JP3483096B2 - Monopole antenna - Google Patents

Monopole antenna

Info

Publication number
JP3483096B2
JP3483096B2 JP33583796A JP33583796A JP3483096B2 JP 3483096 B2 JP3483096 B2 JP 3483096B2 JP 33583796 A JP33583796 A JP 33583796A JP 33583796 A JP33583796 A JP 33583796A JP 3483096 B2 JP3483096 B2 JP 3483096B2
Authority
JP
Japan
Prior art keywords
antenna
plane
radiating elements
linear radiating
monopole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33583796A
Other languages
Japanese (ja)
Other versions
JPH10173431A (en
Inventor
泰介 井原
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP33583796A priority Critical patent/JP3483096B2/en
Publication of JPH10173431A publication Critical patent/JPH10173431A/en
Application granted granted Critical
Publication of JP3483096B2 publication Critical patent/JP3483096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は使用波長に比較して
小型なモノポールアンテナに関し、平面導体地板の小型
化による放射パターンの劣化を補正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monopole antenna that is smaller than the wavelength used, and relates to a technique for correcting deterioration of a radiation pattern due to miniaturization of a plane conductor ground plane.

【0002】[0002]

【従来の技術】図14に従来のモノポールアンテナの例
を示す。モノポールアンテナ10は対称構造のダイポー
ルアンテナを鏡像の原理により平面導体地板を用いてア
ンテナ高を半分に抑えたものである。モノポールアンテ
ナ10をダイポールアンテナと等価に動作させるために
用いる導体地板2は無限の大きさを必要とするが、実際
には有限平面の円形もしくは矩形の導体板が用いられ
る。この平面導体地板1の大きさが使用周波数における
波長と同程度もしくはそれ以下の大きさになると、地板
の縁(ふち)効果が現れ放射パターンのピークが地板よ
り上方に傾く。その傾きかたは地板の大きさが小さくな
るほど大きくなる(参考文献:オーム社、電子情報通信
学会編”アンテナ工学ハンドブック、第3章基本アンテ
ナ、2節モノポール(ユニポール)アンテナ、2項有限
地板上のモノポールアンテナ、p.51)。そのため平
面導体板と同一平面上(水平面)での利得が低下し、か
つ元となったダイポールアンテナの放射パターンから大
きく変化する。
2. Description of the Related Art FIG. 14 shows an example of a conventional monopole antenna. The monopole antenna 10 is a dipole antenna having a symmetrical structure, and the antenna height is suppressed to half by using a plane conductor ground plate according to the principle of a mirror image. The conductor ground plane 2 used for operating the monopole antenna 10 equivalently to a dipole antenna requires an infinite size, but in reality, a finite plane circular or rectangular conductor plate is used. When the size of the plane conductor ground plane 1 becomes the same as or smaller than the wavelength at the used frequency, the edge effect of the ground plane appears and the peak of the radiation pattern tilts upward from the ground plane. The inclination becomes larger as the size of the ground plane becomes smaller (Reference: Ohmsha, Institute of Electronics, Information and Communication Engineers, “Antenna Engineering Handbook, Chapter 3, Basic Antenna, Section 2 Monopole (Unipole) Antenna, Binomial on the finite ground plane) Therefore, the gain on the same plane (horizontal plane) as the plane conductor plate is reduced, and the radiation pattern of the original dipole antenna is largely changed.

【0003】このような事は、たとえば共通の平面地板
を有し、モノポール系アンテナを多共振化するためさら
にモノポールを付加して用いる場合に問題となってく
る。付加するモノポールアンテナの共振周波数が元のモ
ノポールアンテナの共振周波数と比較して十分に低い場
合、新たに付加するモノポールアンテナに対しては地板
が小さいため、前述した放射パターンの変化が起こり、
その結果として周波数の変化による放射パターンのばら
つきが問題となってくる。
Such a problem becomes a problem, for example, when a monoplane antenna having a common plane ground plane is used and a monopole antenna is added to the antenna to make it have multiple resonances. If the resonance frequency of the added monopole antenna is sufficiently lower than the resonance frequency of the original monopole antenna, the ground plane is smaller than that of the newly added monopole antenna, causing the aforementioned radiation pattern change. ,
As a result, variations in the radiation pattern due to changes in frequency become a problem.

【0004】このように波長に対して小形の地板を有す
るモノポールアンテナにおいては、放射パターンのピー
ク方向を平面導体板と同じ方向に向け、水平面での利得
を低下させないことは困難であった。
As described above, in a monopole antenna having a small ground plane with respect to the wavelength, it is difficult to direct the peak direction of the radiation pattern in the same direction as that of the plane conductor plate so as not to reduce the gain in the horizontal plane.

【0005】[0005]

【発明が解決しようとする課題】このように従来のモノ
ポールアンテナ10においては放射パターンを変化させ
ることなく、平面導体地板2の大きさを小形化するのは
困難であった。この発明はこのような課題を解決し、従
来よりも小型な平面導体地板を用いながら放射パターン
の変化を抑える手法を提供することを目的とする。
As described above, in the conventional monopole antenna 10, it is difficult to reduce the size of the plane conductor ground plate 2 without changing the radiation pattern. It is an object of the present invention to solve such a problem and to provide a method of suppressing a change in radiation pattern while using a plane conductor ground plane smaller than conventional ones.

【0006】[0006]

【課題を解決するための手段】(1)請求項1の発明
は、平面導体地板と、その平面導体地板上に設けられ、
モノポール構造の一対の線状放射素子と、それら一対の
線状放射素子と平面導体地板との間にそれぞれ設けられ
た給電部とを有するモノポールアンテナに関する。請求
項1では特に、一対の線状放射素子は、ほぼ等しい共振
周波数を有し、同相、同振幅で給電され、平面導体地板
の大きさが、線状放射素子の共振波長よりも十分小さく
設定される そして、一対の線状放射素子が、平面導体
地板の対向な端縁の近傍にそれぞれ設置されている。
(1) The invention of claim 1 is a flat conductor ground plate, and the flat conductor ground plate is provided on the flat conductor ground plate.
The present invention relates to a monopole antenna having a pair of linear radiating elements having a monopole structure and a feeding portion provided between the pair of linear radiating elements and a plane conductor ground plane. According to claim 1, in particular, the pair of linear radiating elements have substantially equal resonance frequencies and are fed with the same phase and the same amplitude, and the size of the plane conductor ground plate is set sufficiently smaller than the resonant wavelength of the linear radiating element. To be done . Then, the pair of linear radiating elements are flat conductors.
They are installed near the opposite edges of the main plate.

【0007】(2)請求項2の発明では、前記(1)に
おいて、平面導体地板が矩形であるときはその短辺、楕
円であるときはその短径、円形であるときはその直径
が、それぞれ線状放射素子の共振波長のほぼ1/3〜1
/4程度或いはそれ以下に設定される。 (3)請求項3の発明では、前記(1)において、一対
の線状放射素子が、同一構造・寸法をもつように構成さ
れる。
(2) In the invention of claim 2, in the above (1), when the plane conductor ground plate is rectangular, its short side is short, when it is elliptical, its short diameter is short, and when it is circular, its diameter is: Approximately 1/3 to 1 of the resonance wavelength of the linear radiating element
It is set to about / 4 or less. (3) In the invention of claim 3, in the above (1), the pair of linear radiating elements are configured to have the same structure and dimensions.

【0008】()請求項の発明では、前記(4)に
おいて、一対の線状放射素子の共振波長より小さく、か
つ平面導体地板の寸法(短辺、短径または直径)の1.
0〜1.2倍程度かまたはそれ以下の大きさの共振波長
を有するモノポール構造の線状放射素子が、前記平面導
体地板上に単数または複数個設けられている。
( 4 ) In the invention of claim 4 , in the above item (4), the size is smaller than the resonance wavelength of the pair of linear radiating elements and the dimension (short side, minor axis or diameter) of the flat conductor ground plate is 1.
A single or a plurality of linear radiating elements having a monopole structure having a resonance wavelength of about 0 to 1.2 times or less are provided on the planar conductor ground plate.

【0009】[0009]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

(実施例1)図1はこの発明の第一の実施形態を示す図
であり、アンテナ装置の構造を斜視図により示す。この
アンテナ装置は2本の線状放射素子1a,1bと矩形の
平面導体地板2及び放射素子1a,1bそれぞれに給電
するための給電部3a,3bを備えている。
(Embodiment 1) FIG. 1 is a view showing a first embodiment of the present invention and shows a structure of an antenna device in a perspective view. This antenna device includes two linear radiating elements 1a and 1b, a rectangular flat conductor ground plate 2, and power feeding portions 3a and 3b for feeding power to the radiating elements 1a and 1b, respectively.

【0010】用いる放射素子は図1では通常のモノポー
ル素子であるが、モノポール構造の線状アンテナであれ
ばこれに限らない。例えばアンテナの高さを抑えるため
に図2、図3に示すような抵抗装荷モノポールアンテナ
や逆Fアンテナを用いてもよい。平面導体板上に配置さ
れる2つの線状放射素子1a,1b間の距離はある程度
離して配置した方が良いが、線状素子の共振周波数にお
ける波長λの0.1倍程度まで近づけて配置しても良
い。また平面導体板2上に配置される2つの線状放射素
子1a,1bの位置は前述のようにある程度の間隔をと
れば任意の位置で良いが、2つの放射素子の特性をそろ
える意味で平面導体地板2に対し対称または点対称に配
置することが望ましい。しかし、2つの線状アンテナ1
a,1bの共振周波数、放射パターンがほぼ同一のも
の、例えば同一構造・寸法のものであればこの限りでは
ない。
Although the radiating element used is a normal monopole element in FIG. 1, it is not limited to this as long as it is a linear antenna having a monopole structure. For example, in order to suppress the height of the antenna, a resistance loaded monopole antenna or an inverted F antenna as shown in FIGS. 2 and 3 may be used. The distance between the two linear radiating elements 1a and 1b arranged on the plane conductor plate should be separated to some extent, but the linear radiating elements 1a and 1b should be arranged close to each other up to about 0.1 times the wavelength λ at the resonance frequency of the linear element. You may. Further, the positions of the two linear radiating elements 1a and 1b arranged on the flat conductor plate 2 may be arbitrary positions as long as a certain distance is provided as described above, but in the sense that the characteristics of the two radiating elements are made uniform, It is desirable to dispose symmetrically or point symmetrically with respect to the conductor ground plane 2. However, two linear antennas 1
If the resonance frequencies and radiation patterns of a and 1b are substantially the same, for example, if they have the same structure and size, this does not apply.

【0011】また、この実施例では平面導体地板2の形
状は矩形としているが、形状はこれに限らず例えば円形
またはそれに類似した形状の物であっても良く、大きさ
については矩形の短辺、楕円の短径あるいは円形導体板
の直径が使用波長λより十分小さく、λの1/3〜1/
4程度或いはそれより多少小さくとも良い。2つの線状
アンテナ1a,1bへの給電は同相、同振幅とし、その
ための給電方法は同相、同振幅励振が実現できるのなら
ば、同軸線路、マイクロストリップ線路などの形式には
よらず、どのような方法でも良い。
Further, in this embodiment, the shape of the plane conductor ground plane 2 is rectangular, but the shape is not limited to this, and may be, for example, a circular shape or a shape similar thereto, and the size is the short side of the rectangle. , The ellipse minor diameter or the diameter of the circular conductor plate is sufficiently smaller than the operating wavelength λ, and 1/3 to 1 / of λ
It may be about 4 or slightly smaller. Feeding power to the two linear antennas 1a and 1b should be in phase and have the same amplitude, and if the power feeding method therefor can realize in-phase and same amplitude excitation, it does not depend on the form of coaxial line, microstrip line, etc. Such a method is also acceptable.

【0012】このようなモノポールの2素子アレーとし
個々の素子を同相、同振幅で励振すると、2素子アレー
アンテナの合成放射パターンは地板の天頂方向にヌル点
を形成することが出来る。その結果、平面導体板から上
方に向いた放射パターンのピーク方向が水平面方向に向
き、このアンテナの元となるダイポールアンテナ単体で
の放射パターンと同等の特性が得られる。
When such a monopole two-element array is excited with the individual elements having the same phase and the same amplitude, the combined radiation pattern of the two-element array antenna can form a null point in the zenith direction of the ground plane. As a result, the peak direction of the radiation pattern directed upward from the plane conductor plate is oriented in the horizontal plane direction, and the same characteristic as the radiation pattern of the dipole antenna alone which is the source of this antenna is obtained.

【0013】この特性は平面導体地板の大きさに依存し
ないので、地板の大きさを使用波長よりも小さくできる
という特徴を有する。そのためこの方法を採用すれば放
射特性を劣化させずに、従来のモノポールアンテナより
も小形化が可能になる。これらの事が実現できるか確か
めるために実験を行った。図4に実験を行ったアンテナ
の寸法を示す。このアンテナの設計周波数は280MH
zであり、地板の大きさは280MHzでの波長の約1
/3程度と小形な物を用いている。さらに2つの放射素
子は地板の対向する縁近くにそれぞれ設置してあり、単
体の放射素子が有効に使える面積は更に小さく、非常に
小さな平面地板を用いたモノポールアンテナアレーとな
っている。
Since this characteristic does not depend on the size of the plane conductor ground plane, it has a feature that the ground plane can be made smaller than the wavelength used. Therefore, if this method is adopted, the size can be made smaller than the conventional monopole antenna without degrading the radiation characteristic. We conducted experiments to see if these things could be realized. FIG. 4 shows the dimensions of the antenna used for the experiment. The design frequency of this antenna is 280 MH
z, and the size of the ground plane is about 1 of the wavelength at 280 MHz.
It uses a small size of about / 3. Further, the two radiating elements are respectively installed near the opposite edges of the ground plane, and the area where a single radiating element can be effectively used is further smaller, resulting in a monopole antenna array using a very small plane ground plane.

【0014】用いたモノポール素子は高さを抑えるため
逆F型のアンテナを用いており、さらにアンテナ長を短
縮する目的で先端部をコイル状に巻いてある。逆Fアン
テナでは地板から垂直に立ち上がっている部分に電流が
集中し、地板と平行となるアンテナ先端部には電流はほ
とんど流れない。そのためアンテナ先端部をコイル状に
巻いてもアンテナ動作に影響を与えることは無い。
The monopole element used uses an inverted F type antenna in order to suppress the height, and further has a tip end wound in a coil shape for the purpose of shortening the antenna length. In the inverted-F antenna, the current concentrates on the portion that rises vertically from the ground plane, and almost no current flows at the tip of the antenna that is parallel to the ground plane. Therefore, even if the tip of the antenna is wound into a coil, it does not affect the operation of the antenna.

【0015】最初に逆Fアンテナ単体の水平面(図4中
のxy面)及び垂直面(zx面)の放射パターンを図
5、図6に示す。図6の垂直面放射パターンからわかる
ように、波長に比べて小さな平面地板を用いた場合、放
射パターンのピーク方向が地板上部方向にシフトし、完
全に天頂方向にシフトしていることがわかる。その結果
水平面での利得が低下し、かつ十分大きな地板を用いた
場合に形成される天頂方向のヌル点が完全になくなって
いる。
First, the radiation patterns of the horizontal plane (xy plane in FIG. 4) and the vertical plane (zx plane) of the inverted F antenna alone are shown in FIGS. As can be seen from the vertical plane radiation pattern of FIG. 6, when the plane ground plane smaller than the wavelength is used, the peak direction of the radiation pattern shifts to the upper direction of the ground plane and completely shifts to the zenith direction. As a result, the gain in the horizontal plane is reduced, and the null point in the zenith direction formed when a sufficiently large ground plane is used is completely eliminated.

【0016】次に2つの逆Fアンテナを同相、同振幅で
給電した場合のアレー合成水平面及び垂直面パターンを
図7、図8に示す。垂直面での放射パターンからわかる
ように最大ピーク方向が地板と平行方向に向いており、
かつ地板の天頂方向にきちんとヌル点が形成されてい
る。このように波長と比較して小さな平面導体板を用い
たモノポールアンテナでも2素子のアレー構造とし、2
つのアンテナを同相、同振幅励振すれば放射パターンの
変化を抑制できるため、アンテナの小型化が可能とな
る。 (実施例2)図9はこの発明の第2の実施形態を示す図
であり、斜視図によりその構造を示す。このアンテナ装
置は第一の実施例で述べたモノポールアレーアンテナ
と、さらに第二のモノポールアンテナとの組み合わせで
構成されている。すなわち同相、同振幅で励振する2本
の線状放射素子1a,1bと、放射素子1a,1bとは
異なる周波数で共振し、動作する線状モノポール放射素
子6、矩形の平面導体地板2、放射素子1a,1bおよ
び6に給電するための給電部3a,3b,3cを備えて
いる。
Next, FIGS. 7 and 8 show the array-synthesized horizontal plane and vertical plane pattern when two inverted F antennas are fed with the same phase and the same amplitude. As you can see from the radiation pattern on the vertical plane, the maximum peak direction is parallel to the ground plane,
Moreover, the null point is formed properly in the direction of the zenith of the ground plane. In this way, even a monopole antenna that uses a plane conductor plate that is smaller than the wavelength has a two-element array structure.
If the two antennas are excited in phase and with the same amplitude, the change in the radiation pattern can be suppressed, and the antennas can be downsized. (Embodiment 2) FIG. 9 is a view showing a second embodiment of the present invention, and its structure is shown in a perspective view. This antenna device comprises a combination of the monopole array antenna described in the first embodiment and the second monopole antenna. That is, the two linear radiating elements 1a and 1b which are excited with the same phase and the same amplitude, and the linear monopole radiating element 6 which operates by resonating at frequencies different from those of the radiating elements 1a and 1b, the rectangular flat conductor ground plate 2, Power supply units 3a, 3b and 3c for supplying power to the radiating elements 1a, 1b and 6 are provided.

【0017】放射素子6はその共振周波数が線状放射素
子1a,1bの共振周波数f1と異なっていれば逆Fア
ンテナなどの形状の異なる線状放射素子、あるいはスロ
ットアンテナなどその形状、種類は特に問わない。また
この例では放射素子6の数は1つであるがこの数に制限
はなく複数あってもよい。同相、同振幅で励振する放射
素子1a,1bの共振周波数をf1とし、線状放射素子
6の共振周波数をf2とする。共振周波数f1,f2を
たとえば、f2=2×f1となるように設計し、さらに
地板の大きさはその矩形の短辺の長さが線状放射素子6
の共振周波数f2における波長程度の大きさとする。こ
のような構成とした場合、線状放射素子6に対しては平
面導体地板は実用上十分大きいものとみなせ、線状モノ
ポール放射素子6の放射パターンはダイポールアンテナ
比較的近い特性となる。一方実施例1で述べたよう
に、放射素子1a,1bの放射パターンは同相、同振幅
で励振することにより、共振周波数の波長に対して小さ
い地板を用いても、ダイポールと同等の放射パターンが
得られる。
If the resonant frequency of the radiating element 6 is different from the resonant frequency f1 of the linear radiating elements 1a and 1b, the linear radiating element having a different shape such as an inverted F antenna, or the slot antenna will have a particular shape and type. It doesn't matter. Further, in this example, the number of the radiating elements 6 is one, but this number is not limited and a plurality may be provided. The resonance frequency of the radiating elements 1a and 1b excited with the same phase and the same amplitude is f1, and the resonance frequency of the linear radiating element 6 is f2. The resonance frequencies f1 and f2 are designed to be, for example, f2 = 2 × f1, and the size of the ground plane is such that the length of the short side of the rectangle is the linear radiating element 6.
The resonance frequency f2 is about the wavelength. When such a construction, regarded as the plane conductor ground plate practically sufficiently large relative to the linear radiating element 6, the radiation pattern of the linear monopole radiating element 6 is relatively close characteristics as the dipole antenna. On the other hand, as described in the first embodiment, the radiation patterns of the radiating elements 1a and 1b are excited with the same phase and the same amplitude, so that a radiation pattern equivalent to that of a dipole can be obtained even if a ground plane having a small size with respect to the wavelength of the resonance frequency is used. can get.

【0018】このように、複数の共振周波数f1,f2
を持つアンテナを同一の平面導体地板上に構成する場
合、平面導体地板の大きさを共振周波数の高いアンテナ
に合せて構成しても、一対の素子1a,1bをもつ第1
のアンテナと放射素子6をもつ第2のアンテナとは、そ
れぞれ周波数f1またはf2においてダイポールアンテ
ナとほぼ同一の放射パターンが得られる。
In this way, the plurality of resonance frequencies f1 and f2 are
When the antennas with are arranged on the same plane conductor ground plane, even if the size of the plane conductor ground plane is adapted to the antenna having a high resonance frequency, the first plane having the pair of elements 1a and 1b is formed.
The antenna and the second antenna having the radiating element 6 have substantially the same radiation pattern as the dipole antenna at the frequencies f1 and f2, respectively.

【0019】この事が実現できるか確かめるために実験
を行った。図10に実験を行ったアンテナの斜視図およ
び寸法を示す。第一のアンテナ、すなわちモノポールの
2素子アレーアンテナ1a,1bには図4の実施例の5
a,5bと同じ物を用いてある。第二のアンテナ6には
広帯域モノポールアンテナ7a,7b(特願平7−32
1906)を用い、その設計帯域は800MHz以上と
している。またこの例ではこの広帯域アンテナを送信用
と受信用に2つ用いた構成としてある。この広帯域アン
テナの放射パターンは800MHzからそのおよそ2倍
の周波数帯までほぼモノポールアンテナと同一である。
平面導体地板の大きさは300×300mmで、800
MHzでの波長のほぼ0.8波長となり、広帯域モノポ
ールアンテナに対しては十分に大きい寸法となってい
る。
An experiment was conducted to confirm whether this can be realized. FIG. 10 shows a perspective view and dimensions of the antenna used for the experiment. The first antenna, that is, the monopole two-element array antennas 1a and 1b, is the same as the one in the embodiment of FIG.
The same thing as a and 5b is used. The second antenna 6 is a wideband monopole antenna 7a, 7b (Japanese Patent Application No. 7-32).
1906) and its design band is 800 MHz or more. In this example, two wideband antennas are used for transmission and reception. The radiation pattern of this wideband antenna is almost the same as that of a monopole antenna from 800 MHz to about twice the frequency band.
The size of the plane conductor ground plane is 300 x 300 mm, 800
The wavelength is approximately 0.8 of the wavelength in MHz, which is sufficiently large for a wideband monopole antenna.

【0020】図11,12,13にこのアンテナの28
0MHz、900MHzおよび1500HMzの水平面
及び垂直面の放射パターンを示す。このようにいずれの
周波数に対してもダイポールアンテナと同様の放射パタ
ーンが得られており、同一地板上に複数のモノポールア
ンテナを構成し、平面導体地板の大きさを共振周波数の
高いアンテナに合せて設計することができアンテナの小
型化に有効である。
28 of this antenna is shown in FIGS.
Figure 3 shows the horizontal and vertical plane radiation patterns at 0 MHz, 900 MHz and 1500 HMz. In this way, the same radiation pattern as the dipole antenna is obtained for all frequencies, and multiple monopole antennas are configured on the same ground plane, and the size of the plane conductor ground plane is adjusted to the antenna with high resonance frequency. It is possible to design the antenna effectively.

【0021】[0021]

【発明の効果】以上述べたように、この発明ではモノポ
ールアンテナにおいて、2素子のアレーとしそれぞれを
同相、同振幅で給電することにより平面導体地板を使用
波長と比較して小さくしても放射パターンの変化を抑制
することができ、その結果従来のモノポールアンテナと
比較してスペース効率の高いアンテナが得られる。
As described above, according to the present invention, a monopole antenna is radiated even if the plane conductor ground plane is made smaller than the used wavelength by feeding an array of 2 elements with the same phase and the same amplitude. A change in pattern can be suppressed, and as a result, an antenna with high space efficiency can be obtained as compared with the conventional monopole antenna.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の実施例を示す斜視図。FIG. 1 is a perspective view showing an embodiment of the invention of claim 1.

【図2】請求項1の発明の他の実施例を示す斜視図。FIG. 2 is a perspective view showing another embodiment of the invention of claim 1;

【図3】請求項1の発明の更に他の実施例を示す斜視
図。
FIG. 3 is a perspective view showing still another embodiment of the invention of claim 1;

【図4】請求項1の発明の実施例であって、実験に用い
たアンテナの斜視図。
FIG. 4 is a perspective view of an antenna used in an experiment, which is an embodiment of the invention of claim 1;

【図5】図4の逆Fアンテナ素子5aまたは5b単体の
水平面(図4中のxy面)放射パターンを示す図。
5 is a diagram showing a horizontal plane (xy plane in FIG. 4) radiation pattern of the inverted F antenna element 5a or 5b alone in FIG. 4;

【図6】図4の逆Fアンテナ素子5aまたは5b単体の
垂直面(図4中のzx面)放射パターンを示す図。
6 is a diagram showing a radiation pattern of a vertical plane (zx plane in FIG. 4) of the inverted F antenna element 5a or 5b alone in FIG.

【図7】図4のモノポールアンテナの水平面(図4中の
xy面)放射パターンを示す図。
7 is a diagram showing a horizontal plane (xy plane in FIG. 4) radiation pattern of the monopole antenna of FIG. 4;

【図8】図4のモノポールアンテナの垂直面(図5中の
zx面)放射パターンを示す図。
8 is a diagram showing a radiation pattern of a vertical plane (zx plane in FIG. 5) of the monopole antenna of FIG.

【図9】請求項の発明の実施例を示す斜視図。FIG. 9 is a perspective view showing an embodiment of the invention of claim 4 ;

【図10】請求項の実施例であって、実験に用いたモ
ノポールアンテナの斜視図。
FIG. 10 is a perspective view of the monopole antenna used in the experiment according to the fourth embodiment.

【図11】図10の逆F素子5a,5bを有する第1の
モノポールアンテナの水平面及び垂直面の放射パターン
を示す図。
11 is a diagram showing a radiation pattern on a horizontal plane and a vertical plane of the first monopole antenna having the inverted F elements 5a and 5b of FIG.

【図12】図10の広帯域アンテナ7aまたは7bの水
平面及び垂直面の放射パターンを示す図(測定周波数9
00MHz)。
12 is a diagram showing a radiation pattern on a horizontal plane and a vertical plane of the broadband antenna 7a or 7b of FIG. 10 (measurement frequency 9
00 MHz).

【図13】図11の広帯域アンテナ7aまたは7bの水
平面及び垂直面の放射パターンを示す図(測定周波数1
500MHz)。
13 is a diagram showing a radiation pattern on a horizontal plane and a vertical plane of the broadband antenna 7a or 7b of FIG. 11 (measurement frequency 1
500 MHz).

【図14】従来のモノポールアンテナの構造を示す斜視
図。
FIG. 14 is a perspective view showing the structure of a conventional monopole antenna.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−79189(JP,A) 特開 平8−186420(JP,A) 特開 平8−250925(JP,A) 特開 平8−288895(JP,A) 特開 昭60−100841(JP,A) 実開 平7−42213(JP,U) 実開 平8−1427(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01Q 1/24 H01Q 9/30 H01Q 21/00 H01Q 21/06 ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-7-79189 (JP, A) JP-A-8-186420 (JP, A) JP-A-8-250925 (JP, A) JP-A-8- 288895 (JP, A) JP 60-100841 (JP, A) Actual flat 7-42213 (JP, U) Actual flat 8-1427 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01Q 1/24 H01Q 9/30 H01Q 21/00 H01Q 21/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 矩形、円形又は楕円形の平面導体地板
と、その平面導体地板上に設けられ、モノポール構造の
一対の線状放射素子と、それら一対の線状放射素子と前
記平面導体地板との間にそれぞれ設けられた給電部とを
有するモノポールアンテナにおいて、 前記一対の線状放射素子は、ほぼ等しい共振周波数を有
し、同相、同振幅で給電され、 前記平面導体地板が矩形の場合は短辺、円形の場合は直
径、楕円形の場合は短径の長さが、それぞれ前記線状放
射素子の共振波長よりも十分小さく、 前記一対の線状放射素子が、前記平面導体地板の対向す
る端縁の近傍にそれぞれ設置されている ことを特徴とす
るモノポールアンテナ。
1. A rectangular, circular or elliptical flat conductor ground plate, a pair of linear radiating elements having a monopole structure provided on the flat conductor ground plate, the pair of linear radiating elements and the flat conductor ground plate. In a monopole antenna having a feeding section respectively provided between the pair of linear radiating elements, the pair of linear radiating elements have substantially the same resonance frequency and are fed with the same phase and the same amplitude. short side if, in the case of circular diameter, the length of the minor axis in the case of oval, rather sufficiently smaller than the resonance wavelength of each of the linear radiating element, the pair of linear radiating elements, the planar conductor Opposite the main plate
The monopole antenna is characterized in that it is installed near each edge .
【請求項2】 請求項1において、前記平面導体地板が
矩形であるときはその短辺、楕円であるときはその短
径、円形であるときはその直径が、それぞれ前記線状放
射素子の共振波長のほぼ1/3〜1/4程度或いはそれ
以下であることを特徴とするモノポールアンテナ。
2. The resonance of the linear radiating element according to claim 1, wherein the planar conductor ground plate has a short side when it is rectangular, a short diameter when it is elliptical, and a diameter when it is circular. A monopole antenna having a wavelength of about 1/3 to 1/4 or less.
【請求項3】 請求項1において、前記一対の線状放射
素子が、同一構造・寸法をもつことを特徴とするモノポ
ールアンテナ。
3. The monopole antenna according to claim 1, wherein the pair of linear radiating elements have the same structure and dimensions.
【請求項4】 請求項において、前記一対の線状放射
素子の共振波長より小さく、かつ前記平面導体地板の寸
法(短辺、短径または直径)の1.0〜1.2倍程度か
またはそれ以下の大きさの共振波長を有するモノポール
構造の線状放射素子が、前記平面導体地板上に単数また
は複数個設けられていることを特徴とするモノポールア
ンテナ。
4. The unit according to claim 1 , which is smaller than the resonance wavelength of the pair of linear radiating elements and about 1.0 to 1.2 times the dimension (short side, minor axis or diameter) of the flat conductor ground plane. A monopole antenna in which a single or a plurality of linear radiating elements having a monopole structure having a resonance wavelength equal to or smaller than that are provided on the plane conductor ground plane.
JP33583796A 1996-12-16 1996-12-16 Monopole antenna Expired - Fee Related JP3483096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33583796A JP3483096B2 (en) 1996-12-16 1996-12-16 Monopole antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33583796A JP3483096B2 (en) 1996-12-16 1996-12-16 Monopole antenna

Publications (2)

Publication Number Publication Date
JPH10173431A JPH10173431A (en) 1998-06-26
JP3483096B2 true JP3483096B2 (en) 2004-01-06

Family

ID=18292966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33583796A Expired - Fee Related JP3483096B2 (en) 1996-12-16 1996-12-16 Monopole antenna

Country Status (1)

Country Link
JP (1) JP3483096B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695123B2 (en) * 1997-04-18 2005-09-14 株式会社村田製作所 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
JP2003037413A (en) * 2001-07-25 2003-02-07 Matsushita Electric Ind Co Ltd Antenna for portable wireless device
JP4587622B2 (en) * 2001-09-25 2010-11-24 ユニデン株式会社 Antenna device for wireless equipment
JP4999098B2 (en) * 2007-11-16 2012-08-15 古河電気工業株式会社 Compound antenna
JP5514779B2 (en) * 2011-08-30 2014-06-04 日本電業工作株式会社 Dual polarization antenna

Also Published As

Publication number Publication date
JPH10173431A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
US11431087B2 (en) Wideband, low profile, small area, circular polarized UHF antenna
CN108183313B (en) Ultra-wideband dual-polarized antenna radiation unit and base station antenna
Mak et al. A shorted bowtie patch antenna with a cross dipole for dual polarization
JP3960701B2 (en) Grid array antenna
US7830329B2 (en) Composite antenna and portable terminal using same
JP3734666B2 (en) ANTENNA DEVICE AND ARRAY ANTENNA USING THE SAME
JP5143911B2 (en) Dual-polarized radiating element for cellular base station antenna
US20070171132A1 (en) Planar antenna
US20140043195A1 (en) Device and method for controlling azimuth beamwidth across a wide frequency range
JP5269927B2 (en) Dual band antenna
JP3623714B2 (en) Broadband antenna and array antenna device
JPH10150319A (en) Dipole antenna with reflecting plate
US20050151691A1 (en) Antenna and radio communication device provided with the same
JPH06338816A (en) Portable radio equipment
JP4516246B2 (en) antenna
JP4503459B2 (en) Multi-frequency antenna
JP3483096B2 (en) Monopole antenna
JP2765556B2 (en) Microstrip antenna
JP4088388B2 (en) Monopole antenna
US6469675B1 (en) High gain, frequency tunable variable impedance transmission line loaded antenna with radiating and tuning wing
JP2004096209A (en) Diversity antenna device, card type module using the same, and communication device
CN109841951B (en) Single-feed axial ratio bandwidth-enhanced circularly-polarized microstrip antenna
JP2645700B2 (en) Dual frequency corner antenna device
JPH02113706A (en) Antenna system
JP3057173B2 (en) Corner reflector antenna device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees