JPS5962393A - Sewage treating device - Google Patents
Sewage treating deviceInfo
- Publication number
- JPS5962393A JPS5962393A JP57171352A JP17135282A JPS5962393A JP S5962393 A JPS5962393 A JP S5962393A JP 57171352 A JP57171352 A JP 57171352A JP 17135282 A JP17135282 A JP 17135282A JP S5962393 A JPS5962393 A JP S5962393A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- sewage
- aeration tank
- suspended solids
- removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は余剰汚゛泥の引抜を自動化I〜だ下水処理装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a sewage treatment apparatus that automates the extraction of excess sludge.
第1図を参照して従来の活性汚泥を用いた下水処理装置
を説明する。図中1は流入下水管であって、この流入下
水管1をとおして、固形浮遊物(以下SSと称す)と、
処理されるべき溶存有機物を含んだ下水が曝気槽2へ流
入する。A conventional sewage treatment apparatus using activated sludge will be explained with reference to FIG. 1 in the figure is an inflow sewage pipe, and through this inflow sewage pipe 1, solid suspended solids (hereinafter referred to as SS) are
Sewage containing dissolved organic matter to be treated flows into the aeration tank 2.
この曝気槽2では下水と活性汚泥が十分混合・曝気され
て下水中の有機物が活性汚泥中へ吸収され、またこれと
ともに活性汚泥の増殖が行なわれる。この下水と活性汚
泥との混合液は次の沈澱池3へ送られ、ここで固体成分
と水との分離が行われ、分離された上澄水は放流管4か
ら系外へ放流される。また、この沈澱池3に沈澱した活
性汚泥を含む汚泥の一部は汚泥返送引抜機構の余剰汚泥
引抜管5をとおして系外へ引抜かれ、残りの大部分の活
性汚泥は、前ンプ6により返送管7をとおして曝気槽2
へ返送される。In this aeration tank 2, sewage and activated sludge are sufficiently mixed and aerated, organic matter in the sewage is absorbed into the activated sludge, and at the same time, the activated sludge is multiplied. This mixture of sewage and activated sludge is sent to the next settling tank 3, where the solid components and water are separated, and the separated supernatant water is discharged from the discharge pipe 4 to the outside of the system. Further, a part of the sludge including activated sludge settled in the settling tank 3 is drawn out of the system through the excess sludge drawing pipe 5 of the sludge return drawing mechanism, and most of the remaining activated sludge is drawn out by the front pump 6. Aeration tank 2 through return pipe 7
will be returned to.
ところでこの流入SSと汚泥増殖によって増え続ける系
内汚泥量をコントロールし、かつ、流入有機物に対する
1碓気槽2中の混合液中浮遊固形物(以下MLSSと称
す)の量を適切に保つために、従来操作員の判断によっ
て1日の余剰汚泥引抜時間帯がそのつど、設定されてい
る。このため操作員が常時プラントの監視をおこなわね
ばならず、操作に多くの労力を要する不具合があり、こ
の操作の自動化が望まれていた。これらの作業を自動化
する方法としては、プラントの長期間の運転状態にもと
づいて算出された一定の汚泥令を設定し、決められた時
間帯に必要流量で余剰汚泥を引抜くか、あるいは定めら
れた引抜開始時刻から、一定流量で必要時間だけ汚泥を
引抜く方法、あるいはML、SSを計測し、このフィー
ドバック値と目標値との偏差に対応した余剰汚泥引抜流
楚設定値を与える方法が考えられている。しかしながら
汚泥令を一定として制御する方式は短期的にはMLSS
の変@−i!+を抑えることができず、流入有機物に対
する汚泥量が不適切となり、1だMLSS値のフィード
バックによる制御の場合は、偏差が(qれてから操作量
が出力されるとともにこの曝気槽2内の反応が遅く、し
かも操作量に制限があるため(・こ、操作員による手動
制御にくらべてよりよい制御を行うことが不可能である
。すなわち、MLSSによる制御ではMLSSがその目
標値より下回る場合は余剰汚泥引抜きを止め、曝気槽へ
もどる;聞込汚泥の濃度と流量を増やす必要がある。I
7かし、このときの余剰汚泥引抜管は零以下にはならな
いので、制御できるMLSSO値は限られる。丑だ、脹
作量に下限があるため上限もせまくしなければMLSS
平均値が下がってしまう。従って余剰汚泥の流量操作の
みによるMLSSの制御範囲は小さなものとなり、反応
の遅い曝気槽2内のMLSSを充分に制御することがで
きないものである。By the way, in order to control the amount of sludge in the system that continues to increase due to this inflow SS and sludge multiplication, and to maintain an appropriate amount of suspended solids in the mixed liquid (hereinafter referred to as MLSS) in the first air tank 2 relative to the inflow organic matter. Conventionally, the daily surplus sludge removal time period is determined each time by the operator's judgment. For this reason, an operator must constantly monitor the plant, resulting in a problem that requires a lot of effort to operate, and it has been desired to automate this operation. A method of automating these tasks is to set a certain sludge order calculated based on the long-term operating status of the plant, and to extract excess sludge at the required flow rate at a set time, or to One possible method is to draw sludge at a constant flow rate for the required time from the drawing start time, or to measure ML and SS and give a set value for excess sludge drawing flow that corresponds to the deviation between this feedback value and the target value. It is being However, the method of controlling the sludge order by keeping it constant is MLSS in the short term.
Weird@-i! + cannot be suppressed, and the amount of sludge relative to the inflowing organic matter becomes inappropriate.In the case of control by feedback of the MLSS value, the deviation is Because the reaction is slow and the amount of operation is limited (-), it is impossible to perform better control than manual control by the operator.In other words, with MLSS control, if MLSS falls below its target value. stops drawing out excess sludge and returns to the aeration tank; it is necessary to increase the concentration and flow rate of the sludge.I
However, since the excess sludge extraction pipe at this time does not fall below zero, the MLSSO value that can be controlled is limited. It's ox, there is a lower limit to the amount of cultivation, so if you don't make the upper limit too small, it will be MLSS.
The average value will go down. Therefore, the control range of the MLSS solely by controlling the flow rate of excess sludge becomes small, and the MLSS in the aeration tank 2, which reacts slowly, cannot be sufficiently controlled.
し発明の目的〕
本発明は以上の事情にもとづいてなされたもので、その
目的とするところは余剰汚泥の引抜を自動的に制御し、
しかも曝気槽のMLSSを安定して制御することができ
る下水処理装置を提供することにある。OBJECT OF THE INVENTION The present invention has been made based on the above circumstances, and its purpose is to automatically control the extraction of excess sludge,
Moreover, it is an object of the present invention to provide a sewage treatment device that can stably control the MLSS of an aeration tank.
本発明は流入する下水と活性汚泥とを混合曝気し下水中
に含脣れる有機を活性汚泥中に吸引させるとともにこの
活性汚泥の増殖をおこなう曝気槽と、この曝気槽から送
られて来る下水と活性汚泥の混合液を固形成分と水とに
沈澱分離する沈澱池と、この沈澱池で沈澱した活性汚泥
を含む汚泥を上記曝気槽に返送するとともにこの汚泥の
一部を余剰汚泥として系外に引抜くことができる汚泥返
送引抜機構とを備えたものにおいて、上記曝気槽中の混
合液中の浮遊固形物濃度を検出する浮遊固形物濃度検出
器と、前日まで流入した下水の1日の流量変化特性およ
び1日の流入下水浮遊固形物負荷の変化特性をパターン
化して記憶するとともにこの・9タ一ン信号を出力する
パターン設定回路と、上記曝気槽の流入下水量、流入下
水の浮遊1司形物負荷および返送汚泥量に対する混合液
中の浮遊固形物濃度の変化特性があらかじめ記憶されて
いるとともに上記浮遊固形物濃度検出器およびパターン
設定回路からの信号が入力てれこれらの信号にもとづい
て上記曝気槽内の混合液中の浮遊固形物濃度の目標値に
対する偏差の1日の積算値を最小とするに必要た余剰汚
泥の引抜量、引抜開始時刻および引抜停止時刻を演算し
どの演算結果にもとづいて上記汚泥返送引抜機構を制御
する演算制御回路とを具備したものである。したがって
余剰汚泥の引抜が前日壕での流入下水量、下水中のSS
負荷の変動パターンに対応して制御されるので曝気槽中
のMLSS濃度を安定して自!ffIJ的に制御できる
ものである。The present invention provides an aeration tank that mixes and aerates inflowing sewage and activated sludge, sucks organics contained in the sewage into the activated sludge, and multiplies this activated sludge, and an aeration tank that mixes and aerates inflowing sewage and activated sludge. A settling tank separates the activated sludge mixture into solid components and water, and the sludge containing the activated sludge precipitated in this settling tank is returned to the aeration tank, and a portion of this sludge is removed from the system as surplus sludge. A device equipped with a sludge return and extraction mechanism that can be pulled out, and a suspended solids concentration detector that detects the suspended solids concentration in the mixed liquid in the aeration tank, and a daily flow rate of sewage that has flowed in until the previous day. A pattern setting circuit that stores the change characteristics and daily change characteristics of the inflow sewage suspended solids load in a pattern and outputs this 9-tap signal, and the amount of inflow sewage in the aeration tank and the floating solids load of the inflow sewage. The change characteristics of the suspended solids concentration in the mixed liquid with respect to the sludge load and the amount of returned sludge are stored in advance, and signals from the suspended solids concentration detector and pattern setting circuit are input, and the system is configured based on these signals. Then, calculate the amount of excess sludge to be drawn, the time to start drawing, and the time to stop drawing necessary to minimize the daily cumulative value of the deviation from the target value of the suspended solids concentration in the mixed liquid in the aeration tank. The apparatus is equipped with an arithmetic control circuit that controls the sludge return and extraction mechanism based on the results. Therefore, the amount of inflow sewage in the trench and the SS in the sewage are
Since it is controlled according to the load fluctuation pattern, the MLSS concentration in the aeration tank can be stabilized and controlled automatically! This can be controlled using ffIJ.
lソ、下箱2図ないし第4図を参照して本発明の一実施
例を説明する。図中101は曝気槽であって、この曝気
槽101内には流入下水管102から下水が流入するよ
うに構成されている。そして下水はこの曝気槽101内
で活性汚泥と充分に混合攪拌されるとともに曝気され、
下水中の有機物は活性汚泥中に吸収され、捷た同時に活
性汚泥の増殖がおこなわれる1、そして、この曝気槽1
01内の下水と汚泥の混合液は沈澱池103に送られ、
固体成分が沈澱され、分離された上澄水は放流管104
から外部に放流される。丑た、この沈澱池103内に沈
澱した活性汚泥を含む汚泥は汚泥返送引抜機構105に
よって曝気槽101に返送され、あるいは一部が余剰汚
泥として系外に引抜かれる。午なわち106は汚泥送り
ポンプであって、沈澱池103内に沈澱した汚泥を吸引
し圧送する。そしてこの汚泥送りl?ンプ106によっ
て圧送された汚泥は返送管1θ7を介して曝気槽101
に返送される。またこの汚泥送りポンプ106の吐出側
には余剰汚泥引抜管108が分岐接続され、この余剰汚
泥引抜管1θ8の途中には流量調整弁109が設けられ
ており、汚泥の一部がこの流量調整弁109を通って余
剰汚泥として系外に引抜かれる。そしてこのような下水
処理装置には引抜汚泥を自動的に制御する機構が設けら
れている。110はその浮遊固形物濃度検出器(以下M
LSS検出器と称す)であって、曝気槽101内のML
ssを検出するように構成きれている。そしてこのML
SS検出器110からの信号は短期MLSS目標値演算
回路111に送られるように構成されている。この短期
MLSS目標値演算回路111は長期MLSS目標値設
定回路112から送られてくる長期間にわたるMLSI
JJ度の目標値と上記MLSS検出器110から送られ
る信号との偏差にもとづいて短期のMLSS目標値を算
出してこれを出力するように構成さ汎ている。また、1
13はパターン設定回路である。このi?ターン設定回
路113には前日捷での流入下水量とこの流入下水中の
5Silすなわち流入SS負荷の変動データが入力され
ており、これらデータを第3図および第4図て示す如く
・9ターン化したノゼターン信号を出力するように構成
されている。まブこ、114は基準余剰汚泥引抜時間帯
設定回路であって、第3図に示す如き1日の流入下水量
に対応した基準余剰汚泥引抜時間帯115・・・が記憶
されており、この基準余剰汚泥引抜時間帯115・・・
の信号を出力するように構成きれている。なお、これら
基準余剰汚泥引抜時間帯115・・・はその停止時刻が
流入下水量および流入SS負荷が最小となる時刻に合致
するように設定されている1、そして、これら短期ML
SS目標値演9回路11ノ、ノ!ターン設定回路113
および基準余剰汚泥引抜時間帯設定回路114からの信
号は演算制御回路116に送られるように構成されてい
る。そして、この演算制御回路116ではこれらの信号
にもとづいて余剰汚泥の引抜量とその引抜時間帯を初−
出し、その指令信号をタイマ117に送り、このタイマ
117からはさらに引抜汚泥流量制御器118に信号が
送られ、情景調整弁109に指令信号を送り、指令され
た時間帯に指令されたlの汚泥を余剰汚泥として系外に
引抜くようにして構成されている。An embodiment of the present invention will be described with reference to Figures 2 to 4 of the lower box. In the figure, 101 is an aeration tank, and the aeration tank 101 is configured so that sewage flows into it from an inflow sewage pipe 102. The sewage is thoroughly mixed with activated sludge in this aeration tank 101, stirred, and aerated.
The organic matter in the sewage is absorbed into the activated sludge, and at the same time the activated sludge is grown, the aeration tank 1
The mixed liquid of sewage and sludge in 01 is sent to settling tank 103,
The solid components are precipitated and the separated supernatant water is discharged into the discharge pipe 104.
is discharged to the outside. In addition, the sludge containing the activated sludge settled in the sedimentation tank 103 is returned to the aeration tank 101 by the sludge return/extraction mechanism 105, or a portion is drawn out of the system as surplus sludge. In other words, 106 is a sludge feed pump, which sucks the sludge settled in the sedimentation tank 103 and pumps it. And this sludge sending l? The sludge pumped by the pump 106 is sent to the aeration tank 101 via the return pipe 1θ7.
will be returned to. Further, an excess sludge drawing pipe 108 is branched and connected to the discharge side of this sludge feed pump 106, and a flow rate regulating valve 109 is provided in the middle of this excess sludge drawing pipe 1θ8. 109 and is drawn out of the system as surplus sludge. Such sewage treatment equipment is equipped with a mechanism for automatically controlling the sludge extracted. 110 is its suspended solids concentration detector (hereinafter M
ML in the aeration tank 101
It is configured to detect ss. And this ML
The signal from the SS detector 110 is configured to be sent to a short-term MLSS target value calculation circuit 111. This short-term MLSS target value calculation circuit 111 calculates the long-term MLSS that is sent from the long-term MLSS target value setting circuit 112.
It is generally configured to calculate a short-term MLSS target value based on the deviation between the JJ degree target value and the signal sent from the MLSS detector 110 and output it. Also, 1
13 is a pattern setting circuit. This i? The turn setting circuit 113 is input with the amount of inflowing sewage at the previous day's turn and the fluctuation data of 5Sil in this inflowing sewage, that is, the inflowing SS load, and these data are converted into 9 turns as shown in Figs. 3 and 4. The nose turn signal is configured to output a nose turn signal. Reference numeral 114 is a standard surplus sludge withdrawal time zone setting circuit, which stores a standard surplus sludge withdrawal time zone 115 corresponding to the amount of inflowing sewage in one day as shown in FIG. Standard surplus sludge removal time zone 115...
It is configured to output a signal. These standard surplus sludge extraction time periods 115... are set so that the stop time coincides with the time when the amount of inflowing sewage and the inflowing SS load are the minimum1, and these short-term ML
SS target value performance 9 circuits 11 no, no! Turn setting circuit 113
The signal from the standard excess sludge removal time zone setting circuit 114 is configured to be sent to the arithmetic control circuit 116. Based on these signals, the arithmetic control circuit 116 determines the amount of excess sludge to be extracted and the time period for the extraction.
The timer 117 further sends a signal to the drawn sludge flow rate controller 118, which in turn sends a command signal to the scene adjustment valve 109, and the command signal is sent to the timer 117. It is constructed so that the sludge is pulled out of the system as surplus sludge.
そして、上記演算制御回路116は以下の如き演算をお
こなうように構成されている。すなわち、このような下
水処理系では前記余剰汚泥流址の積分がMLS S値の
応答に関連する特性があり、流量を一定とすれば引抜時
間でMLSS値の制御が行々える。そして、この引抜の
時間帯を1日を通じて最適に設定するために、曝気槽と
沈澱池の出口汚泥濃度を計算する数学モデルシミーレー
ションを使用し曝気槽101についてはこの数学モデル
にf1?ISな高次おくれモデルを用い、また沈澱池1
03については1次おくれモデルを用いる。−1そして
シミュレーターにより行う引抜時間帯の探索が多大の場
合数とならないよう、ある基準時刻の近傍時刻内でのみ
探索を行うこととし、まずその基準時刻の設定方法を与
える、そしてその探索は、曝気槽MLSSの日毎の“′
短期目標値”とシミュレーションの計X 値との1日分
の偏差2乗和を指標としてこの最小となる場合を選択す
る方法で行う。この”短期目標値″は、前日のMLSS
計算値の平均値と1ケ月またはそれ以上にわたって固定
の6長期目標値″′との偏差を前日の°′短期目標値”
に加えて毎回修正を施していくことによって得る。そし
て、上記数学モデルを式(1)〜式(5)に示す。The calculation control circuit 116 is configured to perform the following calculations. That is, in such a sewage treatment system, there is a characteristic that the integral of the excess sludge flow area is related to the response of the MLSS value, and if the flow rate is kept constant, the MLSS value can be controlled by the drawing time. In order to optimally set the time period for this withdrawal throughout the day, a mathematical model simulation is used to calculate the sludge concentration at the outlet of the aeration tank and settling tank.For the aeration tank 101, f1? Using the IS higher-order delay model, and settling pond 1
For 03, a first-order lag model is used. -1 Then, in order to avoid a large number of searches for extraction time periods performed by the simulator, the search will be performed only within the vicinity of a certain reference time. First, a method for setting the reference time will be given, and the search will be performed as follows: Daily "' of aeration tank MLSS
This is done by using the sum of squared deviations for one day between the "short-term target value" and the total X value of the simulation as an index, and selecting the minimum case.This "short-term target value"
The deviation between the average calculated value and the long-term target value, which is fixed for one month or more, is calculated as the previous day's short-term target value.
It is obtained by making corrections each time in addition to . The above mathematical model is shown in equations (1) to (5).
すなわち曝気槽モデルシーミレージョンについては、
孔=(Ql・Xl−1−QR−XR)/(Ql−I−Q
R) ・・・・・・・・・(1)であり、1だ
沈澱池モデルシュミレーションはX5−(Q1+QR)
・XN/(QR−+−QW) ・・・・・・
・・・・・・(4)とする。In other words, for the aeration tank model sea millage, hole = (Ql・Xl-1-QR-XR)/(Ql-I-Q
R) ・・・・・・・・・(1), 1 sedimentation pond model simulation is X5-(Q1+QR)
・XN/(QR-+-QW) ・・・・・・
......(4).
ここで、
孔は曝気上り入口MLSS濃度 CmVL]
X1は流入下水中ss濃度 Cwt)XRは
返送汚泥濃度 C7n9/l]Xn(
n=1.2.3・・・N)は曝気槽を1次おくれのn段
結合(高次おくれとした場合の、
各段高口のMu、889度 Cmy/1〕X8は2.最
終沈澱光流入汚泥の、下降開始時仮想濃度
Cmf/l〕Q1は、流入下水流量
b′/h〕QRは、返送汚泥流量
価シh〕Qwは、余剰汚泥流量 〔
m/h〕TAば、曝気槽の時間おくれ定数 〔h
〕T8は、最終沈澱池の時定数 [hla、
l)は定数
とする。Here, the hole is the aeration inlet MLSS concentration CmVL]
X1 is the ss concentration in influent sewage Cwt)XR is the return sludge concentration C7n9/l]Xn(
n = 1.2.3...N) is the n-stage combination of the aeration tank with a first delay (if the aeration tank is set as a higher order delay, Mu of the high mouth of each stage is 889 degrees Cmy/1]X8 is 2. Final Virtual concentration of precipitated light inflow sludge at the start of descent
Cmf/l〕Q1 is the inflow sewage flow rate
b'/h] QR is the return sludge flow rate
Qw is the excess sludge flow rate [
m/h] TA, time delay constant of aeration tank [h
]T8 is the time constant of the final settling tank [hla,
l) is a constant.
一方、最適引抜時間帯探索のだめの基準時刻はつぎのよ
うにして与える。すなわち、今、処理系のデータから、
通常晴天時における流入下水流量が第3図の如きパター
ンで変化することおよび第3図中OBに示す如く流量が
1日のうち最小の極小値をとる時刻を1日1回の引抜時
間帯の停止時刻にほぼ一致させ、また第3図中のAに示
す如く流量が鞍形に凹んだ時刻を引抜開始の時刻にほぼ
一致するように基準時刻を定める。引抜停止時刻を流入
下水流量の最小極小点に対応させるのは、この時刻に最
もMLS S希釈効果が小さくなりMLSS値が極大と
なるのですでにその前から汚泥引抜を開始し、極大時刻
にその引抜きの積分された効果が最大となるよう、すな
わちMLSSピークを最も抑えられるようにするためで
ある。つまり、引抜開始・停止時刻と流、人下水流知゛
との関係はすでに過去の実績からほぼきまっている流入
下水流量のパターンから、第3図中におけるAとBの時
刻をそれぞれ基準引抜開始時刻、基準引抜停止時刻とし
て、この前後1〜4時間の範囲内で開始と停止の時刻を
1時間刻みでずらし、前記数学モデルで1日の各時刻の
MLS Sを計算し、最適な開始と停止の時刻を選択す
る。とれにより基準の開始から停止までの引抜時間帯よ
りも一層適切な引抜時間帯を与えることができる。これ
は、1日24時間の可能な総ての引抜開始・停止時刻の
組合せについて探索を行うのにくらべてけるかに場合の
数が少なく、演算が容易となる。そして、数学モデルお
よび予測の実際との誤差が、制御効果に及ぼす悪影響を
考慮してフィードバック要素を盛り込みMLSSの本当
の目標値である゛′長期目標値″と、前日の運転の結果
得られたMLS S平均価の偏差を、前日の、計算に使
用するための°′短期目標値″′に加えて当日のパ短期
目標値”とし、当日の引抜時間帯はこれをもとに演算し
、出力するようにする。そして、このようにしてMLS
S平均値を長期目標値から外れないよう制御する。On the other hand, the reference time for searching for the optimum extraction time slot is given as follows. In other words, now from the processing system data,
The flow rate of inflowing sewage under normal sunny weather changes in the pattern shown in Figure 3, and the time when the flow rate takes the lowest minimum value of the day as shown in OB in Figure 3 is determined during the drawing time once a day. The reference time is set so that it almost coincides with the stop time, and the time when the flow rate becomes saddle-shaped as shown at A in FIG. 3 almost coincides with the time when drawing starts. The reason why the extraction stop time is made to correspond to the minimum point of the inflowing sewage flow rate is because at this time the MLSS dilution effect becomes the smallest and the MLSS value reaches its maximum, so sludge extraction is already started before that time, and the sludge is removed at the maximum time. This is to maximize the integrated effect of , that is, to minimize the MLSS peak. In other words, the relationship between the extraction start and stop times and the flow and human sewage flow knowledge is based on the pattern of the inflow sewage flow rate, which has already been determined based on past results, and the times A and B in Figure 3 are used as the reference extraction start times, respectively. , as the reference withdrawal stop time, shift the start and stop times in 1-hour increments within a range of 1 to 4 hours before and after this, calculate the MLS S at each time of the day using the mathematical model, and find the optimal start and stop time. Select the time. This allows a more appropriate drawing time period than the standard drawing time period from start to stop. This reduces the number of cases compared to searching for all possible combinations of extraction start and stop times for 24 hours a day, making calculations easier. Then, in consideration of the negative impact that errors between the mathematical model and the actual predictions have on the control effect, feedback elements are incorporated to determine the true target value of the MLSS, the ``long-term target value,'' and the results obtained from the previous day's operation. The deviation of the MLS S average price is added to the previous day's short-term target value for use in calculations, plus the current day's short-term target value, and the day's withdrawal time is calculated based on this. Then output MLS like this.
Control the S average value so that it does not deviate from the long-term target value.
なお、本発明は上記の一実施例には限定されず、たとえ
ばMLSSの目標値偏差の1日分の2乗和を最適化の指
標値とせず、偏差絶対値の和としてもよい。また、シミ
ーレーションのモデルを曝気槽は高次おくれとし、この
時間おくれ定数を固定したが、この定数を曝気槽体積と
流入下水十返送汚泥の流量の商としてもよい。その場合
には多段完全混合モデルとなる。また、この一実施例で
は返送・余剰ともに共通のポンプを用いているが、別々
のボン7″を用いて返送汚泥ポンプ流量は一定にして余
剰汚泥用ポンプで制御する場合にも適用しうる。Note that the present invention is not limited to the above embodiment, and for example, instead of using the sum of squares of the target value deviation of MLSS for one day as the optimization index value, the sum of absolute deviation values may be used. Furthermore, in the simulation model, the aeration tank is assumed to have a high-order lag, and this time lag constant is fixed, but this constant may be set as the quotient of the aeration tank volume and the flow rate of inflowing sewage and returned sludge. In that case, it becomes a multi-stage complete mixture model. Further, in this embodiment, a common pump is used for both the return and surplus sludge, but it can also be applied to a case where separate pumps 7'' are used to keep the flow rate of the return sludge pump constant and controlled by the surplus sludge pump.
上述の如く本発明は流入する下水と活性汚泥とを混合曝
気し下水中に含まれる有機を活性汚泥中に吸引させると
ともにこの活性汚泥の増殖をおこなう曝気槽と、この曝
気槽から送られてぐる下水と活性汚泥の混合液を固形成
分と水とに沈殿分離する沈殿池とこの沈殿池で沈殿した
活性汚泥を含む汚泥を上記曝気槽に返送するとともにこ
の汚泥の一部を余剰汚泥として系外に引掻くことができ
る汚泥返送引抜機構とを備えたものにおいて、上記曝気
槽中の混合液中の浮遊固形物濃度を検出する浮遊固形物
濃度検出器と、前日までに流入した下水の1日の流量変
化特性および1日の流入下水浮遊固形物負荷の変化特性
をパターン化して記憶するとともにこのパターン信号を
出力するツクターン設定回路と、上記曝気槽の流入下水
量、流入下水の浮遊固形物負荷および返送汚泥量に対す
る混合液中の浮遊固形物濃度の変化特性があらかじめ記
憶されているとともに上記浮遊固形物濃度検出器および
i、4タ一ン設定回路からの信号が入力されこれら信号
にもとづいて上記曝気槽内の混合液中の浮遊固形物濃度
の目標値に対する偏差の1日の積算値を最小とするに必
要々余剰汚泥の引抜量、引抜開始時刻および引抜停止時
刻を演算しこの演算結果にもとづいて上記汚泥返送引抜
機構を制御する演算制御回路とを具備したものである。As described above, the present invention includes an aeration tank that mixes and aerates inflowing sewage and activated sludge, sucks organics contained in the sewage into the activated sludge, and multiplies this activated sludge, and an aeration tank that mixes and aerates incoming sewage and activated sludge. A settling tank separates the mixed liquid of sewage and activated sludge into solid components and water by precipitation, and the sludge containing the activated sludge precipitated in this settling tank is returned to the aeration tank, and a portion of this sludge is removed from the system as surplus sludge. A device equipped with a sludge return and extraction mechanism that can scrape the sludge, and a suspended solids concentration detector that detects the suspended solids concentration in the mixed liquid in the aeration tank, and a suspended solids concentration detector that detects the suspended solids concentration in the mixed liquid in the aeration tank, and a suspended solids concentration detector that detects the suspended solids concentration in the mixed liquid in the aeration tank, A setting circuit that stores a pattern of flow rate change characteristics and daily change characteristics of the inflow sewage suspended solids load and outputs this pattern signal, and the inflow sewage amount of the aeration tank and the inflow sewage suspended solids load. The characteristics of changes in the concentration of suspended solids in the mixed liquid with respect to the amount of returned sludge are stored in advance, and signals from the suspended solids concentration detector and the i, 4-tap setting circuit are input, and based on these signals, In order to minimize the daily cumulative value of the deviation from the target value of the suspended solids concentration in the mixed liquid in the aeration tank, the amount of excess sludge to be extracted, the extraction start time, and the extraction stop time are calculated, and the calculation results are calculated. The apparatus is equipped with an arithmetic control circuit for controlling the sludge return/extraction mechanism based on the above.
したがって余剰汚泥を引抜が前日−までの流入下水量、
下水中のSS負荷の変動パターンに対応して制御される
ので曝気槽中のMLSS 濃度を安定して自動的に制御
できる等その効果は犬である。Therefore, the amount of inflow sewage until the day before the extraction of excess sludge is
The MLSS concentration in the aeration tank can be stably and automatically controlled because it is controlled in accordance with the fluctuating pattern of the SS load in the sewage, and its effects are outstanding.
第1図は従来の下水処理装置の概略構成図である。第2
図は本発明の一実施例の概略構成図である。甘だ第3図
は流入下水量の日毎の変イヒ・ぐターンを示す線図、第
4図は流入SS角荷の日毎の変化・セターンを示す線図
である。
10ノ・・・曝気槽、103・・・沈殿池、106・・
・ボンフ0、lθ7・・・返送管、108・・・引抜管
、110・・・M′LSS検出器、 113・・・ie
ターン設定回路、116・・・演算制御回路。
出願人代理人 弁理士 鈴 江 武 彦第1図
第2図
第3図
第4図FIG. 1 is a schematic diagram of a conventional sewage treatment device. Second
The figure is a schematic configuration diagram of an embodiment of the present invention. Amada Figure 3 is a line diagram showing the daily changes in the amount of inflow sewage, and Figure 4 is a line diagram showing the daily changes and set turns in the inflow SS square load. 10... Aeration tank, 103... Sedimentation tank, 106...
・Bonfu 0, lθ7...Return pipe, 108...Dropout pipe, 110...M'LSS detector, 113...ie
Turn setting circuit, 116... Arithmetic control circuit. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
の曝気槽から送られて来る下水と活性汚泥の混合液を固
形成分と水とに沈澱分離する沈澱池と、この沈澱池で沈
澱した汚泥を上記曝気槽に返送するとともにこの汚泥の
一部を余剰汚泥として系外に引抜く汚泥返送引抜機構と
を備えたものにおいて、上記曝気槽中の混合液中の浮遊
固形物濃度を検出する浮遊固形物濃度検出器と、前日1
でに流入した下水の1日の流量変化特性および1日の流
入下水浮遊固形物負荷の変化特性を・!ターン化して記
憶するとともにこのパターン信号を出力する/(ター/
設定回路と、上記曝気槽の流入下水量、流入下水の浮遊
固形物負荷および返送汚泥量に対する混合液中の浮遊固
形物濃度の変化特性があらかじめ記t′F、5されてい
るとともに上記浮遊固形物υ度検出器および・平ターン
設定回路からの信号が入力されこれら信号にもとづいて
上記曝気槽内の混合液中の浮遊固形物濃度の目標値に対
する偏差の1日の積算値を最小とするに必要な余剰汚泥
の引抜量、引抜開始時刻および引抜停止時刻を演算しこ
の(lt算結果にもとづいて上記汚泥返送引抜機構を制
御する演算制御回路とを具備したことを特徴とする下水
処理装置。an aeration tank that mixes and aerates inflowing sewage and activated sludge; a settling tank that separates the mixed liquid of sewage and activated sludge sent from the aeration tank into solid components and water; Detecting the concentration of suspended solids in the mixed liquid in the aeration tank, in a device equipped with a sludge return/extraction mechanism that returns sludge to the aeration tank and pulls a portion of this sludge out of the system as surplus sludge. Suspended solids concentration detector and the previous day 1
The daily flow rate change characteristics of the inflowing sewage and the daily change characteristics of the inflowing sewage suspended solids load. This pattern signal is output as a pattern signal.
The change characteristics of the suspended solids concentration in the mixed liquid with respect to the setting circuit, the amount of sewage flowing into the aeration tank, the suspended solids load of the inflowing sewage, and the amount of returned sludge are recorded in advance, and the above suspended solids are Signals from the solid matter temperature detector and flat turn setting circuit are input, and based on these signals, the daily integrated value of the deviation from the target value of the suspended solids concentration in the mixed liquid in the aeration tank is minimized. A sewage treatment device comprising: an arithmetic control circuit that calculates the amount of excess sludge to be drawn, a drawing start time, and a drawing stop time, and controls the sludge return and drawing mechanism based on the calculation results. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57171352A JPS5962393A (en) | 1982-09-30 | 1982-09-30 | Sewage treating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57171352A JPS5962393A (en) | 1982-09-30 | 1982-09-30 | Sewage treating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5962393A true JPS5962393A (en) | 1984-04-09 |
Family
ID=15921605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57171352A Pending JPS5962393A (en) | 1982-09-30 | 1982-09-30 | Sewage treating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5962393A (en) |
-
1982
- 1982-09-30 JP JP57171352A patent/JPS5962393A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2531764A1 (en) | Biological water treatment process and plant using activated sludge with regulation of aeration | |
KR20080074857A (en) | Denitrification process and system | |
CN110436609A (en) | A kind of Intellectualized sewage water processing aeration control method with self-learning function | |
JPS5962393A (en) | Sewage treating device | |
CN111732187A (en) | Intelligent control method for sewage treatment water quality based on sludge reflux ratio | |
JPS6028560B2 (en) | Control method for activated sludge water treatment equipment | |
JPS6328679B2 (en) | ||
JPH11244889A (en) | Biological phosphorous removing device | |
JPH0147238B2 (en) | ||
JP2018187620A (en) | Operation support apparatus and operation support method for sewage treatment plant using activated sludge method | |
JPS5876185A (en) | System for controlling amount of mlss in active sludge process | |
JPS5861889A (en) | Controlling method for sewage treatment | |
JPS56115687A (en) | Optimum operating method for sewage treatment system by activated sludge process | |
SU810271A1 (en) | Method of automatic control of discharging magnetite from deslimer | |
JPH07275882A (en) | Sewage treatment control apparatus | |
JPS588314B2 (en) | Excess sludge extraction control system for sewage treatment plants | |
CN115373256A (en) | Dynamic adjustment method and device for carbon source adding, electronic equipment and medium | |
SU761988A1 (en) | Apparatus for controlling the level and content ration of the mixture of two flows | |
JPH07121400B2 (en) | Return sludge amount control device | |
LYNGGAARD-JENSEN | REAL TIME CONTROL OF SECONDARY CLARIFIERS–ENHANCING HYDRAULIC CAPACITIES DURING RAIN | |
JPS62269799A (en) | Control device for amount of return sludge | |
JPS5597291A (en) | Control of returned sludge amount | |
SU1328358A1 (en) | Automated device for preparing solutions of hydrochloric acid in production of gelatin | |
JPS6316998B2 (en) | ||
JPH1071397A (en) | Control of excessive sludge extracting time |