are detected by the suspended matter concentration meter 19, the organic matter concentration meter 20 and the pH meter 21, and the detection signal is output to the arithmetic unit 27. To do. Amount of returned sludge, concentration of returned sludge,
The excess sludge amount, excess sludge concentration, and aeration air amount are detected by the returned sludge amount measurement device 22, the returned sludge concentration meter 23, the excess sludge extraction amount measurement device 24, the excess sludge concentration device 25, and the aeration air flow measurement device 26. The detection signal is output to the arithmetic unit 27. The signals detected by the MLSS meter 15 and the excess sludge removal amount measuring meter 24 are output to the excess sludge amount calculation device 39.
The signals detected by the inflow sewage meter 10, the MLSS meter 18, and the returned sludge concentration meter 23 are output to the returned sludge amount calculation device 41. The signals detected by the dissolved oxygen concentration meter 14 and the aeration air volume measuring device 26 are used as the aeration air volume calculation device 43.
Output to. 4 is a pipeline for returning sludge to the aeration tank, 5 is an air diffuser provided in the aeration tank, 6 is a blower, and a controller 32
The air flow rate is controlled by. Reference numeral 8 is a return sludge pump provided in the pipe line 4, and the control device 33 controls the amount of return sludge. Reference numeral 9 denotes a drawn-out sludge pump that discharges sludge from the settling tank to the outside, and the controller 34 controls the amount of drawn-out sludge. Reference numeral 27 denotes a computing device, which is an autoregressive model computing device 28, a selecting device 29, a modified autoregressive model computing device 30, an optimizing device 31, a measured value storage device 35, a predicted value computing device 36, a predicted value storage device 3.
7 and a comparison device 38, and stores the detection signal of the measurement value measured by each measuring device in the storage device 35. Reference numeral 40 denotes a surplus sludge amount adding device, which inputs a signal from the surplus sludge amount calculating device 39 and a signal from the optimizing device 31 and outputs the signal to the control device 34. Reference numeral 42 denotes a returning sludge amount adding device, which is adapted to input the signal of the returning sludge amount calculating device 41 and the signal of the optimizing device 31 and output them to the control device 33. Reference numeral 44 is adapted to input the signal of the aeration air volume calculation device 43 and the signal of the optimization device 31 and output them to the control device 32. In this computing device 27, an autoregressive model computing device 28 creates an autoregressive model in the following order from the signals stored in the storage device. In the sewage treatment system, the current process state can be represented in large part by a linear combination of past process states. Now, the process state at time n is represented by a k-dimensional all-variable vector X
Expressed as (n), its autoregressive expression is as follows.

【0003】[0003]

【数1】 [Equation 1]

【0004】但しX(n−m)は時刻nよりm時点前の
全変数ベクトル、U(n)は白色雑音ベクトル、A
(m)は自己回帰モデルの回帰係数行列、Mは自己回帰
モデルの最適次数である。 (1)式の回帰係数A(m)の要素aij(m)は、次の
連立一次方程式の解として求められる。
However, X (n-m) is a vector of all variables before time n before time n, U (n) is a white noise vector, A
(M) is the regression coefficient matrix of the autoregressive model, and M is the optimum order of the autoregressive model. The element a ij (m) of the regression coefficient A (m) in the equation (1) is obtained as the solution of the following simultaneous linear equations.

【0005】[0005]

【数2】 [Equation 2]

【0006】但し、RihはXのi,h行の要素の相互関
数である。また白色雑音ベクトルU(n)の要素を ei
(n)とすると、その分散σei2 は次のようになる。
However, R ih is a mutual function of the elements of the i, h row of X. The element of the white noise vector U (n) is ei
Given (n), its variance σ ei 2 is as follows.

【0007】[0007]

【数3】 [Equation 3]

【0008】なおモデルの最適次数Mは、予測誤差を示
す(4)式のMFPE(M)を最小にする値である。
The optimum order M of the model is a value that minimizes MFPE (M) in the equation (4) indicating the prediction error.

