JPH0149205B2 - - Google Patents

Info

Publication number
JPH0149205B2
JPH0149205B2 JP58117072A JP11707283A JPH0149205B2 JP H0149205 B2 JPH0149205 B2 JP H0149205B2 JP 58117072 A JP58117072 A JP 58117072A JP 11707283 A JP11707283 A JP 11707283A JP H0149205 B2 JPH0149205 B2 JP H0149205B2
Authority
JP
Japan
Prior art keywords
antenna
array antenna
microstrip array
dielectric
ground conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58117072A
Other languages
Japanese (ja)
Other versions
JPS6010805A (en
Inventor
Yoshiteru Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP11707283A priority Critical patent/JPS6010805A/en
Publication of JPS6010805A publication Critical patent/JPS6010805A/en
Publication of JPH0149205B2 publication Critical patent/JPH0149205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Description

【発明の詳細な説明】 この発明は、サンドイツチ構造体で作られるマ
イクロストリツプアレーアンテナに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microstrip array antenna made of a sandwich structure.

一般に薄形の大口径アンテナ方式としては、プ
リント化スロツトアレーアンテナ方式、マイクロ
ストリツプアレーアンテナ方式などがある。前者
は帯域が広くとれるなどの利点はあるが、構造的
に複雑であり製作が困難であつてあまり使用され
ない。これに反し、マイクロストリツプアレーア
ンテナは構造的に簡単であり、大形アンテナとし
て良く使用される。
Generally, thin, large-diameter antenna systems include a printed slot array antenna system and a microstrip array antenna system. The former has advantages such as a wide band, but is structurally complex and difficult to manufacture, so it is not often used. On the other hand, microstrip array antennas are structurally simple and are often used as large antennas.

このマイクロストリツプアレーアンテナの基本
的構造は第1図のように示される。
The basic structure of this microstrip array antenna is shown in FIG.

すなわち、このマイクロストリツプアレーアン
テナは誘電体から成る基板1の片面に金属の放射
素子2とその放射素子2を結ぶ給電線3が被着さ
れ、前記基板1のもう一方の面には全面にわたつ
て金属の地導体4を有する薄くて軽い構造になつ
ている。
That is, in this microstrip array antenna, a metal radiating element 2 and a feeder line 3 connecting the radiating element 2 are adhered to one side of a substrate 1 made of a dielectric material, and the other side of the substrate 1 is coated entirely. It has a thin and light structure with a metal ground conductor 4 throughout.

第2図はこのアンテナの実際例を示す図であ
る。
FIG. 2 is a diagram showing an actual example of this antenna.

図中、2は金、銀、銅など電気伝導度の極めて
高い金属箔から成る矩形状の放射素子、3は前記
放射素子2を電気的に連結する給電線、4は前記
放射素子2と同じく電気伝導度の極めて高い金属
箔から成る地導体、5はナイロン、GFRP(ガラ
ス繊維強化プラスチツク)あるいは高分子発泡材
といつた低誘電率を有する材料から成る誘電体コ
ア、6a,6bはGFRPあるいはアラミド繊維強
化プラスチツクのような誘電率、誘電体損失の小
さな材料から成り、前記誘電体コア5に接着され
た誘電体表皮であり、前記誘電体コア5と前記誘
電体表皮6a,6bが第1図に示した基板1を構
成する。
In the figure, 2 is a rectangular radiating element made of metal foil with extremely high electrical conductivity such as gold, silver, or copper, 3 is a feeder line that electrically connects the radiating element 2, and 4 is the same as the radiating element 2. A ground conductor made of metal foil with extremely high electrical conductivity; 5 a dielectric core made of a material with a low dielectric constant such as nylon, GFRP (glass fiber reinforced plastic), or polymeric foam; 6a and 6b a GFRP or The dielectric skin is made of a material with a small dielectric constant and dielectric loss, such as aramid fiber reinforced plastic, and is bonded to the dielectric core 5, and the dielectric core 5 and the dielectric skins 6a and 6b are the first The substrate 1 shown in the figure is constructed.

このアンテナにおいて、放射素子2の長さ(第
2図にAで示した)を使用周波数の波長の半分に
選定すると、放射素子2と地導体4との間で電磁
波が共振し、放射素子2の先端より電波が洩れ、
これが放射波となりアンテナとして動作する。
In this antenna, when the length of the radiating element 2 (indicated by A in Figure 2) is selected to be half the wavelength of the frequency used, electromagnetic waves resonate between the radiating element 2 and the ground conductor 4, and the radiating element 2 Radio waves leak from the tip of the
This becomes a radiation wave and operates as an antenna.

従来のマイクロストリツプアレーアンテナは、
以上のように構成されており、誘電体表皮6a,
6bの厚みや誘電体コア5の厚みは電気性能によ
り一義的に決定され、また使用材料も限られるの
で、人工衛星搭載用の高利得な大開口アンテナの
ようなアンテナの大容量化、大形化にあたり、ア
ンテナパネル単体ではアンテナの剛性を確保する
ことが難かしく、アンテナパネルのたわみが大き
くなつて面精度が低下し、そのため放射パターン
が乱れ、利得の低下やサイドローブの上昇が生じ
るなど、電気性能が低下するという欠点があつ
た。
The conventional microstrip array antenna is
The structure is as described above, and the dielectric skin 6a,
The thickness of the dielectric core 5 and the thickness of the dielectric core 5 are primarily determined by electrical performance, and the materials used are also limited, so it is important to increase the capacity and size of antennas such as high-gain large-aperture antennas for use on satellites. In this process, it is difficult to ensure the rigidity of the antenna with a single antenna panel, and the deflection of the antenna panel increases, resulting in a decrease in surface accuracy, which disrupts the radiation pattern, resulting in a decrease in gain and an increase in side lobes. The drawback was that electrical performance deteriorated.

さらに、パネルの剛性あるいは強度が低いた
め、外力を受けた際の機械強度上の信頼性に欠け
る欠点もあつた。
Furthermore, since the rigidity or strength of the panel is low, there is also a drawback in that it lacks reliability in terms of mechanical strength when subjected to external forces.

この発明は、上記のような欠点を除去できる電
気性能のすぐれた軽量かつ高い剛性を有するマイ
クロストリツプアレーアンテナを提供することを
目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lightweight, highly rigid microstrip array antenna with excellent electrical performance that can eliminate the above-mentioned drawbacks.

以下、図面に従つてこの発明を説明する。 The present invention will be explained below with reference to the drawings.

第3図はこの発明によるマイクロストリツプア
レーアンテナの実施例を示す図である。
FIG. 3 is a diagram showing an embodiment of a microstrip array antenna according to the present invention.

第3図において、2から6まで第2図と同じ、
7は補強梁である。この発明は地導体4の外側
に、CFRP(カーボン繊維強化プラスチツク)や
アラミド繊維強化プラスチツクなどの比剛性、比
強度の高い材料で作られた補強梁7を格子状に配
置して、補強する構造とするものである。この補
強梁7はアンテナパネルに接着もしくはネジ止め
あるいは両者の組合せで接合されアンテナパネル
を裏うちするものである。
In Figure 3, from 2 to 6 are the same as in Figure 2,
7 is a reinforcing beam. This invention has a structure in which reinforcing beams 7 made of a material with high specific rigidity and specific strength, such as CFRP (carbon fiber reinforced plastic) and aramid fiber reinforced plastic, are arranged in a lattice pattern on the outside of the ground conductor 4. That is. This reinforcing beam 7 is bonded to the antenna panel by adhesive, screwing, or a combination of both, and serves to backfire the antenna panel.

このように構成されたアンテナでは、補強梁7
の材料や形状を適切に設定することにより、所要
の剛性と重量を有するものが得られるので、アン
テナがたわみにくく面精度不足による電気性能低
下を生じることがなくなる。
In the antenna configured in this way, the reinforcing beam 7
By appropriately setting the material and shape of the antenna, it is possible to obtain an antenna with the required rigidity and weight, which prevents the antenna from bending easily and prevents deterioration in electrical performance due to lack of surface accuracy.

さらに、全体の剛性が高くなつた分、誘電体表
皮の厚みを薄くすることも可能なので、アンテナ
基板の等価誘電率を下げることができアンテナの
電気性能が向上する。
Furthermore, since the overall rigidity is increased, it is also possible to reduce the thickness of the dielectric skin, thereby lowering the equivalent permittivity of the antenna substrate and improving the electrical performance of the antenna.

さらに、剛性の増加により、機械的強度上の信
頼性が向上する効果も有する。
Furthermore, the increase in rigidity also has the effect of improving reliability in terms of mechanical strength.

なお以上は、矩形の放射素子2を有するマイク
ロストリツプアレーアンテナの例を示したが、こ
の発明は円形、その他の形状の放射素子を有する
マイクロストリツプアレーアンテナに適用できる
ことはいうまでもない。
Although the above example shows a microstrip array antenna having a rectangular radiating element 2, it goes without saying that the present invention can be applied to a microstrip array antenna having a circular or other shaped radiating element. do not have.

