JPH0440080B2 - - Google Patents

Info

Publication number
JPH0440080B2
JPH0440080B2 JP58092462A JP9246283A JPH0440080B2 JP H0440080 B2 JPH0440080 B2 JP H0440080B2 JP 58092462 A JP58092462 A JP 58092462A JP 9246283 A JP9246283 A JP 9246283A JP H0440080 B2 JPH0440080 B2 JP H0440080B2
Authority
JP
Japan
Prior art keywords
sludge
flow rate
amount
concentration
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58092462A
Other languages
Japanese (ja)
Other versions
JPS59222298A (en
Inventor
Ryosuke Miura
Itaru Takase
Kazuo Shibazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58092462A priority Critical patent/JPS59222298A/en
Publication of JPS59222298A publication Critical patent/JPS59222298A/en
Publication of JPH0440080B2 publication Critical patent/JPH0440080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、曝気槽と沈澱池を備え活性汚泥法に
よつて汚水を二次処理する汚水処理プラントの制
御方法にかかり、特に曝気槽への送風流量と沈澱
池からの返送汚泥流量とを連動して制御する方法
に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for controlling a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater by an activated sludge method, and particularly relates to a control method for a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater by an activated sludge method. The present invention relates to a method of controlling the air flow rate and the return sludge flow rate from the settling tank in conjunction with each other.

[発明の技術的背景とその問題点] 前沈澱などの一次処理を受けた汚水は、曝気槽
に送られ、活性汚泥と混合接触しながら曝気され
て二次処理が行なわれ、増殖した活性汚泥と共に
沈澱池へ送られる。
[Technical background of the invention and its problems] Sewage that has undergone primary treatment such as pre-sedimentation is sent to an aeration tank, where it is mixed and contacted with activated sludge and aerated for secondary treatment, and the activated sludge that has grown is It is also sent to the sedimentation pond.

処理された汚水は沈澱池で固液分離され、上澄
水は外部へ取出され、固形物および活性汚泥は沈
澱池内に沈澱すると共に活性汚泥の一部は曝気槽
に返送される。
The treated sewage is separated into solid and liquid in a settling tank, supernatant water is taken out, solids and activated sludge are settled in the settling tank, and a portion of the activated sludge is returned to the aeration tank.

また余剰汚泥は外部に排出される。 In addition, excess sludge is discharged outside.

上記二次処理において、汚水の浄化を効率的に
行なうためには、曝気槽への送風流量QA、沈澱
池からの返送汚泥流量QR(以下返送流量と呼ぶ)、
および余剰汚泥引抜流量QW(以下引抜流量と呼
ぶ)を適切に制御する必要がある。
In the above secondary treatment, in order to efficiently purify sewage, the air flow rate Q A to the aeration tank, the return sludge flow rate Q R from the settling tank (hereinafter referred to as return flow rate),
It is necessary to appropriately control the excess sludge extraction flow rate Q W (hereinafter referred to as the extraction flow rate).

しかしながら上記3つの制御量の操作は相互に
干渉し合うので、総合的な制御が必要であるが、
従来の方法では相互の干渉について十分な考慮が
払われていない。
However, since the operations of the three control variables mentioned above interfere with each other, comprehensive control is required.
In conventional methods, sufficient consideration is not given to mutual interference.

[発明の目的] 本発明は、送風流量QAと返送流量QRとを連動
して制御し、これによつて曝気槽内の溶存酸素濃
度(以下DO濃度と呼ぶ)を安定且つ高精度に制
御できる汚水処理プラントの制御方法を提供する
ことを目的としている。
[Object of the invention] The present invention controls the air flow rate Q A and the return flow rate Q R in conjunction with each other, thereby stably and accurately controlling the dissolved oxygen concentration (hereinafter referred to as DO concentration) in the aeration tank. The purpose is to provide a control method for a wastewater treatment plant that can be controlled.

[発明の概要] 本発明は、曝気槽と沈澱池を備え活性汚泥法に
よつて汚水を二次処理する汚水処理プラントの制
御方法において、前記曝気槽内のDO濃度を設定
の目標DO濃度と比較して送風流量の一次設定値
を出力する第1の制御器と、前記曝気槽に流入す
る汚水流量を汚水濃度、前記沈澱池から前記曝気
槽への返送汚泥流量と返送汚泥濃度および沈澱池
から引抜かされる余剰引抜流量から沈澱池汚泥量
を算出する汚泥量シミユレータと、前記汚泥量シ
ミユレータで算出された前記沈澱池内の汚泥量と
設定の目標汚泥量とを比較して返送汚泥流量の一
次設定値を出力する第2の制御器と、前記一次設
定値の一方に比例し、他方の一次設定値の増加に
よつて比例係数が低減するように両者を連動させ
る所定の演算によつて送風流量および返送汚泥流
量の二次設定値を算出する補償演算器とを設け、
前記各二次設定値に対応して前記送風流量および
前記返送汚泥流量を制御し、これによつて送風流
量と返送汚泥流量との相互干渉を補償した曝気槽
内のDO濃度と全体の活性汚泥量とを安定に制御
するものである。
[Summary of the Invention] The present invention provides a control method for a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater by an activated sludge method, in which the DO concentration in the aeration tank is set as a set target DO concentration. a first controller that compares and outputs a primary setting value of the air flow rate; A sludge amount simulator that calculates the amount of sludge in the sedimentation basin from the excess flow rate drawn from the sludge amount simulator, and a sludge amount in the sedimentation tank calculated by the sludge amount simulator and a set target sludge amount are compared to determine the primary return sludge flow rate. A second controller that outputs a set value, and a predetermined calculation that causes the two to operate in a manner that is proportional to one of the primary set values and reduces the proportionality coefficient as the other primary set value increases. A compensation calculator is installed to calculate the secondary set values of the flow rate and return sludge flow rate.
The air flow rate and the return sludge flow rate are controlled in accordance with each of the secondary set values, thereby compensating for the mutual interference between the air flow rate and the return sludge flow rate, and the DO concentration in the aeration tank and the total activated sludge. This is to stably control the amount.

[発明の実施例] 本発明の一実施例を第1図に示す。[Embodiments of the invention] An embodiment of the present invention is shown in FIG.

第1図において、1は二次処理を行なう汚水処
理プラントであり、汚水は管路Aを通つて曝気槽
1−1に流入する。
In FIG. 1, 1 is a sewage treatment plant that performs secondary treatment, and sewage flows through a pipe A into an aeration tank 1-1.

曝気槽1−1から流出した汚水と活性汚泥の混
合液は管路A1を通つて沈澱池1−2に流入して
固液分離され、上澄液は管路A2から取出され
る。
The mixed liquid of sewage and activated sludge flowing out from the aeration tank 1-1 flows into the settling tank 1-2 through the pipe A1, where it is separated into solid and liquid, and the supernatant liquid is taken out from the pipe A2.

また沈澱池1−2内に沈澱した活性汚泥1−8
の一部は引抜管1−9で引抜かれ、その一部は管
路Bを通つて曝気槽1−1に返送されると共に、
一部は管路Cを通つて余剰汚泥として外部に排出
される。
In addition, activated sludge 1-8 settled in settling tank 1-2
A part of it is pulled out by the drawing pipe 1-9, and a part of it is returned to the aeration tank 1-1 through the pipe B, and
A part of the sludge is discharged to the outside through pipe C as surplus sludge.

また曝気槽1−1には送風装置1−5から散気
装置1−6を介して空気が送込まれ、その送風流
量QAは調節計5によつて設定値QA *に制御され
る。
In addition, air is sent to the aeration tank 1-1 from the blower 1-5 through the diffuser 1-6, and the air flow rate Q A is controlled to a set value Q A * by the controller 5. .

また管路Bには返送装置1−10が設けられて
おり、調節計6によつて返送流量QRが設定値QR *
になるように制御される。
In addition, a return device 1-10 is provided in the pipe line B, and the return flow rate Q R is adjusted to a set value Q R * by the controller 6.
controlled so that

また管路Cには余剰引抜装置1−13が設けら
れており、これによつて引抜流量QWが調整され
る。
Further, the pipe line C is provided with a surplus drawing device 1-13, which adjusts the drawing flow rate QW .

また曝気槽1−1の内部にはDO濃度計1−7
が設けられており、検出したDO濃度は第1制御
器2に入力される。
Also, inside the aeration tank 1-1 is a DO concentration meter 1-7.
is provided, and the detected DO concentration is input to the first controller 2.

また管路Aには流入汚水流量計1−3、流入汚
水濃度計1−4が、管路Bには返送汚泥流量計1
−11、返送汚泥濃度計1−12が、また管路C
には余剰引抜流量計1−14が設けられており、
それらの検出信号QS,XS,QR,XRおよびQWは汚
泥量シミユレータ4に入力され、曝気槽1−1の
流動混合モデルと沈澱池1−2の汚泥挙動モデル
とに基ずく所定の演算によつて沈澱池汚泥量BS
が算出され、第2制御器3に入力される。
In addition, pipe A has an inflow sewage flow meter 1-3 and an inflow sewage concentration meter 1-4, and pipe B has a return sludge flow meter 1.
-11, return sludge concentration meter 1-12 is also connected to pipe C
is equipped with a surplus pull-out flowmeter 1-14,
These detection signals Q S , The amount of sedimentation tank sludge BS is determined by the specified calculation.
is calculated and input to the second controller 3.

第1制御器2では、検出したDO濃度DOとあ
らかじめ設定した目標濃度DO*とが比較され、
次の演算によつて送風流量の一定設定値S1oが順
次出力される。
The first controller 2 compares the detected DO concentration DO with a preset target concentration DO * .
The constant set value S 1o of the air flow rate is sequentially outputted by the following calculations.

E1o=DO*−DO ……(1) ΔS1o=K1p(E1o−E1(o-1))+h1/T1I・E1o……(2
) S1o=S1(o-1)+ΔS1o ……(3) ここでK1p,h1,T1Iは制御定数である。
E 1o = DO * −DO …(1) ΔS 1o = K 1p (E 1o −E 1(o-1) ) + h 1 /T 1I・E 1o …(2
) S 1o = S 1(o-1) +ΔS 1o ...(3) Here, K 1p , h 1 , and T 1I are control constants.

また第2制御器3では上記沈澱池汚泥量BSが
あらかじめ設定した目標沈澱池汚泥量BS*と比較
され、次の演算によつて返送流量の一次設定値
S2oが順次出力される。
In addition, the second controller 3 compares the sedimentation tank sludge volume BS with the preset target sedimentation tank sludge volume BS * , and determines the primary set value of the return flow rate by the following calculation.
S 2o is output sequentially.

E2o=BS*−BS ……(4) ΔS2o=K2p(E2o−E2(o-1))+h2/T2I・E2o……(5
) S2o=S2(o-1)+ΔS2o ……(6) ここでK2p,h2,T2Iは制御定数である。
E 2o = BS * −BS ……(4) ΔS 2o = K 2p (E 2o −E 2(o-1) ) + h 2 /T 2I・E 2o ……(5
) S 2o = S 2(o-1) +ΔS 2o (6) where K 2p , h 2 , and T 2I are control constants.

上記一次設定値S1o,S2o(以下S1,S2と記す)
はそれぞれ補償演算器7の第1の演算回路11,
13に入力され、それぞれの設定定数A1,B1
A2,B2を用いて下記演算が行なわれる。
The above primary setting values S 1o and S 2o (hereinafter referred to as S 1 and S 2 )
are the first arithmetic circuit 11 of the compensation arithmetic unit 7,
13, and the respective setting constants A 1 , B 1 ,
The following calculation is performed using A 2 and B 2 .

D2=A1(0.5−S1/B1+S1) ……(7) D1=A2(0.5−S2/B2+S2) ……(8) 上記出力信号D1,D2およびS1,S2はさらに第
2の演算回路12,14に入力され、それぞれ下
記の演算が行なわれる。
D 2 = A 1 (0.5-S 1 /B 1 +S 1 ) ...(7) D 1 =A 2 (0.5-S 2 /B 2 +S 2 ) ...(8) Above output signals D 1 , D 2 Further, S 1 and S 2 are input to second arithmetic circuits 12 and 14, and the following arithmetic operations are performed, respectively.

QA *=(1+D1)S1 ……(9) QR *=(1+D2)S2 ……(10) 上記出力信号QA *,QR *は二次設定値としてそ
れぞれ調節計5,6に入力され、それぞれ送風流
量QAおよび返送流量QRが上記の二次設定値に制
御される。
Q A * = (1 + D 1 ) S 1 ... (9) Q R * = (1 + D 2 ) S 2 ... (10) The above output signals Q A * and Q R * are respectively input to the controller 5 as secondary set values. , 6, and the air flow rate Q A and return flow rate Q R are respectively controlled to the above secondary set values.

上記の方法では、送風流量の設定値QA *および
返送量の設定値QR *がそれぞれ、(3)式および(6)式
から算出した一次設定値S1,S2を組合せた互に連
動した値となつている。
In the above method, the set value Q A * of the air flow rate and the set value Q R * of the return amount are mutually determined by combining the primary set values S 1 and S 2 calculated from equations (3) and (6), respectively. The values are linked.

例えばQA *は(8)式と(9)式から下記(11)式のよ
うになる。
For example, Q A * becomes the following equation (11) from equations (8) and (9).

QA *=(1+A2/2−A2・S2/B2+S2 ……(11) すなわちQA *はS1に比例すると共に、S2の増加
によつてその比例係数が低減し、これによつて送
風流量QAは返送流量QRと連動して制御されるこ
とになる。
Q A * = (1 + A 2 / 2 - A 2 · S 2 / B 2 + S 2 ... (11) In other words, Q A * is proportional to S 1 , and its proportional coefficient decreases as S 2 increases. , As a result, the air flow rate Q A is controlled in conjunction with the return flow rate Q R.

QR *についても同様である。 The same applies to Q R * .

つぎに本発明の制御装置がいかなる具体的な効
果をもたらすかについて、活性汚泥法の汚水処理
プラントの主要な外乱である流入汚水の流量変動
に対する応答性を用いて説明する。
Next, specific effects brought about by the control device of the present invention will be explained using responsiveness to fluctuations in the flow rate of inflow sewage, which is a major disturbance in an activated sludge method sewage treatment plant.

第2図は曝気槽に流入する汚水の流量が急激に
増加した時、従来法であるDO濃度一定制御と沈
澱池汚泥量一定制御を独立に連動させずに送風量
と返送量を運転した場合と本発明の制御方法で運
転した場合と比較した機場運転結果のグラフであ
る。
Figure 2 shows the case where when the flow rate of sewage flowing into the aeration tank suddenly increases, the air flow rate and return rate are operated without independently interlocking the conventional constant DO concentration control and constant sedimentation tank sludge volume control. It is a graph of the results of the pump station operation compared with the case of operation using the control method of the present invention.

第2図Aは流入した汚水の時間変化、Bは曝気
槽のDO濃度の変化、Cは沈澱池に存在する汚泥
量の変動をそれぞれ示し、aは従来法による結果
であり、bは本発明の制御方法による結果であ
る。
Figure 2 A shows the change in inflowing sewage over time, B shows the change in DO concentration in the aeration tank, and C shows the change in the amount of sludge present in the settling tank, where a is the result of the conventional method and b is the result of the present invention. This is the result of the control method.

従来方法による制御では、流入汚水量の増大に
追随するために送風量も増大するが返送量も増大
するためDO濃度が急激に低下し、酸素不足にな
りまた減少時には送風量は減少しかつ返送量も低
下するがその応答遅れによつて逆にDO濃度が高
くなつて過曝気状態になつてしまう。
In conventional control methods, the amount of air blown increases to keep up with the increase in the amount of inflowing sewage, but the amount of returned air also increases, resulting in a rapid drop in the DO concentration, resulting in an oxygen shortage. Although the amount decreases, the delayed response causes the DO concentration to increase, resulting in an overaerated state.

沈澱池に存在している汚泥量の変動は従来法で
は細かな変動を伴うものの、目標値からの偏差は
本発明による制御結果より小さい。
Although the conventional method involves small fluctuations in the amount of sludge existing in the settling tank, the deviation from the target value is smaller than the control result according to the present invention.

しかし本発明によるDO濃度の応答は、返送量
制御がDO濃度と前述のように関係づけられてい
るために干渉を受けなくなつて、その制御特性が
大巾に改善されていることがわかる。
However, it can be seen that the response of the DO concentration according to the present invention is not interfered with because the return amount control is related to the DO concentration as described above, and the control characteristics are greatly improved.

[発明の効果] 以上説明したように本発明によれば、曝気槽と
沈澱池を備え活性汚泥法によつて汚水を二次処理
する汚水処理プラントにおいて、曝気槽への送風
流量制御と沈澱池からの返送汚泥流量制御とを連
動して制御し、これによつて送風流量と返送流量
との相互干渉を曝気槽内のDO濃度と全体の活性
汚泥量とを安定に制御できる合理的な汚水処理プ
ラントの制御方法が得られる。
[Effects of the Invention] As explained above, according to the present invention, in a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater by an activated sludge method, it is possible to control the air flow rate to the aeration tank and to control the settling tank. This is a rational wastewater system that can control the DO concentration in the aeration tank and the total amount of activated sludge stably by controlling the return sludge flow rate from A method for controlling a treatment plant is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すプラント系統
図、第2図は本発明の効果の一例を示すグラフで
ある。 1……汚水処理プラント、2,3……制御器、
4……汚泥量シミユレータ、5,6……調節計、
7……補償演算器、11〜14……演算回路、1
−1……曝気槽、1−2……沈澱池、1−3……
流入汚水流量計、1−4……流入汚水濃度計、1
−5……送風装置、1−6……散気装置、1−7
……DO濃度計、1−8……活性汚泥、1−9…
…引抜管、1−10……返送装置、1−11……
返送汚泥流量計、1−12……返送汚泥濃度量
計、1−13……余剰引抜装置、1−14……余
剰引抜流量計。
FIG. 1 is a plant system diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing an example of the effects of the present invention. 1... Sewage treatment plant, 2, 3... Controller,
4... Sludge amount simulator, 5, 6... Controller,
7... Compensation calculator, 11-14... Arithmetic circuit, 1
-1... Aeration tank, 1-2... Sedimentation tank, 1-3...
Inflow sewage flow meter, 1-4...Inflow sewage concentration meter, 1
-5... Air blower, 1-6... Air diffuser, 1-7
...DO concentration meter, 1-8...Activated sludge, 1-9...
...drawn pipe, 1-10... return device, 1-11...
Return sludge flow meter, 1-12... Return sludge concentration meter, 1-13... Surplus extraction device, 1-14... Surplus extraction flow meter.

Claims (1)

【特許請求の範囲】[Claims] 1 曝気槽と沈澱池を備え活性汚泥法によつて汚
水を二次処理する汚水処理プラントの制御方法に
おいて、前記曝気槽内のDO濃度を設定の目標
DO濃度と比較して送風流量の一次設定値を出力
する第1の制御器と、前記曝気槽に流入する汚水
流量と汚水濃度、前記沈澱池から前記曝気槽への
返送汚泥流量と返送汚泥濃度および沈澱池から引
抜かされる余剰引抜流量から沈澱池汚泥量を算出
する汚泥量シミユレータと、前記汚泥量シミユレ
ータで算出された前記沈澱池内の汚泥量と設定の
目標汚泥量とを比較して返送汚泥流量の一次設定
値を出力する第2の制御器と、前記一次設定値の
一方に比例し、他方の一次設定値の増加によつて
比例係数が低減するように両者を連動させる所定
の演算によつて送風流量および返送汚泥流量の二
次設定値を算出する補償演算器とを設け、前記各
二次設定値に対応して前記送風流量および前記返
送汚泥流量を制御することを特徴とする汚水処理
プラントの制御方法。
1. In a control method for a sewage treatment plant that is equipped with an aeration tank and a settling tank and performs secondary treatment of wastewater using the activated sludge method, the target for setting the DO concentration in the aeration tank is
a first controller that outputs a primary setting value of the air flow rate in comparison with the DO concentration; a sewage flow rate and sewage concentration flowing into the aeration tank; a return sludge flow rate and return sludge concentration from the settling tank to the aeration tank; and a sludge amount simulator that calculates the amount of sludge in the settling tank from the excess flow rate drawn from the settling tank, and a sludge amount simulator that compares the amount of sludge in the settling tank calculated by the sludge amount simulator with a set target sludge amount to determine the amount of returned sludge. a second controller that outputs a primary set value of the flow rate; and a predetermined calculation that links the two so that the proportional coefficient is proportional to one of the primary set values and decreases as the other primary set value increases. Therefore, a compensation calculator is provided for calculating secondary set values of the air flow rate and the return sludge flow rate, and the air blow flow rate and the return sludge flow rate are controlled in accordance with each of the secondary set values. How to control a treatment plant.
JP58092462A 1983-05-27 1983-05-27 Method for controlling filthy water treating plant Granted JPS59222298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58092462A JPS59222298A (en) 1983-05-27 1983-05-27 Method for controlling filthy water treating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58092462A JPS59222298A (en) 1983-05-27 1983-05-27 Method for controlling filthy water treating plant

Publications (2)

Publication Number Publication Date
JPS59222298A JPS59222298A (en) 1984-12-13
JPH0440080B2 true JPH0440080B2 (en) 1992-07-01

Family

ID=14055019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58092462A Granted JPS59222298A (en) 1983-05-27 1983-05-27 Method for controlling filthy water treating plant

Country Status (1)

Country Link
JP (1) JPS59222298A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328962A (en) * 1976-08-30 1978-03-17 Hokushin Electric Works Sewage treating apparatus by activated sludge
JPS547155A (en) * 1977-06-17 1979-01-19 Hitachi Ltd Attitude inversion mechanism of dual inlineetype electronic parts
JPS5422026A (en) * 1977-07-20 1979-02-19 Automob Antipollut & Saf Res Center Carburetor
JPS5442853A (en) * 1977-09-10 1979-04-05 Kubota Ltd Device of treating activated sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328962A (en) * 1976-08-30 1978-03-17 Hokushin Electric Works Sewage treating apparatus by activated sludge
JPS547155A (en) * 1977-06-17 1979-01-19 Hitachi Ltd Attitude inversion mechanism of dual inlineetype electronic parts
JPS5422026A (en) * 1977-07-20 1979-02-19 Automob Antipollut & Saf Res Center Carburetor
JPS5442853A (en) * 1977-09-10 1979-04-05 Kubota Ltd Device of treating activated sludge

Also Published As

Publication number Publication date
JPS59222298A (en) 1984-12-13

Similar Documents

Publication Publication Date Title
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JP2004171531A (en) Plant-wide optimum process control apparatus
JPH0440080B2 (en)
KR100978706B1 (en) Apparatus for treating waste water
JP2002177980A (en) Fuzzy controller for activated sludge treatment and method for the same
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPH07121400B2 (en) Return sludge amount control device
JPS6028560B2 (en) Control method for activated sludge water treatment equipment
JPH0438474B2 (en)
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JPS5826073Y2 (en) water treatment equipment
JP2004000986A (en) Method for controlling biological water treatment apparatus
JPH04326992A (en) Control apparatus of water treatment plant
JPS6257693A (en) Aeration treatment device by activated sludge method
JP2004113853A (en) Regulation and control apparatus for ph value of inflow raw water in water purifying treatment process
JPS5820295A (en) Control of air-blasting rate in activate sludge process
JPH0446200B2 (en)
JPS55111897A (en) Apparatus for controlling accumulated sludge amount within final precipitation pond
JPS5962393A (en) Sewage treating device
JPS58129612A (en) Controlling method of water level
JPS5898191A (en) Controller for purification of water in activated sludge process
JPS6397296A (en) Flow rate controller for return sludge
JPS60232291A (en) Apparatus for controlling concentration of dissolved oxygen
JPS61263610A (en) Device for controlling injection of chemicals in water treatment
JPS54119755A (en) Water receiving well inflow control method