【0009】[0009]

【数4】 [Equation 4]

【0010】但し、ここでNはデータ数、However, N is the number of data,

【0011】[0011]

【数5】 [Equation 5]

【0012】‖dM ‖は分散共分散行列推定値である。
このようにして自己回帰係数、モデル次数および白色雑
音の分散(固有ノイズ)がもとめられ、自己回帰モデル
が作成される。次に、下水処理装置の被制御変数即ち処
理水有機物濃度、処理水懸濁物質濃度、MLSSを一定
に保つために、この自己回帰モデルを構成する多数のシ
ステム変数の中で、被制御変数に寄与するシステム変数
を選別する必要がある。いまK個のシステム変数が伝達
要素によって結ばれた閉ループにおいて、aij(f)を
変数xi (f)とxj (f)とを結ぶ伝達要素のx
i (f)からのxj (f)への周波数応答関数とし、u
i (f)をxi (f)の内部雑音の周波数領域における
表現とすると、
‖D M ‖ is the variance-covariance matrix estimate.
In this way, the autoregressive coefficient, the model order, and the variance of white noise (specific noise) are obtained, and the autoregressive model is created. Next, in order to keep the controlled variables of the sewage treatment device, that is, the treated water organic matter concentration, the treated water suspended matter concentration, and the MLSS constant, among the many system variables that make up this autoregressive model, It is necessary to select the contributing system variables. In a closed loop in which K system variables are connected by transfer elements, the transfer element x connecting a ij (f) to the variables x i (f) and x j (f)
and x frequency response function of j to (f) from i (f), u
If i (f) is a representation in the frequency region of internal noise of x i (f),

【0013】[0013]

【数6】 [Equation 6]

【0014】が得られる。ここで、Is obtained. here,

【0015】[0015]

【数7】 [Equation 7]

【0016】とおけば、[0016]

【0017】[0017]

【数8】 [Equation 8]

【0018】ここでbij(f)はj番目の変数の固有ノ
イズuj (f)が、フィードバックループを通してi番
目のシステム変数xi (f)へおよぼす影響を示す。
(7)式のパワースペクトル領域における表現式は、
Here, b ij (f) represents the influence of the intrinsic noise u j (f) of the j-th variable on the i-th system variable x i (f) through the feedback loop.
The expression in the power spectrum region of Expression (7) is

【0019】[0019]

【数9】 [Equation 9]

【0020】但し、p(uj )(f)は周波数fにおけ
る固有ノイズuj のパワースペクトル密度である。さら
に周波数fにおけるxi (f)のパワースペクトル密度
ii(f)のうちuj (f)に寄与する部分をq
ij(f)とすると、 q ij(f)= |b ij(f)|2 ・P(U j )(f) ・・・・・(9) となる。ここで、のqij(f)をノイズ寄与率という。
つまり、例えばあるシステム変数Aに対するシステム変
数B,C,Dの寄与率が、それぞれ35%、40%、2
5%と求まると、システム変数C,B,Dの順で、シス
テム変数Aに影響を与えていることになる。また計測値
の変動域は、標準偏差を求めることによって容易に推定
できる。標準偏差Sは(10)式から得られ、
However, p (u j ) (f) is the power spectral density of the intrinsic noise u j at the frequency f. Furthermore, the part of the power spectral density p ii (f) of x i (f) at frequency f that contributes to u j (f) is q
If ij (f), then q ij (f) = | b ij (f) | 2 · P (U j ) (f) (9). Here, q ij (f) of is referred to as a noise contribution rate.
That is, for example, the contribution rates of the system variables B, C, and D to a certain system variable A are 35%, 40%, and 2 respectively.
If it is determined to be 5%, it means that the system variable A is affected in the order of the system variables C, B, and D. Further, the variation range of the measurement value can be easily estimated by obtaining the standard deviation. The standard deviation S is obtained from the equation (10),

【0021】[0021]

【数10】 [Equation 10]

【0022】計測値の99.7%は、(11)式で得ら
れるXi の範囲になると考えて良い。
It can be considered that 99.7% of the measured value falls within the range of X i obtained by the equation (11).

【0023】[0023]

【数11】 [Equation 11]

【0024】したがって、刻々得られる計測値が(1
1)式の変動域に含まれているか否かによって、正常、
異常の判定を下すことが可能となる。選択装置29では
自己回帰モデル演算装置28からの出力により(9)、
(10)式に基づいて、被制御変数すなわち処理水の有
機物濃度、懸濁物質濃度および曝気槽内のMLSS濃度
に対するシステム変数の影響度を演算し、修正自己回帰
モデル演算装置30に出力する。修正自己回帰モデル演
算装置30では、記憶装置35の計測値を当てはめ、修
正自己回帰モデルを作成する。この修正自己回帰モデル
演算装置30は処理水の水質に重要な影響力をもつ変数
のみにによって構成された修正自己回帰モデルを作成
し、最適化装置31へ数式モデルとして出力する。また
修正自己回帰モデル演算装置30からの出力は、予測演
算装置36にも入力され、この予測演算装置36では、
現時刻に採取した計測値を修正自己回帰モデルにも適用
して未来時刻の計測値を算出し、この予測値を予測記憶
装置37へ出力する。比較装置38では、計測値と予測
記憶装置37に記憶されている当該時刻の予測値を比較
し、その予測誤差を演算する。その演算の結果、予測誤
差が大きいと判定された場合、すなわち使用している修
正自己回帰モデルが適切でないと判断した場合は、自己
回帰モデル演算装置に28に信号を出力し、自己回帰モ
デルの更新を行う。このようにして、使用している修正
自己回帰モデルがモデルとして不適切と判断された時点
で、モデルは自動的に更新される。次の最適化装置31
では、修正自己回帰モデルに時々刻々の計測値を入力し
て、最適化制御信号の算出を行い、その制御信号を余剰
汚泥量加算装置40、返送汚泥量加算装置42および曝
気風量加算装置44に出力する。一方、余剰汚泥量演算
装置39では、現時刻の曝気槽内MLSSと余剰汚泥引
抜量から、曝気槽内MLSSが概ね一定となるように余
剰汚泥量の演算を行い、この値を余剰汚泥量加算装置4
0に出力する。また返送汚泥量演算装置41では、流入
の下水量、曝気槽2から流出した混合液のMLSS、お
よび返送汚泥濃度から、沈澱槽3内の総汚泥量が概ね一
定となるように返送汚泥量の演算を行い、この値を返送
汚泥量加算装置42に出力する。また曝気風量演算装置
43では、溶存酸素濃度と曝気風量から、曝気槽2内の
溶存酸素濃度が概ね一定となるように曝気風量の演算を
行い、この値を曝気風量加算装置44に出力する。余剰
汚泥量加算装置40、返送汚泥量加算装置42および曝
気風量加算装置44では、最適化装置31からの最適化
制御信号と各々の演算装置からの信号を加算し、それら
の加算信号を引抜汚泥ポンプの制御装置34、返送汚泥
ポンプの制御装置33、ブロワーの制御装置32に与え
る。そして、これらの制御装置の出力信号により制御が
おこなわれる。このような下水処理制御装置において、
曝気槽内のMLSSと溶存酸素濃度、および沈澱槽内の
総汚泥量を概ね一定値に維持することによって、システ
ムの安定化を図り、かつ処理水の安定化を、修正自己回
帰モデルによる最適制御系によって実現するようにして
ある。
Therefore, the measured value obtained momentarily is (1
Normal, depending on whether it is included in the fluctuation range of equation (1),
It is possible to make an abnormality determination. In the selection device 29, the output from the autoregressive model calculation device 28 (9)
Based on the equation (10), the degree of influence of the system variable on the controlled variable, that is, the concentration of the organic matter in the treated water, the concentration of the suspended matter, and the concentration of the MLSS in the aeration tank is calculated and output to the modified autoregressive model calculation device 30. In the modified autoregressive model computing device 30, the measured value of the storage device 35 is applied to create a modified autoregressive model. The modified autoregressive model computing device 30 creates a modified autoregressive model composed only of variables having an important influence on the quality of treated water, and outputs it to the optimizing device 31 as a mathematical model. The output from the modified autoregressive model computing device 30 is also input to the prediction computing device 36.
The measured value collected at the current time is also applied to the modified autoregressive model to calculate the measured value at the future time, and the predicted value is output to the prediction storage device 37. The comparison device 38 compares the measured value with the prediction value at the time stored in the prediction storage device 37, and calculates the prediction error. As a result of the calculation, when it is determined that the prediction error is large, that is, when the modified autoregressive model used is not appropriate, a signal is output to the autoregressive model operation device 28 to output the autoregressive model Update. In this way, when the modified autoregressive model used is determined to be inappropriate as a model, the model is automatically updated. Next optimization device 31
Then, the measured values are input to the modified autoregressive model every moment, the optimization control signal is calculated, and the control signal is sent to the excess sludge amount addition device 40, the returned sludge amount addition device 42, and the aeration air amount addition device 44. Output. On the other hand, in the surplus sludge amount calculation device 39, the surplus sludge amount is calculated from the aeration tank MLSS and the surplus sludge withdrawal amount at the current time so that the aeration tank MLSS becomes approximately constant, and this value is added to the surplus sludge amount. Device 4
Output to 0. Further, in the returned sludge amount calculation device 41, the amount of the returned sludge is adjusted so that the total amount of the sludge in the settling tank 3 becomes substantially constant from the inflow sewage amount, the MLSS of the mixed liquid flowing out from the aeration tank 2, and the returned sludge concentration. Calculation is performed and this value is output to the returned sludge amount addition device 42. Further, the aeration air volume calculation device 43 calculates the aeration air volume from the dissolved oxygen concentration and the aeration air volume so that the dissolved oxygen concentration in the aeration tank 2 becomes substantially constant, and outputs this value to the aeration air volume addition device 44. In the excess sludge amount addition device 40, the returned sludge amount addition device 42, and the aeration air amount addition device 44, the optimization control signal from the optimization device 31 and the signals from the respective arithmetic devices are added, and the addition signals are withdrawn sludge. The control device 34 for the pump, the control device 33 for the returning sludge pump, and the control device 32 for the blower are provided. Then, control is performed by the output signals of these control devices. In such a sewage treatment control device,
By maintaining the MLSS and dissolved oxygen concentration in the aeration tank and the total amount of sludge in the settling tank at approximately constant values, the system is stabilized and the stabilization of treated water is optimized by a modified autoregressive model. This is realized by the system.

【0025】[0025]

【発明が解決しようとする課題】しかしながら、従来の
ものはつぎのような問題点がある。 (1)自己回帰モデル演算装置28はある一定の期間記
憶装置35に記憶している信号を利用して自己回帰モデ
ルの作成を行うが、この上位制御系の演算装置から余剰
汚泥量加算装置40、返送汚泥量加算装置42および曝
気風量加算装置44に出力される制御信号は不規則に変
動する信号である(以下、ノイズという)。従って、こ
のノイズの絶対値が大きくなったとき、処理水の水質に
悪影響を及ぼすことがある。例えば、降雨時に曝気槽2
に流入する下水の量が多くなるが、曝気風量加算装置4
4に与えられるノイズが偶然に負の大きな値であれば、
風量不足の状態となり処理水の有機物濃度あるいは処理
水懸濁物質濃度が高い値を示すことが考えられる。 (2)自己回帰モデルの作成期間は、システムの安定化
を図るための特定項目、例えば、曝気槽内のMLSS、
溶存酸素濃度、沈澱槽内の総汚泥量等は目標値から外れ
ることがあるので、処理場の運転員に不安感を与えるこ
とになる。更に自己回帰モデル作成後の制御実施時にお
いても、上位制御系の演算装置から制御信号が下位制御
系の余剰汚泥量加算装置40、返送汚泥量加算装置42
および曝気風量加算装置44に与えられるので、同様な
状況がおきる。本発明は、このような欠点を取り除くた
めに改良を施したもので、自己回帰モデル作成の期間に
おいても処理水の水質低下を防止し、且つシステムの安
定化を図るための特定項目の目標値からの外れを少なく
して、処理水の水質を被制御変数とする自己回帰モデル
による最適制御系を実現することを目的とするものであ
る。
However, the conventional ones have the following problems. (1) The autoregressive model computing device 28 creates an autoregressive model by using the signal stored in the storage device 35 for a certain period of time. The control signals output to the returning sludge amount adding device 42 and the aeration air amount adding device 44 are signals that fluctuate irregularly (hereinafter referred to as noise). Therefore, when the absolute value of this noise becomes large, the quality of the treated water may be adversely affected. For example, aeration tank 2 when it rains
The amount of sewage that flows into the air increases, but the aeration air volume adding device 4
If the noise given to 4 happens to be a large negative value,
It is considered that the amount of air becomes insufficient and the concentration of organic matter in the treated water or the concentration of suspended solids in the treated water shows a high value. (2) The creation period of the autoregressive model is a specific item for stabilizing the system, such as MLSS in the aeration tank,
Since the dissolved oxygen concentration, the total amount of sludge in the sedimentation tank, etc. may deviate from the target values, the operators of the treatment plant may feel uneasy. Further, even when the control is performed after the autoregressive model is created, the control signal from the arithmetic unit of the upper control system is the excess sludge amount addition device 40 and the returned sludge amount addition device 42 of the lower control system.
And the aeration air amount adding device 44, the same situation occurs. The present invention has been improved in order to eliminate such drawbacks, the target value of a specific item for preventing the deterioration of the quality of the treated water even during the autoregressive model creation, and for stabilizing the system. The purpose is to realize an optimum control system by an autoregressive model in which the water quality of treated water is used as a controlled variable by reducing the deviation from.

【0026】[0026]

【課題を解決するための手段】第1の発明は、活性汚泥
処理制御装置の特定項目の安定化を図る下位の制御系
と、この下位の制御をも処理装置の一部として包含する
線形モデルを使用した上位の制御系を具備した下水処理
制御装置において、手分析データから計算されたMLS
S目標値と上位制御系の演算装置の最適化装置の出力を
入力して余剰汚泥量演算装置に出力するMLSS目標値
加算装置と、手分析データから計算された総汚泥量目標
値と上位制御系の演算装置の最適化装置の出力を入力し
て返送汚泥量演算装置に出力する総汚泥量目標値加算装
置と、手分析データから計算された溶存酸素目標値と上
位制御系の演算装置の最適化装置の出力を入力して曝気
風量演算装置とを設けている。第2の発明は、活性汚泥
処理制御装置の特定項目の安定化を図る下位の制御系
と、この下位の制御系をも処理装置の一部として包含す
る線形モデルを使用した上位の制御系を具備した下水処
理制御装置において、手分析データから計算された溶存
酸素目標値と上位制御系の演算装置の最適化装置の出力
を入力して曝気風量演算装置とを設けている。第3の発
明は、活性汚泥処理制御装置の特定項目の安定化を図る
下位の制御系と、この下位の制御系をも処理装置の一部
として包含する線形モデルを使用した上位の制御系を具
備した下水処理制御装置において、手分析データから計
算された総汚泥量目標値と上位制御系の演算装置の最適
化装置の出力を入力して返送汚泥量演算装置に出力する
総汚泥量目標値加算装置と、手分析データから計算され
た溶存酸素目標値と上位制御系の演算装置の最適化装置
の出力を入力して曝気風量演算装置とを設けている。
A first aspect of the present invention is a linear model including a lower-level control system for stabilizing a specific item of an activated sludge treatment control device and a lower-level control system as a part of the treatment device. MLS calculated from hand analysis data in a sewage treatment controller equipped with a higher-level control system using
MLSS target value addition device that inputs the S target value and the output of the optimization device of the arithmetic device of the upper control system and outputs it to the surplus sludge amount calculation device, the total sludge amount target value calculated from the manual analysis data, and the upper control Of the target value of the total sludge amount that inputs the output of the optimization device of the system arithmetic device and outputs it to the returned sludge amount arithmetic device, the dissolved oxygen target value calculated from the hand analysis data and the arithmetic device of the upper control system An output of the optimizing device is input and an aeration air volume calculation device is provided. A second invention is a lower control system for stabilizing a specific item of an activated sludge treatment control device, and an upper control system using a linear model including this lower control system as a part of the treatment device. In the provided sewage treatment control device, a dissolved air target value calculated from the hand analysis data and the output of the optimization device of the arithmetic device of the upper control system are input and an aeration air amount arithmetic device is provided. A third aspect of the present invention is to provide a lower control system for stabilizing a specific item of the activated sludge treatment control device and an upper control system using a linear model including the lower control system as a part of the treatment device. In the equipped sewage treatment control device, the total sludge amount target value calculated from the hand analysis data and the output of the optimization device of the arithmetic unit of the upper control system are input and output to the returned sludge amount arithmetic unit. An adding device and an aeration air amount calculating device for inputting the dissolved oxygen target value calculated from the hand analysis data and the output of the optimizing device of the calculating device of the upper control system are provided.

【0027】[0027]

【作用】したがって、自己回帰モデル作成の期間におい
ても処理水水質の低下を防止し、且つシステムの安定化
を図るための特定項目の目標値からの外れを少なくし
て、処理水水質の変動を抑制する制御系を実現すること
ができる。
[Effect] Therefore, even during the period of creating the autoregressive model, it is possible to prevent the deterioration of the treated water quality and to reduce the deviation from the target value of the specific items for the purpose of stabilizing the system to reduce the fluctuation of the treated water quality. A control system that suppresses can be realized.

【0028】[0028]

【実施例】以下、本発明を図1に示す実施例に基づいて
具体的に説明する。図1は下水処理制御装置の構成図を
示すもので、図2と同一のものには同一の符号を付して
詳細な説明を省略する。45はMLSS目標値加算装置
で、手分析データから計算されたMLSS目標値46と
最適化装置31の出力とを演算して余剰汚泥量演算装置
39に出力するようにしてある。47は総汚泥量目標値
加算装置で、手分析データから計算された総汚泥量目標
値48と最適化装置31の出力とを演算して返送汚泥量
演算装置41に出力するようにしてある。49は溶存酸
素目標値加算装置で、手分析データから計算された溶存
酸素目標値50と最適化装置31の出力とを演算して曝
気風量演算装置43に出力するいま最適化装置31から
の目標値調整量をSPopt 、手分析データから計算された
目標値をSPman とすると、MLSS目標値加算装置、総
汚泥量目標値加算装置および溶存酸素目標値加算装置か
らの出力信号SPout は、(12)式によって与えられ
る。 SPout=F(SPopa +SPman,L,H) ......................(12) SPopa=F(SPopt,ーD,D) ......................(13) 但し、L とH は目標値の上限値と下限値、D は目標値調
整量の振幅であり、F(X0,Y1,Y2) は次式で定義される関
数である F(X0,Y1,Y2) =Y1 ( X0 <Y1 ) ..................(14−1) =X0 ( Y1 ≦X0≦Y2 ) ..................(14−2) =Y2 ( X0 >Y2 ) ..................(14−3) ここでL とH は、操作機器の性能とプロセスの状態から
決定されるものであり、またD は全制御系に対する上位
制御系の寄与度をどの程度にするかということから決め
られる。各目標値加算装置から、このような制御信号
を、余剰汚泥量演算装置39、返送汚泥量演算装置41
および曝気風量加算装置43に出力することにすれば、
システムの安定化を図るための特定項目である曝気槽内
のMLSSと溶存酸素濃度、あるいは沈澱槽内の総汚泥
量は、ほぼ目標値どうりの値が維持でき、且つ処理水水
質の変動を抑制することが可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on the embodiment shown in FIG. FIG. 1 shows a configuration diagram of the sewage treatment control device. The same parts as those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted. Reference numeral 45 denotes an MLSS target value adding device, which calculates the MLSS target value 46 calculated from the hand analysis data and the output of the optimizing device 31 and outputs it to the surplus sludge amount calculation device 39. Reference numeral 47 is a total sludge amount target value adding device, which calculates the total sludge amount target value 48 calculated from the hand analysis data and the output of the optimizing device 31 and outputs it to the returned sludge amount calculating device 41. Reference numeral 49 denotes a dissolved oxygen target value addition device, which calculates the dissolved oxygen target value 50 calculated from the hand analysis data and the output of the optimization device 31 and outputs it to the aeration air amount calculation device 43. The target from the optimization device 31 now. When the value adjustment amount is SPopt and the target value calculated from the hand analysis data is SPman, the output signal SPout from the MLSS target value adding device, the total sludge amount target value adding device and the dissolved oxygen target value adding device is (12). Given by the formula. SPout = F (SPopa + SPman, L, H) ................................ (12) SPopa = F (SPopt, ー D, D) ... (13) However, L and H are the upper and lower limits of the target value, D is the amplitude of the target value adjustment amount, and F ( X0, Y1, Y2) is a function defined by the following formula F (X0, Y1, Y2) = Y1 (X0 <Y1) .................. ( 14-1) = X0 (Y1 ≤ X0 ≤ Y2) .................. (14-2) = Y2 (X0> Y2) ....... ........... (14-3) Here, L and H are determined from the performance of the operating equipment and the state of the process, and D is the upper control system for all control systems. It is decided based on the degree of contribution. Such a control signal from each target value addition device is used to calculate the excess sludge amount calculation device 39 and the returned sludge amount calculation device 41.
And outputting to the aeration air amount adding device 43,
MLSS and dissolved oxygen concentration in the aeration tank, or the total amount of sludge in the settling tank, which are the specific items for stabilizing the system, can be maintained at values close to the target values, and fluctuations in the treated water quality can be controlled. It becomes possible to suppress.

【0029】[0029]

【発明の効果】上述したように本発明によれば、自己回
帰モデル作成の期間においても処理水水質の低下を防止
することができ、制御実施時においては、被制御変数の
安定化を目的とした自己回帰モデルによる最適制御系の
実現が可能となる。また上記両期間において、システム
の安定化を図るための特定項目の計測値は、ほぼ目標値
どうりの値を維持することができるので、処理場の運転
員に不安感を与えることはない。
As described above, according to the present invention, it is possible to prevent the quality of treated water from deteriorating even during the preparation of an autoregressive model, and to stabilize the controlled variable during control. It is possible to realize an optimal control system using the autoregressive model. Further, in both of the above-mentioned periods, the measured values of the specific items for stabilizing the system can be maintained at values close to the target values, so that the operator of the processing plant is not anxious.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる下水処理制御装置の実施例の構
成図
FIG. 1 is a configuration diagram of an embodiment of a sewage treatment control device according to the present invention.

【図2】従来の下水処理制御装置の構成図FIG. 2 is a block diagram of a conventional sewage treatment control device.

【符号の説明】[Explanation of symbols]

2 曝気槽 3 沈澱槽 10 流入下水量
測定計 11 流入水のpH測定計 12 流入水懸濁
物質濃度計 13 流入水有機物濃度計 14 溶存酸素量
測定計 15 MLSS濃度計 16 水温計 17 曝気槽流出水有機物濃度計 18 MLSS濃
度計 19 処理水懸濁物質濃度計 20 処理水有機
物濃度計 21 処理水のpH測定計 22 返送汚泥量
測定計 23 返送汚泥濃度計 24 余剰汚泥引
抜量測定計 25 余剰汚泥濃度計 26 曝気風量測
定装置 27 演算装置 31 最適化装置 34 引抜汚泥ポンプの制御装置 35 計測値記憶
装置 36 予測値演算装置 37 予測値記憶
装置 38 比較装置 39 余剰汚泥量
演算装置 40 余剰汚泥量加算装置 41 返送汚泥量
演算装置 42 返送汚泥量加算装置 43 曝気風量演
算装置 44 曝気風量加算装置 45 MLSS目
標値加算装置 46 MLSS目標値 47 総汚泥量目
標値加算装置 48 手分析総汚泥量目標値 49 溶存酸素目
標値加算装置 50 溶存酸素目標値
2 Aeration tank 3 Settling tank 10 Inflow sewage amount meter 11 Inflow water pH meter 12 Inflow water suspended matter concentration meter 13 Inflow water organic matter concentration meter 14 Dissolved oxygen content meter 15 MLSS concentration meter 16 Water temperature meter 17 Aeration tank outflow Water organic matter concentration meter 18 MLSS concentration meter 19 Treated water suspended matter concentration meter 20 Treated water organic matter concentration meter 21 Treated water pH meter 22 Return sludge amount meter 23 Return sludge concentration meter 24 Excess sludge extraction meter 25 Excess sludge Concentration meter 26 Aeration air amount measuring device 27 Computing device 31 Optimizing device 34 Controlling device for extraction sludge pump 35 Measured value storage device 36 Predicted value calculation device 37 Predicted value storage device 38 Comparison device 39 Excess sludge amount calculation device 40 Excess sludge amount addition Device 41 Return sludge amount calculation device 42 Return sludge amount addition device 43 Aeration air amount calculation device 44 Aeration air amount addition device 45 ML S target value adding unit 46 MLSS target value 47 total sludge amount target value adding unit 48 hands analyzed total sludge amount target value 49 dissolved oxygen target value adding unit 50 dissolved oxygen target value

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性汚泥処理制御装置の特定項目の安定
化を図る下位の制御系と、この下位の制御系をも処理装
置の一部として包含する線形モデルを使用した上位の制
御系を具備した下水処理制御装置において、手分析デー
タから計算されたMLSS目標値と上位制御系の演算装
置の最適化装置の出力を入力して余剰汚泥量演算装置に
出力するMLSS目標値加算装置と、手分析データから
計算された総汚泥量目標値と上位制御系の演算装置の最
適化装置の出力を入力して返送汚泥量演算装置に出力す
る総汚泥量目標値加算装置と、手分析データから計算さ
れた溶存酸素目標値と上位制御系の演算装置の最適化装
置の出力を入力して曝気風量演算装置とを設けたことを
特徴とする下水処理制御装置。
1. A lower control system for stabilizing a specific item of an activated sludge treatment control device, and an upper control system using a linear model including this lower control system as part of the treatment device. In the sewage treatment control device, the MLSS target value addition device that inputs the MLSS target value calculated from the hand analysis data and the output of the optimization device of the arithmetic device of the upper control system and outputs it to the surplus sludge amount arithmetic device, Total sludge amount target value calculated from the analysis data and the output of the optimization device of the arithmetic unit of the upper control system are input and output to the returned sludge amount arithmetic unit, and the calculation from the manual analysis data A sewage treatment control device comprising: an aeration air flow rate calculation device for inputting the dissolved oxygen target value and the output of the optimization device of the calculation device of the upper control system.
【請求項2】 活性汚泥処理制御装置の特定項目の安定
化を図る下位の制御系と、この下位の制御系をも処理装
置の一部として包含する線形モデルを使用した上位の制
御系を具備した下水処理制御装置において、手分析デー
タから計算された溶存酸素目標値と上位制御系の演算装
置の最適化装置の出力を入力して曝気風量演算装置とを
設けたことを特徴とする下水処理制御装置。
2. A lower control system for stabilizing a specific item of an activated sludge treatment control device, and a higher control system using a linear model including this lower control system as a part of the treatment device. In the sewage treatment control device, the sewage treatment device is provided with the dissolved air target value calculated from the hand analysis data and the output of the optimization device of the arithmetic device of the upper control system, and an aeration air amount arithmetic device. Control device.
【請求項3】 活性汚泥処理制御装置の特定項目の安定
化を図る下位の制御系と、この下位の制御系をも処理装
置の一部として包含する線形モデルを使用した上位の制
御系を具備した下水処理制御装置において、手分析デー
タから計算された総汚泥量目標値と上位制御系の演算装
置の最適化装置の出力を入力して返送汚泥量演算装置に
出力する総汚泥量目標値加算装置と、手分析データから
計算された溶存酸素目標値と上位制御系の演算装置の最
適化装置の出力を入力して曝気風量演算装置とを設けた
ことを特徴とする下水処理制御装置。
3. A lower control system for stabilizing a specific item of an activated sludge treatment control device, and an upper control system using a linear model including this lower control system as a part of the treatment device. In the sewage treatment control device, the total sludge amount target value calculated from the hand analysis data and the output of the optimization device of the arithmetic unit of the upper control system are input and output to the returned sludge amount arithmetic unit. A sewage treatment control device comprising: a device, and a dissolved air target value calculated from hand analysis data and an output of an optimization device of an arithmetic device of an upper control system, and an aeration air amount arithmetic device.
JP10059094A 1994-04-13 1994-04-13 Sewage treatment control device Expired - Fee Related JP3460211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059094A JP3460211B2 (en) 1994-04-13 1994-04-13 Sewage treatment control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059094A JP3460211B2 (en) 1994-04-13 1994-04-13 Sewage treatment control device

Publications (2)

Publication Number Publication Date
JPH07275882A true JPH07275882A (en) 1995-10-24
JP3460211B2 JP3460211B2 (en) 2003-10-27

Family

ID=14278097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059094A Expired - Fee Related JP3460211B2 (en) 1994-04-13 1994-04-13 Sewage treatment control device

Country Status (1)

Country Link
JP (1) JP3460211B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912032B1 (en) * 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 Apparatus and method for controlling activated sludge process
KR100912021B1 (en) * 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 Waterwaste treatment system and method thereof
WO2015147350A1 (en) * 2014-03-26 2015-10-01 부산대학교 산학협력단 System for managing production amount of dehydrated cake produced in sewage treatment plant and method thereof
US10640404B2 (en) 2016-04-18 2020-05-05 Waterwerx Pty Ltd. Water treatment system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912032B1 (en) * 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 Apparatus and method for controlling activated sludge process
KR100912021B1 (en) * 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 Waterwaste treatment system and method thereof
WO2015147350A1 (en) * 2014-03-26 2015-10-01 부산대학교 산학협력단 System for managing production amount of dehydrated cake produced in sewage treatment plant and method thereof
US10640404B2 (en) 2016-04-18 2020-05-05 Waterwerx Pty Ltd. Water treatment system and method

Also Published As

Publication number Publication date
JP3460211B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
JP3231164B2 (en) Control device for water purification plant coagulation process
JP2007029851A (en) Coagulant injection control device and method
JP2010194445A (en) Plant operation controller
JP6655975B2 (en) Aeration control device and aeration control method
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JPH07275882A (en) Sewage treatment control apparatus
JPH0852458A (en) Operation supporting device for sewer-age treatment plant
JP3214489B2 (en) Sewage treatment method and sewage treatment device
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JP3324656B2 (en) Water treatment control device
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JPH10286585A (en) Aeration air volume controlling apparatus
JPH07121398B2 (en) Bulking controller
JPH06335694A (en) Controller of device for biologically treating waste water
JPH0356116B2 (en)
JPH0763708B2 (en) Sewage treatment control device
JPS6182896A (en) Control device for sewage treatment
JPH06328091A (en) Sludge capacity index estimating method in control system for biological treatment device
JPS6233595A (en) Control device for sewage treatment
JPH1119682A (en) Waste water treatment device by activated sludge process
JPH04305206A (en) Flocculating and filtration tank for water treatment
JP3182835B2 (en) Optimal control device for activated sludge process
JP3072650B2 (en) Activated sludge treatment control device
JPS62269799A (en) Control device for amount of return sludge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees