JP3960701B2 - Grid array antenna - Google Patents

Grid array antenna Download PDF

Info

Publication number
JP3960701B2
JP3960701B2 JP04582099A JP4582099A JP3960701B2 JP 3960701 B2 JP3960701 B2 JP 3960701B2 JP 04582099 A JP04582099 A JP 04582099A JP 4582099 A JP4582099 A JP 4582099A JP 3960701 B2 JP3960701 B2 JP 3960701B2
Authority
JP
Japan
Prior art keywords
basic element
basic
stage
grid array
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04582099A
Other languages
Japanese (ja)
Other versions
JP2000244238A (en
Inventor
久松 中野
徹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dengyo Kosaku Co Ltd
Original Assignee
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dengyo Kosaku Co Ltd filed Critical Nihon Dengyo Kosaku Co Ltd
Priority to JP04582099A priority Critical patent/JP3960701B2/en
Publication of JP2000244238A publication Critical patent/JP2000244238A/en
Application granted granted Critical
Publication of JP3960701B2 publication Critical patent/JP3960701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、グリッドアレイアンテナに係わり、特に、例えば、平面形状で、低サイドローブ特性が要求される固定通信用または移動通信用基地局アンテナ、あるいは、通信・放送衛星からの電波を受信するための開口形アンテナのサブアレイ素子に適用して有効なグリッドアレイアンテナに関する。
【0002】
【従来の技術】
図9は、従来の、衛星通信受信用に使用されているグリッドアレイアンテナの概略構成を示す斜視図である。
同図(a)に示すように、従来のグリッドアレイアンテナは、誘電体基板20上に、複数個の長方形の基本素子10が、基本素子10の短辺方向に矩形形状に多段に配置されて構成される。
この場合に、各段の基本素子10の短辺は、次段の基本素子10の長辺の中心部と交差するようにされる。
ここで、基本素子10の長方形の短辺と長辺との比を、ほぼ1:2とすることにより、放射ビームの最大放射方向として、矩形面に対して垂直の方向を得ることができる。
なお、図9に示すグリッドアレイアンテナにおいては、基本素子10は、誘電体基板(プリント配線板、または絶縁体シート)20上に、エッチング手法により作成された金属箔で構成するようにしたが、この基本素子10は、例えば、金属等の線、状、帯等の導電体で構成することもできる。
基本素子10の周囲長は、基本素子10の周辺の比誘電率によって、その最適値が変化するが、比誘電率が1の場合には、設計周波数の自由空間波長(λo)の約3倍、またはこれより僅かに大きい値とした時に、放射ビームの最大放射方向として、矩形面に対して垂直の方向得ることができる。
【0003】
グリッドアレイアンテナでは、通常、単一方向にビームを放射させる目的から、基本素子10の形成される面(以下、グリッドアレイ面と称する。)に平行な反射板30が配置される。
この反射板30は、導電体の板、または格子やパンチングメタル等で構成される。
反射板30とグリッドアレイ面との間隔(図9のh)は、長方形の基本素子10の配列数によって調整し、基本素子10の配列数を多くして、その間隔を狭めることで、放射ビームの放射効率を高めることができる。
なお、図9に示すグリッドアレイアンテナにおいては、誘電体基板20により、反射面3とグリッドアレイ面との間隔を維持するようにしているが、反射面3とグリッドアレイ面との間隔を維持するために、発泡させたプラスチック樹脂を介在させるか、あるいは、局所的に絶縁体から成る樹脂スペーサ等で支えるようにしてもよい。
仮に、グリッドアレイ面が樹脂板上に形成されている場合には、基本素子10を形成する導体に触れることなく樹脂板を支えることができるのであれば、金属棒などの導電性スペーサを使用することもできる。
【0004】
グリッドアレイアンテナへの給電は、同軸線路のようなTEM伝送線路を用いる。
【0005】
図9(a)に示すグリッドアレイアンテナでは、図9(b)に示すように、グリッドアレイ面の中心付近で、基本素子10の交点Cに同軸線路31の芯線を電気的に接続させて給電点を形成している。
この場合に、反射板30のC点に対応する位置に穴32を設け、当該穴32を通して同軸線路31の芯線を交点Cに電気的に接続させ、また、同軸線路31の外部導体を反射板30と電気的に接続させる。
給電点Cに印加された励振電力により、基本素子10の長辺および短辺から電磁波が放射されるが、基本素子10の長辺からの電磁波は打ち消されるため、基本素子10から放射されるビームは、短辺から放射される電磁波に依存する。
【0006】
したがって、基本素子10の長辺は、もっぱら基本素子10の短辺方向に多段に配置される複数の基本素子10に励振電力を供給するための伝送線路として機能する。
【0007】
【発明が解決しようとする課題】
図10は、図9に示すグリッドアレイアンテナの指向特性を示すグラフであり、同図(a)は、基本素子10の長辺に平行な面(図9のX−Z平面)の指向特性を、同図(b)は、基本素子10の短辺に平行な面(図9のY−Z平面)の指向特性を示す。
この図10のグラフから分かるように、いずれの面においても、目立ったサイドローブが存在し、第1サイドローブレベルは約−13dBとなっている。
誘電体基板20上に、複数の基本素子10が、基本素子10の短辺方向に矩形形状に多段に配置されて構成される従来のグリッドアレイアンテナは、構成が簡単で、グリッドアレイ面に対して直角な方向に効率の良くビームを放射することができる。
しかしながら、近年の衛星通信、または衛星放送のように、一定の衛星軌道から送られる複数の電波を受信する場合には、従来のグリッドアレイアンテナの指向特性では、サイドローブレベルが高いために、干渉により伝送情報が劣化してしまうという問題点があった。
本発明は、前記従来技術の問題点を解決するためになされたものであり、本発明の目的は、サイドローブレベルを低減した指向特性を有するグリッドアレイアンテナを提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
【0008】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。
即ち、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されている第1および第2の基本素子群を有し、前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されている第1および第2の基本素子群を有し、前記第1の基本素子群と第2の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の一辺と、前記第2の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の1辺とが、互いに向かい合うように配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されている第1ないし第4の基本素子群を有し、前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、前記第3の基本素子群と第4の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、前記第1の基本素子群と、第3および第4の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の二辺と、前記第3および第4の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の一辺とが、互いに向かい合うように配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されている第1および第2の基本素子群を有し、前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されている第1および第2の基本素子群を有し、前記第1の基本素子群と第2の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の一辺と、前記第2の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の1辺とが、互いに向かい合うように配置されていることを特徴とする。
また、本発明は、各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されている第1ないし第4の基本素子群を有し、前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、前記第3の基本素子群と第4の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、前記第1の基本素子群と、第3および第4の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の二辺と、前記第3および第4の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の一辺とが、互いに向かい合うように配置されていることを特徴とする。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
なお、実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
[実施の形態1]
図1は、本発明の実施の形態1のグリッドアレイアンテナの基本素子の配置を説明するための図である。
同図(a)に示すように、本実施の形態のグリッドアレイアンテナでは、長方形の基本素子10が、各段の基本素子10における次段の基本素子10と接触しない角部(1a〜5a,1b〜5b)を結ぶ線が、二等辺三角形の相等しい2辺(11a,11b)を構成するように、二等辺三角形形状に多段に配置される。この場合に、複数個の基本素子10は、各段の基本素子10の短辺が、次段の基本素子10の長辺の中心部と交差するように、基本素子10の短辺方向に多段に配置される。
図1(b)に示すように、単体の長方形の基本素子10は、例えば、線状の導体が長方形に形成されて構成される。
ここで、基本素子10の長方形の短辺(L2)と、基本素子10の長方形の長辺(L1)との比(L1:L2)を、ほぼ1:2とすることにより、放射ビームの最大放射方向として、長方形の基本素子10の矩形面に対して垂直の方向を得ることができる。
本実施の形態のグリッドアレイアンテナは、図9に示すグリッドアレイアンテナと同様、複数個の基本素子10を、誘電体基板(誘電体基板または誘電体シート)上に、エッチング手法または導電体印刷手法を用いて形成して作成される。なお、金型を用いプレス機によって金属薄板を打ち抜いて長方形の基本素子10を形成し、当該基本素子10を、誘電体基板(誘電体基板または誘電体シート)上に張り付けて、本実施の形態のグリッドアレイアンテナを作成するようにしてもよい。
本実施の形態においても、長方形の基本素子10の周囲長は、図9に示すグリッドアレイアンテナと同様、基本素子10の周辺の比誘電率によって、その最適値が変化するが、比誘電率が1の場合には設計周波数の自由空間波長(λo)の約3倍、またはこれより僅かに大きい値をした時に、放射ビームの最大方向として、長方形の基本素子の矩形面に対して垂直の方向を得ることができる。
【0010】
また、反射板と、グリッドアレイ面(基本素子10の形成される面)との関係は、長方形からなる基本素子10の配列数により調整し、基本素子10の配列数を多くして、その間隔を狭めることが望ましく、放射ビームの放射効率を高めることができる。
また、本実施の形態においても、前記図9に示すグリッドアレイアンテナと同様、誘電体基板により、反射面とグリッドアレイ面との間隔を維持するようにしているが、反射面とグリッドアレイ面との間隔を維持するために、発泡させたプラスチック樹脂を介在させるか、あるいは、局所的に絶縁体からなる樹脂スペーサ等で支えるようにしてもよい。
仮に、グリッドアレイ面が樹脂板上に形成されている場合には、基本素子10を形成する導体に触れることなく樹脂板を支えることができるのであれば、金属棒などの導電性スペーサを使用することもできる。
反射板は、対応するグリッドアレイ面の大きさより大きいことが望ましく、これを構成する材料としては、反射係数の大きなものであれば、金属のみならず炭素繊維で形成された導体面であってもよく、また、反射板の反射面は、格子状や、反射面の一部に間隙がある所謂パンチングメタルを用いてもよい。
【0011】
本実施の形態においても、図9に示すグリッドアレイアンテナと同様、給電には同軸線路のようなTEM伝送線路を用いる。
そして、前記二等辺三角形の相等しい2辺(11a,11b)に挟まれる角を二等分する二等分線を表す仮想線上と、長方形の基本素子との交点を、給電点とする。
この場合に、図9に示すグリッドアレイアンテナと同様、反射板の給電点に対応する位置に穴を設け、当該穴を通して同軸線路の芯線を給電点に電気的接続させるとともに、当該穴に同軸線路の外部導体を電気的に接続させる。
なお、給電点の一例を、図1に黒丸で示す。
この給電点に印加された励振電力により、基本素子10の長辺および短辺から電磁波が放射されるが、基本素子10の長辺からの電磁波は打ち消されるため、基本素子10から放射されるビームは、短辺から放射される電磁波に依存する。したがって、基本素子10の長辺は、もっぱら基本素子10の短辺方向に多段に配置される複数の基本素子10に励振電力を供給するための伝送線路として機能することは、図9に示すグリッドアレイアンテナと同様である。
【0012】
図2は、本実施の形態のグリッドアレイアンテナの一例の指向特性を示すグラフであり、長方形の基本素子10の長辺に平行な面の指向特性を示すグラフである。
この図2に示すグラフは、基本素子10の短辺、並びに頂点(TO)から基本素子10に延びる導体の長さを0.54λo、基本素子の長辺を1.08λoに選び、反射板とグリッドアレイ面との間隔を0.05λoとした時の、基本素子10の長辺に平行な面(図9に示すX−Z平面)の指向特性を測定した結果を示すグラフである。
なお、λoは、設計中心周波数foにおける自由空間波長である。
このグラフから分かるように、本実施の形態のグリッドアレイアンテナでは、サイドローブレベルが−20dB以下と良好な値になっている。
このように、本実施の形態では、長方形の基本素子10を、三角形状に配置したので、アンテナ全体としての開口電力分布をテーパー状とすることができるので、サイドローブレベルを低減することができる。
【0013】
[実施の形態2]
図3は、本発明の実施の形態2のグリッドアレイアンテナの基本素子の配置を説明するための図である。
本実施の形態のグリッドアレイアンテナは、前記実施の形態1のグリッドアレイアンテナを2個組み合わせて、直交する二つの直線偏波を共用する偏波共用アンテナを構成したものである。
同図に示すように、本実施の形態のグリッドアレイアンテナは、第1の基本素子群(G1)と、第2の基本素子群(G2)とを有する。
第1および第2の基本素子群(G1,G2)は、それぞれ、長方形の基本素子10が、各段の基本素子10における次段の基本素子10と接触しない角部(1a〜5a,1b〜5b)を結ぶ線が、二等辺三角形の相等しい2辺(11a,11b,12a,12b)を構成するように、二等辺三角形形状に多段に配置されて構成される。
ここで、第1の基本素子群(G1)と、第2の基本素子群(G2)とは、互いに直交するように、即ち、第1の基本素子群(G1)の、各段の基本素子10における次段の基本素子10と接触しない角部を結ぶ線で構成される二等辺三角形の一辺(11a)と、第2の基本素子群(G2)の、格段の基本素子10における次段の基本素子10と接触しない角部を結ぶ線で構成される二等辺三角形の1辺(12b)とが互いに向かい合うように配置されている。
本実施の形態のグリッドアレイアンテナにおいて、図3に示す黒丸Hに励振電力を供給したときに得られる放射電界の偏波面を水平偏波としたとき、図3の黒丸Vに励振電力を供給したときに得られる放射電界の偏波面は垂直偏波となる。
【0014】
[実施の形態3]
図4は、本発明の実施の形態3のグリッドアレイアンテナの基本素子の配置を説明するための図である。
本実施の形態のグリッドアレイアンテナでは、高利得化のために、前記実施の形態1のグリッドアレイアンテナを2個線対称に配置したものである。
即ち、同図に示すように、それぞれ、長方形の基本素子10が、各段の基本素子10における次段の基本素子10と接触しない角部を結ぶ線が、二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置される第1の基本素子群(G1)および第2の基本素子群(G2)とを、頂点(TO)が互いに向かい合うように、線対称に配置したものである。
給電点は、図1で説明した条件下であれば、任意の場所を選ぶことができるが、対称軸に対して対称に配置し、各々の給電点の位相が逆相となるようにすることで、グリッドアレイアンテナが作る面に対して直角方向に交叉偏波成分の少ない最大放射がなされる。
なお、本実施の形態においても、前記実施の形態2に同様に、本実施の形態のグリッドアレイアンテナを組み合わせて、直交する二つの直線偏波を共用する偏波共用アンテナを実現することもできる。
【0015】
[実施の形態4]
図5は、本発明の実施の形態4のグリッドアレイアンテナの基本素子の配置を説明するための図である。
本実施の形態のグリッドアレイアンテナは、長方形の基本素子を菱形形状に配置した点で、前記実施の形態1のグリッドアレイアンテナと相違する。
即ち、同図に示すように、本実施の形態のグリッドアレイアンテナでは、長方形の基本素子10が、各段の基本素子10における次段の基本素子10と接触しない角部(1a〜5a,1b〜5b,5c〜9c,5d〜9d)を結ぶ線が、菱形を構成するように、菱形形状に多段に配置される。
図6は、本実施の形態の菱形形状グリッドアレイの一例の指向特性を示すグラフである。
この図6に示すグラフは、長方形の基本素子10が菱形形状に配置されている以外は、前記図2と同様、長方形の基本素子10の短辺、並びに頂点(TO)から長方形の基本素子10に延びる導体の長さを0.54λo、長方形の基本素子10の長辺を1.08λoに選び、反射板とグリッドアレイ面との間隔を0.05λoとした時の指向特性を測定した結果を示すグラフである。
同図(a)は、長方形の基本素子10の長辺に平行な面(図9のX−Z平面)の指向特性を、同図(b)は、長方形の基本素子10の短辺に平行な面(図9のY−Z平面)の指向特性を示している。
この図6のグラフから分かるように、いずれの面においても、サイドローブレベルが−20dB以下と良好な値になっている。
これは、ビームの放射に寄与する長方形の基本素子10の短辺の数の分布が、中心付近で最大となるテーパー状となっているためであり、図中のX軸、Y軸いずれの方向に対しても良好な低サイドローブ特性となる。
図7は、本発明の実施の形態4のグリッドアレイの一例の、アンテナ面に垂直な方向における利得の周波数特性を示すグラフである。
なお、この図7に示すグラフは、図6の指向特性測定と同じ条件で、アンテナ面に垂直な方向における利得の周波数特性を、設計中心周波数foで正規化して示すグラフである。
この図7から分かるように、本実施の形態のグリッドアレイは、比較的広い周波数にわたって、アンテナ面に垂直な方向に20dBi以上の利得を有している。
なお、本実施の形態においても、前記実施の形態3と同様、頂点(TO)が互いに向かい合うように、二つの菱形形状グリッドアレイアンテナを線対称に配置することにより、高利得化を達成することができる。
【0016】
[実施の形態5]
図8は、本発明の実施の形態5のグリッドアレイアンテナの基本素子の配置を説明するための図である。
本実施の形態のグリッドアレイアンテナは、前記実施の形態4のグリッドアレイアンテナを2個組み合わせて、直交する二つの直線偏波を共用する偏波共用アンテナを構成したものである。
同図に示すように、本実施の形態のグリッドアレイアンテナは、第1の基本素子群(G1)と、第2の基本素子群(G2)とを有する。
第1および第2の基本素子群(G1,G2)は、それぞれ、長方形の基本素子10が、各段の基本素子10における次段の基本素子10と接触しない角部(1a〜5a,1b〜5b,5c〜9c,5d〜9d)を結ぶ線が、菱形を構成するように、菱形形状に多段に配置されて構成される。
ここで、第1の基本素子群(G1)と、第2の基本素子群(G2)とは、互いに直交するように、即ち、第1の基本素子群(G1)の、各段の基本素子10における次段の基本素子10と接触しない角部を結ぶ線で構成される菱型の一辺(13)と、第2の基本素子群(G2)の、各段の基本素子10における次段の基本素子10と接触しない角部を結ぶ線で構成される菱型の一辺(14)とが互いに向かい合うように配置されている。
図8に示す黒丸Hに励振電力を供給したときに得られる放射電界の偏波面を水平偏波としたとき、図3の黒丸Vに励振電力を供給したときに得られる放射電界の偏波面は垂直偏波となる。
以上、本発明者によってなされた発明を、前記実施の形態に基づき具体的に説明したが、本発明は、前記実施の形態に限定されるものではなく、その要旨を逸脱しない範図において種々変更可能であることは勿論である。
【0017】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記の通りである。
(1)本発明によれば、指向特性におけるサイドローブレベルを低減することができるので、過密な無線回線の干渉を軽減することが可能となる。
(2)本発明によれば、長方形の各基本素子に励振電力を給電するための給電点の設定に自由度があり、また、長方形の各基本素子に損失なく励振電力を供給するための伝送線路を別途設ける必要がないので、簡単な構造で、平面形状のアンテナを安価に作成することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1のグリッドアレイアンテナの基本素子の配置を説明するための図である。
【図2】本発明の実施の形態1のグリッドアレイアンテナの一例の指向特性を示すグラフである。
【図3】本発明の実施の形態2のグリッドアレイアンテナの基本素子の配置を説明するための図である。
【図4】本発明の実施の形態3のグリッドアレイアンテナの基本素子の配置を説明するための図である。
【図5】本発明の実施の形態4のグリッドアレイアンテナの基本素子の配置を説明するための図である。
【図6】本発明の実施の形態4のグリッドアレイの一例の指向特性を示すグラフである。
【図7】本発明の実施の形態4のグリッドアレイの一例の、アンテナ面に垂直な方向における利得の周波数特性を示すグラフである。
【図8】本発明の実施の形態5のグリッドアレイアンテナの基本素子の配置を説明するための図である。
【図9】従来の、衛星通信受信用に使用されているグリッドアレイアンテナの概略構成を示す斜視図である。
【図10】図9に示すグリッドアレイアンテナの指向特性を示すグラフである。
【符号の説明】
1a〜5a,1b〜5b,5c〜9c,5d〜9d…基本素子の角部、10…長方形の基本素子、11a,11b,12a,12b…二等辺三角形の相等しい2辺、13,14…菱形の2辺、20…誘電体基板、30…反射板、31…同軸線路、32…穴、TO…頂点、G1,G2…基本素子群。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grid array antenna, and in particular, for receiving radio waves from a base station antenna for fixed communication or mobile communication or a communication / broadcasting satellite, for example, which has a planar shape and requires low sidelobe characteristics. The present invention relates to a grid array antenna that is effective when applied to a subarray element of an aperture antenna.
[0002]
[Prior art]
FIG. 9 is a perspective view showing a schematic configuration of a conventional grid array antenna used for satellite communication reception.
As shown in FIG. 1A, the conventional grid array antenna has a plurality of rectangular basic elements 10 arranged in a multi-stage in a rectangular shape in the short side direction of the basic element 10 on a dielectric substrate 20. Composed.
In this case, the short side of the basic element 10 at each stage intersects with the center of the long side of the basic element 10 at the next stage.
Here, by setting the ratio of the short side to the long side of the basic element 10 to be approximately 1: 2, a direction perpendicular to the rectangular surface can be obtained as the maximum radiation direction of the radiation beam.
In the grid array antenna shown in FIG. 9, the basic element 10 is made of a metal foil formed by an etching technique on a dielectric substrate (printed wiring board or insulator sheet) 20, This basic element 10 can also be comprised, for example with conductors, such as a line | wire, a shape, a strip | belt, etc. of a metal.
The optimum value of the peripheral length of the basic element 10 varies depending on the relative permittivity of the periphery of the basic element 10, but when the relative permittivity is 1, it is approximately three times the free space wavelength (λo) of the design frequency. When the value is slightly larger than this value, the direction perpendicular to the rectangular plane can be obtained as the maximum radiation direction of the radiation beam.
[0003]
In a grid array antenna, a reflector 30 parallel to a surface (hereinafter referred to as a grid array surface) on which a basic element 10 is formed is usually disposed for the purpose of radiating a beam in a single direction.
The reflecting plate 30 is made of a conductive plate, a lattice, a punching metal, or the like.
The distance between the reflector 30 and the grid array surface (h in FIG. 9) is adjusted by the number of arrangements of the rectangular basic elements 10, the number of arrangements of the basic elements 10 is increased, and the distance is reduced to reduce the radiation beam. The radiation efficiency can be increased.
In the grid array antenna shown in FIG. 9, the distance between the reflective surface 3 and the grid array surface is maintained by the dielectric substrate 20, but the distance between the reflective surface 3 and the grid array surface is maintained. For this purpose, foamed plastic resin may be interposed, or it may be supported locally by a resin spacer made of an insulator.
If the grid array surface is formed on a resin plate, a conductive spacer such as a metal rod is used as long as the resin plate can be supported without touching the conductor forming the basic element 10. You can also.
[0004]
A power supply to the grid array antenna uses a TEM transmission line such as a coaxial line.
[0005]
In the grid array antenna shown in FIG. 9A, as shown in FIG. 9B, the core wire of the coaxial line 31 is electrically connected to the intersection C of the basic element 10 near the center of the grid array surface to feed power. A dot is formed.
In this case, a hole 32 is provided at a position corresponding to point C of the reflecting plate 30, the core wire of the coaxial line 31 is electrically connected to the intersection C through the hole 32, and the outer conductor of the coaxial line 31 is connected to the reflecting plate. 30 is electrically connected.
Electromagnetic waves are radiated from the long side and the short side of the basic element 10 by the excitation power applied to the feeding point C, but the electromagnetic waves from the long side of the basic element 10 are canceled out. Depends on the electromagnetic wave radiated from the short side.
[0006]
Therefore, the long side of the basic element 10 functions exclusively as a transmission line for supplying excitation power to a plurality of basic elements 10 arranged in multiple stages in the short side direction of the basic element 10.
[0007]
[Problems to be solved by the invention]
FIG. 10 is a graph showing the directivity of the grid array antenna shown in FIG. 9. FIG. 10A shows the directivity of a plane parallel to the long side of the basic element 10 (XZ plane in FIG. 9). FIG. 4B shows the directivity characteristics of a plane parallel to the short side of the basic element 10 (YZ plane in FIG. 9).
As can be seen from the graph of FIG. 10, there is a conspicuous side lobe on either side, and the first side lobe level is about −13 dB.
A conventional grid array antenna configured by arranging a plurality of basic elements 10 on a dielectric substrate 20 in a rectangular shape in the short-side direction of the basic elements 10 in a multistage manner has a simple configuration, with respect to the grid array surface. The beam can be radiated efficiently in a direction perpendicular to the right angle.
However, when receiving a plurality of radio waves sent from a fixed satellite orbit, such as satellite communications or satellite broadcasting in recent years, the directivity characteristics of the conventional grid array antenna have a high sidelobe level. As a result, transmission information deteriorates.
The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a grid array antenna having directional characteristics with a reduced sidelobe level.
