JPS59221007A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPS59221007A
JPS59221007A JP9485183A JP9485183A JPS59221007A JP S59221007 A JPS59221007 A JP S59221007A JP 9485183 A JP9485183 A JP 9485183A JP 9485183 A JP9485183 A JP 9485183A JP S59221007 A JPS59221007 A JP S59221007A
Authority
JP
Japan
Prior art keywords
dielectric
antenna
microstrip
line
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9485183A
Other languages
Japanese (ja)
Inventor
Nobuo Nakajima
信生 中嶋
Toshikazu Hori
俊和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9485183A priority Critical patent/JPS59221007A/en
Publication of JPS59221007A publication Critical patent/JPS59221007A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a microstrip antenna which can be used outdoors for a long period of time with excellent weather resistance and electrical characteristics, by forming previously a radiation element and a microstrip line on a dielectric film, etc. and then laminating them on a dielectric substrate. CONSTITUTION:A radiation element 7 and a microstrip line 10 are formed on a dielectric film or a dielectric plate 13. This plate 13 is adhered to a dielectric substrate 8 so that the side where the element 7 and line 10 are formed touches the substrate 8. Finally a feed terminal 11 is connected to the line 10 to obtain a microstrip antenna. In such a constitution of this antenna, both the element 7 and the line 10 are completely covered with a dielectric substance in an airtight structure and never exposed to the open air. Thus, the corrosion due to oxidation, etc. is eliminated and the weather resistance of the antenna is improved.

Description

【発明の詳細な説明】 本発明は耐蝕性、耐候性に優れたマイクロストリップア
ンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microstrip antenna with excellent corrosion resistance and weather resistance.

従来マイクロストリップアンテナは第1図に示すように
構成されていた。同図1は放射素子、2は誘電体基板、
3は金属板、4はマイクロストリップ線路、5は給電部
、6は給電ケーブルである。同図のマイクロストリップ
アンテナによって電波を放射する場合の動作原理は以下
の通りである。
A conventional microstrip antenna was constructed as shown in FIG. 1 is a radiating element, 2 is a dielectric substrate,
3 is a metal plate, 4 is a microstrip line, 5 is a power supply section, and 6 is a power supply cable. The operating principle when radio waves are radiated by the microstrip antenna shown in the figure is as follows.

給電ケーブル6よシ給電された電波は4のマイクロスト
リップ線路上を伝わって分岐部で次次と分配されて、放
射素子1に到達し、放射素子1から電波は放射される。
The radio waves fed through the power supply cable 6 are transmitted on the microstrip line 4 and are successively distributed at the branch portions, reach the radiating element 1, and the radio waves are radiated from the radiating element 1.

放射素子の数や配置、励振振幅分布等によって、任意の
放射パターンを得ることができる。
Any radiation pattern can be obtained by changing the number and arrangement of radiation elements, excitation amplitude distribution, etc.

マイクロストリップアンテナを構成する材料には、一般
に銅張積層板が用いられ、多層化されたグラスファイバ
ー繊維をエポキシ又はテフロン等を主成分とする誘電体
材料で固め、その両側に銅箔を接着したものが多用され
ている。
Copper-clad laminates are generally used to construct microstrip antennas, and are made by hardening multilayered glass fibers with a dielectric material whose main component is epoxy or Teflon, and then bonding copper foil to both sides. Things are used a lot.

放射素子及びマイクロストリップ線路は一般にフォトエ
ツチング等によシ形成される。
The radiating element and the microstrip line are generally formed by photoetching or the like.

第1図に示す従来のマイクロストリップアンテナは腐蝕
等周囲の環境条件に弱いことが欠点であシ、屋外で使用
されるのが大半であるアンテナにとっては大きな問題で
あった。
The conventional microstrip antenna shown in FIG. 1 has a disadvantage in that it is susceptible to surrounding environmental conditions such as corrosion, which is a major problem for antennas that are mostly used outdoors.

具体的には、通常の銅張積層板では厚さが約30μmの
銅箔が用いられておυ、屋外使用時における日照、温度
変化、降雨等によって、酸化やはく離等の劣化が急速に
進む。たとえレドーム等によりアンテナを覆って降雨等
の直接の影響を避けたとしても、温度変化や結露の影響
等で劣化が進むことは避けられない。銅箔を厚くすれば
、酸化等による形状の変化の度合は小さくなるが、逆に
フォトエツチング等の加工は困難となシ、又はく離等の
劣化はやはシ避けられない。
Specifically, ordinary copper-clad laminates use copper foil with a thickness of approximately 30 μm, and deterioration such as oxidation and peeling rapidly progresses due to sunlight, temperature changes, rain, etc. when used outdoors. . Even if the antenna is covered with a radome or the like to avoid the direct effects of rain, etc., deterioration cannot be avoided due to temperature changes, dew condensation, etc. If the copper foil is made thicker, the degree of change in shape due to oxidation etc. will be reduced, but on the other hand, processing such as photoetching will be difficult, and deterioration such as peeling will be inevitable.

本発明はこれらの欠点を除去するため、放射素子やマイ
クロス) IJツブ線路が誘電体板の間にはさまれるよ
うな構造のマイクロストリップアンテナに関するもので
、以下図面について詳細に説明する。
In order to eliminate these drawbacks, the present invention relates to a microstrip antenna having a structure in which a radiating element and a microstrip (IJ) tube line are sandwiched between dielectric plates, and will be described in detail below with reference to the drawings.

第2図は本発明の実施例であって、7は放射素子、8は
誘電体基板、9は金属板、10はマイクロストリップ線
路、11は給電端子、12は給電ケーブル、13は誘電
体膜又は誘電体板である。
FIG. 2 shows an embodiment of the present invention, in which 7 is a radiating element, 8 is a dielectric substrate, 9 is a metal plate, 10 is a microstrip line, 11 is a power supply terminal, 12 is a power supply cable, and 13 is a dielectric film. Or a dielectric plate.

放射素子7およびマイクロストリップ線路10は誘電体
膜又は誘電板13上に形成されている。この放射素子7
、マイクロストリップ線路10、誘電体膜13で構成さ
れる部分は、例えば一般に用いられている可とり性のあ
るフレキシブルプリント基板等を用いて作ることができ
る。フレキシブルプリント基板は薄くて強靭なポリイミ
ドフィルムや単層のグラスファイバー基板に銅箔等を接
着して作られている。このフレキシブルプリント基板に
フォトエツチング等を施すことによシ放射素子7および
マイクロストリップ線路10を形成すればよい。
The radiating element 7 and the microstrip line 10 are formed on a dielectric film or a dielectric plate 13. This radiating element 7
, the microstrip line 10, and the dielectric film 13 can be made using, for example, a commonly used flexible printed circuit board. Flexible printed circuit boards are made by bonding copper foil, etc., to a thin and strong polyimide film or single-layer glass fiber board. The radiating element 7 and the microstrip line 10 may be formed by photoetching or the like on this flexible printed circuit board.

放射素子7とマイクロストリップ線路10を形成した誘
電体膜13と誘電体板8とを接着する必要があるが、エ
ポキシ系等の接着剤を利用するか、或いはプリプレグと
呼ばれる、ガラス繊維をエポキシ系材料にがん浸させた
シートを間にはさんで熱圧着することによって容易に行
うことができる。最後に給電端子11とマイクロストリ
ップ線路1oを接続するとアンテナは完成する。
It is necessary to bond the dielectric film 13 on which the radiating element 7 and the microstrip line 10 are formed to the dielectric plate 8, but it is necessary to use an epoxy-based adhesive or to bond glass fibers called prepreg to an epoxy-based adhesive. This can be easily done by sandwiching a sheet soaked in the material and heat-compression bonding. Finally, the antenna is completed by connecting the feed terminal 11 and the microstrip line 1o.

本発明によるマイクロストリップアンテナの特徴を以下
に示す。
The features of the microstrip antenna according to the present invention are shown below.

(1)放射素子及びマイクロストリップ線路部分が完全
に誘電体で覆われ気密構造になって外気にふれることが
ないため、酸化等による腐蝕がなく耐候性に優れている
(1) Since the radiating element and the microstrip line portion are completely covered with a dielectric material and have an airtight structure and are not exposed to the outside air, there is no corrosion due to oxidation, etc., and the device has excellent weather resistance.

(11)銅箔を厚くして耐蝕性を増す方法に比べ、本発
明では放射素子やマイクロス) IJツブ線路を薄くで
きるのでエツチングが容易な利点がある。また銅箔が厚
い場合温度変化による誘電体基板と銅箔の膨張率の違い
がはく離を促進するが、薄ければ膨張率の差による応力
も小さいためはく離の可能性は殆どない。
(11) Compared to the method of increasing the corrosion resistance by thickening the copper foil, the present invention has the advantage that etching is easy because the radiating element and the IJ tube line can be made thinner. Furthermore, if the copper foil is thick, the difference in expansion coefficients between the dielectric substrate and the copper foil due to temperature changes will promote delamination, but if the copper foil is thin, the stress caused by the difference in expansion coefficients will be small, so there is little possibility of delamination.

(ti)  誘電体膜又は誘電体板で放射素子やマイク
ロストリップ線路を覆っているため、はく離は一層起こ
シ難くなっている。特に、誘電体膜又は誘電体板と誘電
体基板に同じ材料を用いればその接着力は非常に強固で
あり、はく離の恐れは一層少ない。
(ti) Since the radiating element and the microstrip line are covered with a dielectric film or a dielectric plate, delamination is more difficult to occur. In particular, if the same material is used for the dielectric film or the dielectric plate and the dielectric substrate, the adhesive force will be very strong and there will be less risk of peeling.

(iV)  特−に大きなアンテナを作ろうとする場合
、第1図に示すような基板を用いると大きなエツチング
槽が必要となシ、かつ基板も高価であるため経済性が悪
くしかも歩留シの良否が経済性に大きく影響する。しか
し本発明のようにフレキシブルプリント基板を用いれば
、丸めてエツチングすることにより、大きなエツチング
槽は必要なく、かつフレキシブルプリント基板自身も安
価であるため歩留シの良否はあまシ経済性に影響しない
(iv) When trying to make a particularly large antenna, using a substrate like the one shown in Figure 1 requires a large etching bath, and the substrate is expensive, making it uneconomical and reducing yield. Quality has a big impact on economic efficiency. However, if a flexible printed circuit board is used as in the present invention, a large etching bath is not required because it is rolled up and etched, and the flexible printed circuit board itself is inexpensive, so the quality of the yield does not affect economic efficiency. .

第3図は特許請求の範囲(2)項の発明の実施例であっ
て14は放射素子、15は誘電体基板、16は金属板、
17はマイクロス) IJツブ線路、18は給電部、1
9は給電ケーブル、2oは誘電体膜、21が高導電率を
有する金属のメッキ部分である。
FIG. 3 shows an embodiment of the invention according to claim (2), in which 14 is a radiating element, 15 is a dielectric substrate, 16 is a metal plate,
17 is Micros) IJ tube line, 18 is power feeding section, 1
9 is a power supply cable, 2o is a dielectric film, and 21 is a plated portion of metal having high conductivity.

放射素子14やマイクロストリップ線路17に耐蝕性の
高いステンレスやニッケル等の金属箔又は板を用いるこ
とは耐候性を万全とする上で非常に有効である。しかし
これら耐候性ある金属は導電率が銅に比べ低いためマイ
クロストリツプ線路の伝送損失が増大し、アンテナの利
得を低下させる欠点がある。
It is very effective to use a highly corrosion-resistant metal foil or plate made of stainless steel, nickel, or the like for the radiating element 14 and the microstrip line 17 in order to ensure complete weather resistance. However, since these weather-resistant metals have lower conductivity than copper, they have the drawback of increasing transmission loss in the microstrip line and reducing the gain of the antenna.

マイクロス) IJツブ線路17における伝送損失は誘
電体基板15の誘電損、及び金属板16とマイクロスト
リップ線路17の互いに向き合う面の導電率によって決
まる。
The transmission loss in the IJ tube line 17 is determined by the dielectric loss of the dielectric substrate 15 and the conductivity of the surfaces of the metal plate 16 and the microstrip line 17 that face each other.

従って金属板16については、導電率の低い材料を用い
ても、これと向き合う面のマイクロストリップ線路17
に高導電率の材料、例えば金銀や銅等をメッキすればそ
の伝送損失を小さくすることができる。特に金銀を用い
れば耐蝕性の面で良好な結果を得られる。
Therefore, even if a material with low conductivity is used for the metal plate 16, the microstrip line 17 on the surface facing it
The transmission loss can be reduced by plating a material with high conductivity, such as gold, silver, or copper. In particular, if gold and silver are used, good results can be obtained in terms of corrosion resistance.

このように特許請求の範囲(2)項記載の発明は、・特
許請求の範囲(1)項記載の発明の作用効果を有するほ
か、耐候性を更に向上させることができる。
As described above, the invention described in claim (2) has the effects of the invention described in claim (1), and can further improve weather resistance.

また、従来の第1図に示すようなマイクロストリップア
ンテナを作るとき、耐候性の向上のため放射素子1やマ
イクロストリップ線路4の材料としてステンレス等を用
い、これに銀中金等の耐蝕性が高く導電率も高い金属を
メッキしようとした場合、アンテナの全表面にあたる面
積のステンレス板等にメッキを施してから該ステンレス
板等を誘電体基板に接着し然るのちエツチングを行う必
要があるためメッキ部分が多くて経済的でなく、又、メ
ッキ表面の誘電体基板に対する接着性はあまシ高くなく
、はく離の可能性が高い欠点がある。
In addition, when making a conventional microstrip antenna as shown in Fig. 1, stainless steel or the like is used as the material for the radiating element 1 and the microstrip line 4 to improve weather resistance, and corrosion-resistant material such as silver-in-place gold is used as the material for the radiating element 1 and the microstrip line 4. When attempting to plate a metal with high conductivity, it is necessary to plate a stainless steel plate, etc. in an area equivalent to the entire surface of the antenna, then bond the stainless steel plate, etc. to a dielectric substrate, and then perform etching. There are many plated parts, making it uneconomical, and the adhesion of the plated surface to the dielectric substrate is not very high, resulting in a high possibility of peeling.

しかしながら前述した本発明←法によれば、誘電体膜2
0上に放射素子14、マ・fクロストリップ17をエツ
チングによシ形成したのちメッキを施せばよいからメッ
キ部分は、はるかに少なくなシ、経済的であるうえ、誘
電体膜の存在にょシ、接着性は強固で、はく離の可能性
も低い。
However, according to the method of the present invention described above, the dielectric film 2
Since the radiating element 14 and macro strip 17 can be formed on the 0 by etching and then plated, the number of plated parts is much smaller, which is economical, and the existence of the dielectric film is also less expensive. , the adhesion is strong and the possibility of peeling is low.

以上説明したように、本発明は誘電体膜等の上に放射素
子とマイクロストリップ線路をあらかじめ形成して誘電
体基板に積層したものであるため経済性や電気特性を損
わずに耐候性を向上させ、屋外で長期間の使用が可能で
かつ電気特性の優れたマイクロストリップアンテナを実
現することができる。
As explained above, the present invention has a radiating element and a microstrip line formed in advance on a dielectric film etc. and laminated on a dielectric substrate, so weather resistance can be achieved without sacrificing economic efficiency or electrical characteristics. It is possible to realize a microstrip antenna that can be used outdoors for a long time and has excellent electrical characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

クロストリップアンテナを示す図、第3図は特許請求の
範囲第(2)項の実施例のマイクロストリップアンテナ
の断面図である。 1.7.14°°°放射素子、2.8.15・・・誘電
体基板、3、?、16・・・金属板、4.10.17・
・・マイクロストリップ線路、5.11.18・・・給
電端子、6.12.19・・・給電ケーブル、号、2o
・°°誘電体膜又は板、21・・・メッキ部分 代理人 弁理士  本 間   崇 第1図
FIG. 3 is a cross-sectional view of the microstrip antenna according to the embodiment of claim (2). 1.7.14°°°radiating element, 2.8.15...dielectric substrate, 3,? , 16... metal plate, 4.10.17.
...Microstrip line, 5.11.18...Power supply terminal, 6.12.19...Power supply cable, number, 2o
・°°Dielectric film or plate, 21...Plating part agent Patent attorney Takashi Honma Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)−面に放射素子を形成した誘電体膜と誘電体基板
とを、前記誘電体膜の前記放射素子を形成した面が誘電
体基板に接するごとく積層して成るマイクロストリップ
アンテナ。
(1) A microstrip antenna formed by laminating a dielectric film with a radiating element formed on the - side and a dielectric substrate such that the side of the dielectric film on which the radiating element is formed is in contact with the dielectric substrate.
(2)−面に放射素子を形成しかつ該放射素子を該放射
素子よシ導電率の高い金属で被覆した誘電体膜と誘電体
基板とを、前記誘電体膜の前記放射素子を形成した面が
前記誘電体基板に接するごとく積層して成るマイクロス
トリップアンテナ。
(2) A dielectric film and a dielectric substrate having a radiating element formed thereon and coated with a metal having a higher conductivity than the radiating element; A microstrip antenna formed by stacking layers such that their surfaces are in contact with the dielectric substrate.
JP9485183A 1983-05-31 1983-05-31 Microstrip antenna Pending JPS59221007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9485183A JPS59221007A (en) 1983-05-31 1983-05-31 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9485183A JPS59221007A (en) 1983-05-31 1983-05-31 Microstrip antenna

Publications (1)

Publication Number Publication Date
JPS59221007A true JPS59221007A (en) 1984-12-12

Family

ID=14121526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9485183A Pending JPS59221007A (en) 1983-05-31 1983-05-31 Microstrip antenna

Country Status (1)

Country Link
JP (1) JPS59221007A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265503A (en) * 1988-08-31 1990-03-06 Yamatake Honeywell Co Ltd Microstrip antenna
US5155493A (en) * 1990-08-28 1992-10-13 The United States Of America As Represented By The Secretary Of The Air Force Tape type microstrip patch antenna
US5392053A (en) * 1988-10-19 1995-02-21 Toyo Communication Equipment Co., Ltd. Array antenna and system
US5477231A (en) * 1993-02-04 1995-12-19 Dassault Electronique Microstrip antenna device, particularly for a UHF receiver
US5798734A (en) * 1995-10-06 1998-08-25 Mitsubishi Denki Kabushiki Kaisha Antenna apparatus, method of manufacturing same and method of designing same
US5923295A (en) * 1995-12-19 1999-07-13 Mitsumi Electric Co., Ltd. Circular polarization microstrip line antenna power supply and receiver loading the microstrip line antenna
US6384785B1 (en) 1995-05-29 2002-05-07 Nippon Telegraph And Telephone Corporation Heterogeneous multi-lamination microstrip antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135243A (en) * 1976-03-12 1977-11-12 Ball Corp Radio frequency antenna device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135243A (en) * 1976-03-12 1977-11-12 Ball Corp Radio frequency antenna device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265503A (en) * 1988-08-31 1990-03-06 Yamatake Honeywell Co Ltd Microstrip antenna
US5392053A (en) * 1988-10-19 1995-02-21 Toyo Communication Equipment Co., Ltd. Array antenna and system
US5155493A (en) * 1990-08-28 1992-10-13 The United States Of America As Represented By The Secretary Of The Air Force Tape type microstrip patch antenna
US5477231A (en) * 1993-02-04 1995-12-19 Dassault Electronique Microstrip antenna device, particularly for a UHF receiver
US6384785B1 (en) 1995-05-29 2002-05-07 Nippon Telegraph And Telephone Corporation Heterogeneous multi-lamination microstrip antenna
US5798734A (en) * 1995-10-06 1998-08-25 Mitsubishi Denki Kabushiki Kaisha Antenna apparatus, method of manufacturing same and method of designing same
US5923295A (en) * 1995-12-19 1999-07-13 Mitsumi Electric Co., Ltd. Circular polarization microstrip line antenna power supply and receiver loading the microstrip line antenna

Similar Documents

Publication Publication Date Title
US7907417B2 (en) Printed circuit board (PCB)with enhanced structural integrity
US4728962A (en) Microwave plane antenna
CN1720766B (en) Method for manufacturing flexible wiring circuit board
KR200455172Y1 (en) Multilayer Wiring Board
CN113330644B (en) Antenna module, communication device equipped with the antenna module, and method for manufacturing antenna module
KR102395081B1 (en) Thin film type antenna capable of one-side or double-side contact and method for manufacturing the same
US11051399B2 (en) Flexible printed circuit board
JPS59221007A (en) Microstrip antenna
JP2010114826A (en) Method of manufacturing waveguide slot antenna substrate
JPS63275204A (en) One body molded product of high frequency antenna substrate and its manufacture
GB2165700A (en) Microwave plane antenna
JPH037406A (en) Waveguide antenna
JP2006344887A (en) Printed-wiring board and manufacturing method therefor
JPS60216573A (en) Manufacture of flexible printed circuit board
JP4317101B2 (en) Printed circuit board
JPS60250703A (en) Microstrip line antenna
JPH10224008A (en) Method for manufacturing suspension substrate
JP3440362B2 (en) Flat antenna receiving plate
JPS61208903A (en) Print antenna
JPH11214916A (en) Antenna system and manufacture thereof
JPH05110325A (en) Antenna for mobile body communication
JPS58130605A (en) Microstrip antenna
JPS63275205A (en) One body molded product of antenna substrate for high frequency
JP2009130265A (en) Flexible printed wiring board, method of manufacturing the same, and electronic device
JPH0149205B2 (en)