以上のように、この発明によるマイクロストリ
ツプアレーアンテナは地導体側に格子状に配置し
た補強梁を設けた構造としたので、基板の等価誘
電率が低くかつ面精度の低下を生じにくい電気性
能のすぐれた、軽量かつ高い剛性のアンテナが得
られる効果がある。
As described above, the microstrip array antenna according to the present invention has a structure in which reinforcing beams are arranged in a lattice pattern on the ground conductor side. This has the effect of providing a lightweight and highly rigid antenna with excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマイクロストリツプアレーアンテナの
基本的構造を示す斜視図、第2図は従来のこの種
のアンテナの一例を示す一部を切欠した斜視図、
第3図はこの発明の一実施例によるマイクロスト
リツプアレーアンテナを示す斜視図である。 図中、1は基板、2は放射素子、3は給電線、
4は地導体、5は誘電体コア、6a,6bは誘電
体表皮、7は補強梁をそれぞれ示す。
FIG. 1 is a perspective view showing the basic structure of a microstrip array antenna; FIG. 2 is a partially cutaway perspective view showing an example of a conventional antenna of this type;
FIG. 3 is a perspective view showing a microstrip array antenna according to an embodiment of the present invention. In the figure, 1 is a substrate, 2 is a radiation element, 3 is a feeder line,
4 is a ground conductor, 5 is a dielectric core, 6a and 6b are dielectric skins, and 7 is a reinforcing beam.

Claims (1)

【特許請求の範囲】 1 誘電体コアの両面に誘電体表皮を被着したサ
ンドイツチパネルの一方の表面に金属箔を被着形
成して地導体とし、他の表面に任意形状の金属箔
を被着形成して放射素子としたマイクロストリツ
プアレーアンテナにおいて、前記地導体に補強梁
を格子状に設けて裏打ちしたことを特徴とするマ
イクロストリツプアレーアンテナ。 2 前記補強梁をカーボン繊維強化プラスチツ
ク、アラミド繊維強化プラスチツク等の比剛性お
よび比強度の高い材料で形成したことを特徴とす
る特許請求の範囲第1項記載のマイクロストリツ
プアレーアンテナ。
[Scope of Claims] 1. Metal foil is formed on one surface of a sandwich panel in which a dielectric skin is coated on both sides of a dielectric core to form a ground conductor, and a metal foil of an arbitrary shape is coated on the other surface. 1. A microstrip array antenna as a radiating element formed by adhesion, characterized in that the ground conductor is lined with reinforcing beams arranged in a grid pattern. 2. The microstrip array antenna according to claim 1, wherein the reinforcing beam is made of a material with high specific rigidity and specific strength, such as carbon fiber reinforced plastic or aramid fiber reinforced plastic.
JP11707283A 1983-06-30 1983-06-30 Microstrip array antenna Granted JPS6010805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11707283A JPS6010805A (en) 1983-06-30 1983-06-30 Microstrip array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11707283A JPS6010805A (en) 1983-06-30 1983-06-30 Microstrip array antenna

Publications (2)

Publication Number Publication Date
JPS6010805A JPS6010805A (en) 1985-01-21
JPH0149205B2 true JPH0149205B2 (en) 1989-10-24

Family

ID=14702712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11707283A Granted JPS6010805A (en) 1983-06-30 1983-06-30 Microstrip array antenna

Country Status (1)

Country Link
JP (1) JPS6010805A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672438B1 (en) * 1991-02-01 1993-09-17 Alcatel Espace NETWORK ANTENNA IN PARTICULAR FOR SPATIAL APPLICATION.
JP3471617B2 (en) * 1997-09-30 2003-12-02 三菱電機株式会社 Planar antenna device
US8665174B2 (en) * 2011-01-13 2014-03-04 The Boeing Company Triangular phased array antenna subarray

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798009U (en) * 1980-12-08 1982-06-16

Also Published As

Publication number Publication date
JPS6010805A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
EP0188345B1 (en) Dual frequency band antenna system
JP3960701B2 (en) Grid array antenna
US4783666A (en) Protective shield for an antenna array
US10749270B2 (en) Polarization rotating phased array element
US20080174510A1 (en) Radome for endfire antenna arrays
JP2846081B2 (en) Triplate type planar antenna
US3096519A (en) Composite reflector for two independent orthogonally polarized beams
US3823404A (en) Thin sandwich telemetry antenna
US5325103A (en) Lightweight patch radiator antenna
JPS58184805A (en) Microstrip array antenna
US4477815A (en) Radome for generating circular polarized electromagnetic waves
JP3435916B2 (en) Phased array antenna device
You et al. Design and fabrication of composite smart structures with high electric and mechanical performances for future mobile communication
JPH0149205B2 (en)
JPH0220005B2 (en)
JPH07249921A (en) Variable polarization antenna
JPH0234483B2 (en)
CA1263180A (en) Linearly polarized grid reflector antenna systems with improved cross-polarization performance
JPH1032418A (en) Flat antenna
JPH0138968Y2 (en)
JP3068149B2 (en) Microstrip array antenna
JPS60239103A (en) Microstrip array antenna
US11482795B2 (en) Segmented patch phased array radiator
JPH0153801B2 (en)
JP3440362B2 (en) Flat antenna receiving plate