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
[0008]
[Means for Solving the Problems]
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
That is, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements form two equal sides of an isosceles triangle in which corners that do not contact the basic element of the next stage in each stage of basic elements are connected. Thus, it is arranged in multiple stages in an isosceles triangle shape.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements form two equal sides of an isosceles triangle in which corners that do not contact the basic element of the next stage in each stage of basic elements are connected. As described above, the first basic element group and the second basic element group are arranged in multiple stages in an isosceles triangle shape, and the first basic element group and the second basic element group are the first stage basic elements. It is characterized by comrades being arranged facing each other.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements form two equal sides of an isosceles triangle in which corners that do not contact the basic element of the next stage in each stage of basic elements are connected. As described above, the first basic element group and the second basic element group are arranged in multiple stages in an isosceles triangle shape, and the first basic element group and the second basic element group are the first basic element group. One side of an isosceles triangle composed of a line connecting corners that do not come into contact with the next basic element in the basic element of each stage, and the basic element of each stage of the second basic element group An isosceles triangle composed of lines connecting corners that do not contact the basic element in the next stage One side and, characterized in that it is arranged so as to face each other.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements form two equal sides of an isosceles triangle in which corners that do not contact the basic element of the next stage in each stage of basic elements are connected. As described above, the first basic element group and the second basic element group are arranged in multiple stages in an isosceles triangle shape, and the first basic element group and the second basic element group are the first stage basic elements. The third basic element group and the fourth basic element group are arranged to face each other, the first stage basic elements are arranged to face each other, and the first basic element group, The third and fourth basic element groups are each of the first basic element group. In the basic element, the two sides of an isosceles triangle composed of lines connecting corners that do not contact the basic element in the next stage, and the next stage in the basic element in each stage of the third and fourth basic element groups One side of an isosceles triangle formed by a line connecting corners that do not contact the basic element is arranged so as to face each other.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements are arranged in a rhombus shape so that a line connecting corners that do not contact the basic element of the next stage in each stage of the basic element forms a rhombus. It is characterized by being arranged in.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements are arranged in a rhombus shape so that a line connecting corners that do not contact the basic element of the next stage in each stage of the basic element forms a rhombus. The first basic element group and the second basic element group are arranged in such a manner that the basic elements of the first stage face each other. It is characterized by being.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements are arranged in a rhombus shape so that a line connecting corners that do not contact the basic element of the next stage in each stage of the basic element forms a rhombus. The first basic element group and the second basic element group are the basic elements at each stage of the first basic element group. One side of a rhombus composed of a line connecting corners that do not contact with the basic element at the next stage in the above, and a corner part of the second basic element group that does not contact with the basic element at the next stage of the basic element at each stage. One side of the rhombus composed of connecting lines is placed so as to face each other It is characterized in.
Also, the present invention provides a plurality of rectangular shapes arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage. A grid array antenna having a basic element, wherein the plurality of basic elements are arranged in a rhombus shape so that a line connecting corners that do not contact the basic element of the next stage in each stage of the basic element forms a rhombus. The first basic element group and the second basic element group are arranged in such a manner that the basic elements of the first stage are arranged to face each other, In the third basic element group and the fourth basic element group, first-stage basic elements are arranged to face each other, and the first basic element group and the third and fourth basic element groups are arranged. Is the basic of the next stage in the basic element of each stage of the first basic element group The two sides of the rhombus composed of lines connecting the corners that do not contact the child and the corners of the third and fourth basic element groups that do not contact the next basic element in each basic element are connected. One side of the rhombus composed of lines is arranged so as to face each other.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[Embodiment 1]
FIG. 1 is a diagram for explaining the arrangement of basic elements of the grid array antenna according to the first embodiment of the present invention.
As shown in FIG. 6A, in the grid array antenna according to the present embodiment, the rectangular basic element 10 has a corner portion (1a to 5a, which does not contact the basic element 10 of the next stage in the basic element 10 of each stage. 1b to 5b) are arranged in multiple stages in an isosceles triangle shape so as to form two equal sides (11a, 11b) of the isosceles triangle. In this case, the plurality of basic elements 10 are multi-staged in the direction of the short side of the basic element 10 so that the short side of the basic element 10 of each stage intersects the center of the long side of the basic element 10 of the next stage. Placed in.
As shown in FIG. 1B, the single rectangular basic element 10 is configured, for example, by forming a linear conductor into a rectangle.
Here, by setting the ratio (L1: L2) of the rectangular short side (L2) of the basic element 10 to the long side (L1) of the basic element 10 to be approximately 1: 2, the maximum of the radiation beam can be obtained. As a radiation direction, a direction perpendicular to the rectangular surface of the rectangular basic element 10 can be obtained.
As in the grid array antenna shown in FIG. 9, the grid array antenna according to the present embodiment has a plurality of basic elements 10 on a dielectric substrate (dielectric substrate or dielectric sheet) by an etching method or a conductor printing method. It is formed and formed using. In this embodiment, a metal basic plate 10 is formed by punching a thin metal plate with a press using a mold, and the basic element 10 is attached to a dielectric substrate (dielectric substrate or dielectric sheet). Alternatively, a grid array antenna may be created.
Also in the present embodiment, the perimeter of the rectangular basic element 10 changes its optimum value depending on the relative dielectric constant around the basic element 10 as in the grid array antenna shown in FIG. In the case of 1, the maximum direction of the radiation beam when the value is about 3 times the free space wavelength (λo) of the design frequency or slightly larger than this, the direction perpendicular to the rectangular surface of the rectangular basic element Can be obtained.
[0010]
Further, the relationship between the reflector and the grid array surface (surface on which the basic elements 10 are formed) is adjusted by the number of arrangements of the basic elements 10 made of rectangles, the number of arrangements of the basic elements 10 is increased, and the interval between them is increased. It is desirable to reduce the radiation efficiency, and the radiation efficiency of the radiation beam can be increased.
Also in this embodiment, as in the grid array antenna shown in FIG. 9, the distance between the reflective surface and the grid array surface is maintained by the dielectric substrate. In order to maintain the interval, foamed plastic resin may be interposed, or it may be supported by a resin spacer made of an insulator locally.
If the grid array surface is formed on a resin plate, a conductive spacer such as a metal rod is used as long as the resin plate can be supported without touching the conductor forming the basic element 10. You can also.
The reflector is preferably larger than the size of the corresponding grid array surface, and the material constituting the reflector may be a conductor surface made of carbon fiber as well as a metal as long as it has a large reflection coefficient. Moreover, a so-called punching metal having a lattice shape or a gap in a part of the reflecting surface may be used as the reflecting surface of the reflecting plate.
[0011]
Also in the present embodiment, a TEM transmission line such as a coaxial line is used for feeding as in the grid array antenna shown in FIG.
Then, an intersection of a virtual line representing a bisector that bisects an angle between two equal sides (11a, 11b) of the isosceles triangle and a rectangular basic element is defined as a feeding point.
In this case, similarly to the grid array antenna shown in FIG. 9, a hole is provided at a position corresponding to the feeding point of the reflector, the core wire of the coaxial line is electrically connected to the feeding point through the hole, and the coaxial line is connected to the hole. Electrically connect the outer conductors.
An example of the feeding point is indicated by a black circle in FIG.
Electromagnetic waves are radiated from the long side and the short side of the basic element 10 by the excitation power applied to the feeding point. However, since the electromagnetic waves from the long side of the basic element 10 are canceled, the beam radiated from the basic element 10 is emitted. Depends on the electromagnetic wave radiated from the short side. Therefore, the long side of the basic element 10 functions exclusively as a transmission line for supplying excitation power to a plurality of basic elements 10 arranged in multiple stages in the short side direction of the basic element 10. It is the same as the array antenna.
[0012]
FIG. 2 is a graph showing the directivity of an example of the grid array antenna of the present embodiment, and is a graph showing the directivity of a plane parallel to the long side of the rectangular basic element 10.
In the graph shown in FIG. 2, the short side of the basic element 10 and the length of the conductor extending from the apex (TO) to the basic element 10 are set to 0.54λo, and the long side of the basic element is set to 1.08λo. 10 is a graph showing the result of measuring the directivity characteristics of a plane (XZ plane shown in FIG. 9) parallel to the long side of the basic element 10 when the distance from the grid array surface is 0.05λo.
Note that λo is a free space wavelength at the design center frequency fo.
As can be seen from this graph, in the grid array antenna of the present embodiment, the side lobe level is a favorable value of −20 dB or less.
As described above, in the present embodiment, since the rectangular basic elements 10 are arranged in a triangular shape, the aperture power distribution of the entire antenna can be tapered, so that the side lobe level can be reduced. .
[0013]
[Embodiment 2]
FIG. 3 is a diagram for explaining the arrangement of basic elements of the grid array antenna according to the second embodiment of the present invention.
The grid array antenna according to the present embodiment is configured by combining two grid array antennas according to the first embodiment to form a polarization sharing antenna that shares two orthogonal linear polarizations.
As shown in the figure, the grid array antenna of the present embodiment has a first basic element group (G1) and a second basic element group (G2).
In each of the first and second basic element groups (G1, G2), the rectangular basic element 10 is not in contact with the basic element 10 in the next stage in the basic element 10 in each stage (1a to 5a, 1b to The line connecting 5b) is arranged in multiple stages in an isosceles triangle shape so as to constitute two equal sides (11a, 11b, 12a, 12b) of the isosceles triangle.
Here, the first basic element group (G1) and the second basic element group (G2) are orthogonal to each other, that is, the basic elements in each stage of the first basic element group (G1). 10 of the next basic element 10 of the second basic element group (G2) of one side (11a) of an isosceles triangle formed by a line connecting corners that do not come into contact with the basic element 10 of the next stage in FIG. One side (12b) of an isosceles triangle formed by a line connecting corners not in contact with the basic element 10 is arranged so as to face each other.
In the grid array antenna of the present embodiment, when the plane of polarization of the radiated electric field obtained when the excitation power is supplied to the black circle H shown in FIG. 3, the excitation power is supplied to the black circle V of FIG. The plane of polarization of the radiated electric field sometimes obtained is vertically polarized.
[0014]
[Embodiment 3]
FIG. 4 is a diagram for explaining the arrangement of basic elements of the grid array antenna according to the third embodiment of the present invention.
In the grid array antenna of the present embodiment, two grid array antennas of the first embodiment are arranged symmetrically with respect to a line in order to increase the gain.
That is, as shown in the figure, the lines connecting the corners of the rectangular basic element 10 that do not contact the basic element 10 of the next stage in the basic element 10 of each stage are two equal sides of an isosceles triangle. As shown, the first basic element group (G1) and the second basic element group (G2), which are arranged in multiple stages in an isosceles triangle shape, are line-symmetric so that the vertices (TO) face each other. It is arranged.
The feeding point can be selected at any location under the conditions described in FIG. 1, but it is arranged symmetrically with respect to the axis of symmetry so that the phase of each feeding point is reversed. Thus, the maximum radiation with little cross polarization component is made in the direction perpendicular to the plane formed by the grid array antenna.
In the present embodiment as well, similarly to the second embodiment, by combining the grid array antenna of the present embodiment, it is possible to realize a polarization sharing antenna that shares two orthogonal linearly polarized waves. .
[0015]
[Embodiment 4]
FIG. 5 is a diagram for explaining the arrangement of basic elements of the grid array antenna according to the fourth embodiment of the present invention.
The grid array antenna of the present embodiment is different from the grid array antenna of the first embodiment in that rectangular basic elements are arranged in a rhombus shape.
That is, as shown in the figure, in the grid array antenna according to the present embodiment, the rectangular basic element 10 is a corner portion (1a to 5a, 1b) of the basic element 10 at each stage that does not contact the basic element 10 at the next stage. To 5b, 5c to 9c, and 5d to 9d) are arranged in multiple stages in a rhombus shape so as to form a rhombus.
FIG. 6 is a graph showing directivity characteristics of an example of the rhombus-shaped grid array of the present embodiment.
The graph shown in FIG. 6 is similar to FIG. 2 except that the rectangular basic element 10 is arranged in a rhombus shape, and the rectangular basic element 10 from the short side and apex (TO) of the rectangular basic element 10. The result of measuring the directivity when the length of the conductor extending to 0.54 λo and the long side of the rectangular basic element 10 is set to 1.08 λo and the distance between the reflector and the grid array surface is 0.05 λo is shown. It is a graph to show.
9A shows the directivity characteristic of a plane (XZ plane in FIG. 9) parallel to the long side of the rectangular basic element 10, and FIG. The directivity characteristics of a flat surface (YZ plane in FIG. 9) are shown.
As can be seen from the graph of FIG. 6, the side lobe level is as good as −20 dB or less on any surface.
This is because the distribution of the number of short sides of the rectangular basic element 10 that contributes to the radiation of the beam has a taper shape that is maximized near the center, and the direction of either the X axis or the Y axis in the figure. In contrast, the low sidelobe characteristics are good.
FIG. 7 is a graph showing the frequency characteristics of the gain in the direction perpendicular to the antenna surface of an example of the grid array according to the fourth embodiment of the present invention.
The graph shown in FIG. 7 is a graph obtained by normalizing the gain frequency characteristics in the direction perpendicular to the antenna surface with the design center frequency fo under the same conditions as the directivity measurement in FIG.
As can be seen from FIG. 7, the grid array according to the present embodiment has a gain of 20 dBi or more in a direction perpendicular to the antenna surface over a relatively wide frequency.
In the present embodiment, as in the third embodiment, high gain is achieved by arranging two rhombus-shaped grid array antennas in line symmetry so that the vertices (TO) face each other. Can do.
[0016]
[Embodiment 5]
FIG. 8 is a diagram for explaining the arrangement of basic elements of the grid array antenna according to the fifth embodiment of the present invention.
The grid array antenna according to the present embodiment is a combination of two grid array antennas according to the fourth embodiment to configure a polarization sharing antenna that shares two orthogonally polarized waves.
As shown in the figure, the grid array antenna of the present embodiment has a first basic element group (G1) and a second basic element group (G2).
In each of the first and second basic element groups (G1, G2), the rectangular basic element 10 is not in contact with the basic element 10 in the next stage in the basic element 10 in each stage (1a to 5a, 1b to 5b, 5c to 9c, and 5d to 9d) are arranged in multiple stages in a rhombus shape so as to form a rhombus.
Here, the first basic element group (G1) and the second basic element group (G2) are orthogonal to each other, that is, the basic elements in each stage of the first basic element group (G1). 10 of the rhombus composed of a line connecting corners that do not come into contact with the basic element 10 of the next stage in 10 and the second stage of the basic element 10 of each stage of the second basic element group (G2). One side (14) of a rhombus composed of a line connecting corners not in contact with the basic element 10 is arranged to face each other.
When the plane of polarization of the radiation field obtained when the excitation power is supplied to the black circle H shown in FIG. 8 is horizontal polarization, the plane of polarization of the radiation field obtained when the excitation power is supplied to the black circle V of FIG. It becomes vertical polarization.
Although the invention made by the present inventor has been specifically described based on the above-described embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Of course, it is possible.
[0017]
【The invention's effect】
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
(1) According to the present invention, it is possible to reduce the side lobe level in the directivity characteristics, and thus it is possible to reduce interference of a crowded wireless channel.
(2) According to the present invention, there is a degree of freedom in setting a feeding point for supplying excitation power to each rectangular basic element, and transmission for supplying excitation power to each rectangular basic element without loss. Since there is no need to provide a separate line, it is possible to produce a planar antenna with a simple structure at a low cost.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an arrangement of basic elements of a grid array antenna according to a first embodiment of the present invention.
FIG. 2 is a graph showing directivity characteristics of an example of a grid array antenna according to the first embodiment of the present invention.
FIG. 3 is a diagram for explaining an arrangement of basic elements of a grid array antenna according to a second embodiment of the present invention.
FIG. 4 is a diagram for explaining an arrangement of basic elements of a grid array antenna according to a third embodiment of the present invention.
FIG. 5 is a diagram for explaining an arrangement of basic elements of a grid array antenna according to a fourth embodiment of the present invention.
FIG. 6 is a graph showing directivity characteristics of an example of a grid array according to the fourth embodiment of the present invention.
FIG. 7 is a graph showing a frequency characteristic of gain in a direction perpendicular to the antenna surface of an example of the grid array according to the fourth embodiment of the present invention.
FIG. 8 is a diagram for explaining an arrangement of basic elements of a grid array antenna according to a fifth embodiment of the present invention.
FIG. 9 is a perspective view showing a schematic configuration of a conventional grid array antenna used for satellite communication reception.
10 is a graph showing the directivity characteristics of the grid array antenna shown in FIG. 9. FIG.
[Explanation of symbols]
1a to 5a, 1b to 5b, 5c to 9c, 5d to 9d ... corners of basic elements, 10 ... rectangular basic elements, 11a, 11b, 12a, 12b ... two equal sides of an isosceles triangle, 13, 14 ... 2 sides of rhombus, 20 ... dielectric substrate, 30 ... reflector, 31 ... coaxial line, 32 ... hole, TO ... vertex, G1, G2 ... basic element group.

Claims (8)

各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子は、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The plurality of basic elements are arranged in multiple stages in an isosceles triangle shape so that lines connecting corner portions that do not contact the basic element of the next stage in each stage of the basic element constitute two equal sides of an isosceles triangle. A grid array antenna characterized by being made.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されている第1および第2の基本素子群を有し、
前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The plurality of basic elements are arranged in multiple stages in an isosceles triangle shape so that lines connecting corners that do not contact the basic element of the next stage in the basic elements of each stage form two equal sides of an isosceles triangle. First and second basic element groups,
The grid array antenna, wherein the first basic element group and the second basic element group are arranged such that the first stage basic elements face each other.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されている第1および第2の基本素子群を有し、
前記第1の基本素子群と第2の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の一辺と、前記第2の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の1辺とが、互いに向かい合うように配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The plurality of basic elements are arranged in multiple stages in an isosceles triangle shape so that lines connecting corners that do not contact the basic element of the next stage in the basic elements of each stage form two equal sides of an isosceles triangle. First and second basic element groups,
The first basic element group and the second basic element group are configured by a line connecting corner portions of the first basic element group that do not contact the basic element of the next stage in the basic element of each stage. One side of an isosceles triangle and one side of an isosceles triangle formed by a line connecting corners of the second basic element group that do not contact the basic element of the next stage in the basic element of each stage are mutually connected. A grid array antenna characterized by being arranged to face each other.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が二等辺三角形の相等しい2辺を構成するように、二等辺三角形形状に多段に配置されている第1ないし第4の基本素子群を有し、
前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、
前記第3の基本素子群と第4の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、
前記第1の基本素子群と、第3および第4の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の二辺と、前記第3および第4の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される二等辺三角形の一辺とが、互いに向かい合うように配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The plurality of basic elements are arranged in multiple stages in an isosceles triangle shape so that lines connecting corners that do not contact the basic element of the next stage in the basic elements of each stage form two equal sides of an isosceles triangle. Having first to fourth basic element groups,
The first basic element group and the second basic element group are arranged such that the first stage basic elements face each other.
The third basic element group and the fourth basic element group are arranged such that the first stage basic elements face each other,
The first basic element group and the third and fourth basic element groups are lines connecting corner portions of the first basic element group that do not contact the next basic element in the basic element of each stage. Isosceles formed by a line connecting two sides of an isosceles triangle and a corner portion of the third and fourth basic element groups that do not contact the next basic element in each basic element. A grid array antenna, wherein one side of a triangle is arranged to face each other.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子は、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The plurality of basic elements are arranged in multiple stages in a rhombus shape so that lines connecting corners that do not contact the basic elements in the next stage in the basic elements in each stage form a rhombus Array antenna.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されている第1および第2の基本素子群を有し、
前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The first and second elements arranged in multiple stages in a rhombus shape so that the lines connecting the corners of the plurality of basic elements that do not contact the basic element in the next stage in the basic elements in each stage form a rhombus. It has a basic element group,
The grid array antenna, wherein the first basic element group and the second basic element group are arranged such that the first stage basic elements face each other.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されている第1および第2の基本素子群を有し、
前記第1の基本素子群と第2の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の一辺と、前記第2の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の1辺とが、互いに向かい合うように配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The first and second elements arranged in multiple stages in a rhombus shape so that the lines connecting the corners of the plurality of basic elements that do not contact the basic element in the next stage in the basic elements in each stage form a rhombus. It has a basic element group,
The first basic element group and the second basic element group are configured by a line connecting corner portions of the first basic element group that do not contact the basic element of the next stage in the basic element of each stage. Arranged so that one side of the rhombus and one side of the rhombus composed of a line connecting corners of the second basic element group that do not contact the basic element of the next stage in the basic element of each stage face each other A grid array antenna characterized by being made.
各段の基本素子の短辺が、次段の基本素子の長辺の中心部と交差するように、基本素子の短辺方向に多段に配置される複数個の長方形の基本素子を有するグリッドアレイアンテナであって、
前記複数個の基本素子が、各段の基本素子における次段の基本素子と接触しない角部を結ぶ線が菱形を構成するように、菱形形状に多段に配置されている第1ないし第4の基本素子群を有し、
前記第1の基本素子群と第2の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、
前記第3の基本素子群と第4の基本素子群とは、第1段の基本素子同志が、互いに向かい合って配置され、
前記第1の基本素子群と、第3および第4の基本素子群とは、前記第1の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の二辺と、前記第3および第4の基本素子群の、前記各段の基本素子における次段の基本素子と接触しない角部を結ぶ線で構成される菱形の一辺とが、互いに向かい合うように配置されていることを特徴とするグリッドアレイアンテナ。
Grid array having a plurality of rectangular basic elements arranged in multiple stages in the short side direction of the basic element so that the short side of the basic element of each stage intersects the center of the long side of the basic element of the next stage An antenna,
The first to fourth elements arranged in multiple stages in a rhombus shape such that a line connecting the corners of the plurality of basic elements that do not contact the basic element in the next stage in the basic element in each stage forms a rhombus. It has a basic element group,
The first basic element group and the second basic element group are arranged such that the first stage basic elements face each other.
The third basic element group and the fourth basic element group are arranged such that the first stage basic elements face each other,
The first basic element group and the third and fourth basic element groups are lines connecting corner portions of the first basic element group that do not contact the next basic element in the basic element of each stage. And two sides of the rhombus composed of a side of the rhombus composed of a line connecting corner portions of the third and fourth basic element groups that do not contact the basic element of the next stage in the basic element of each stage; Are arranged so as to face each other, a grid array antenna.
JP04582099A 1999-02-24 1999-02-24 Grid array antenna Expired - Fee Related JP3960701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04582099A JP3960701B2 (en) 1999-02-24 1999-02-24 Grid array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04582099A JP3960701B2 (en) 1999-02-24 1999-02-24 Grid array antenna

Publications (2)

Publication Number Publication Date
JP2000244238A JP2000244238A (en) 2000-09-08
JP3960701B2 true JP3960701B2 (en) 2007-08-15

Family

ID=12729899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04582099A Expired - Fee Related JP3960701B2 (en) 1999-02-24 1999-02-24 Grid array antenna

Country Status (1)

Country Link
JP (1) JP3960701B2 (en)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078180A (en) * 2012-12-20 2013-05-01 山东国威卫星通信有限公司 High-gain high-efficiency planar antenna adopting grid radiator
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
GB2532206A (en) * 2014-11-06 2016-05-18 Bluwireless Tech Ltd Antennas
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN112904094B (en) * 2021-02-04 2022-08-23 中国人民解放军国防科技大学 Orofacial antenna external field test method based on unmanned aerial vehicle
CN117895988B (en) * 2024-03-15 2024-05-31 长光卫星技术股份有限公司 Method, equipment and medium for multi-beam shaping of array antenna based on least square method

Also Published As

Publication number Publication date
JP2000244238A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP3960701B2 (en) Grid array antenna
US6593891B2 (en) Antenna apparatus having cross-shaped slot
US6281845B1 (en) Dielectric loaded microstrip patch antenna
JPH10150319A (en) Dipole antenna with reflecting plate
US20210143552A1 (en) Antenna
GB2424765A (en) Dipole antenna with an impedance matching arrangement
US7079078B2 (en) Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite
GB2286926A (en) Microstrip antenna shaped about an axis
JPH10209739A (en) Inverted-f shaped antenna
JPH11177335A (en) Antenna system
JP4516246B2 (en) antenna
JP2002330024A (en) Slot antenna
JP3045868B2 (en) Printed antenna with reflector
JP3782278B2 (en) Beam width control method of dual-polarized antenna
JP3514305B2 (en) Chip antenna
JP2000269735A (en) Array antenna
JP3764289B2 (en) Microstrip antenna
JP2002299949A (en) Planar array antenna
JP2645700B2 (en) Dual frequency corner antenna device
JPH1168449A (en) Incorporated antenna for radio equipment
JP3483096B2 (en) Monopole antenna
JP3846663B2 (en) Aperture antenna and array antenna
JPH0661735A (en) Planar antenna
JP2835482B2 (en) Printed antenna with reflector
JP2006014152A (en) Plane antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees