JP2010114826A - Method of manufacturing waveguide slot antenna substrate - Google Patents

Method of manufacturing waveguide slot antenna substrate Download PDF

Info

Publication number
JP2010114826A
JP2010114826A JP2008287788A JP2008287788A JP2010114826A JP 2010114826 A JP2010114826 A JP 2010114826A JP 2008287788 A JP2008287788 A JP 2008287788A JP 2008287788 A JP2008287788 A JP 2008287788A JP 2010114826 A JP2010114826 A JP 2010114826A
Authority
JP
Japan
Prior art keywords
antenna
copper
copper foil
opening
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008287788A
Other languages
Japanese (ja)
Inventor
Masaaki Yabuuchi
聖皓 藪内
Yoshiaki Isobe
善朗 礒部
Hirosuke Fujiwara
啓輔 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008287788A priority Critical patent/JP2010114826A/en
Publication of JP2010114826A publication Critical patent/JP2010114826A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a slot antenna substrate having high dimensional accuracy of an antenna opening in a waveguide slot antenna substrate with a through-hole and the antenna opening. <P>SOLUTION: The method has a half etching step of reducing the film thickness of a copper foil 2 of a copper-clad substrate 1, a boring step of forming a through-hole 4a in a desired region of the copper foil 2, an electroless plating step of making the copper foil 2 and an inner wall surface of the through-hole 4a conductive by immersing the copper-clad substrate 1 in a solution, a photoengraving step of forming an antenna opening 3 whose periphery is enclosed with the copper foil 2 in a region except a desired region, a waveguide connection pattern formation step of forming a waveguide transforming part 5a whose periphery is enclosed with the copper foil 2 in a region except a desired region separated from the antenna opening 3, an inspection step of measuring the size of the formed antenna opening 3 and an electrolytic plating step of forming a metal layer 8 laminated in the inner wall surface of the through-hole 4a and laminated in the outer circumference of the antenna opening. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はミリ波などの高周波帯域で用いる導波管スロットアンテナの開口部を高精度で形成しアンテナ特性を向上させる導波管スロットアンテナ基板の製造方法に関する。 The present invention relates to a method for manufacturing a waveguide slot antenna substrate in which an opening of a waveguide slot antenna used in a high frequency band such as a millimeter wave is formed with high accuracy to improve antenna characteristics.

例えば、特開2002−344117号公報図1(特許文献1参照)には、プリント配線板において、目的とする設計値の幅および厚みをもつ銅配線パターンを容易に形成する方法として厚み12μm以下の銅箔をサブトラクティブ法でパターニングした後、電解銅めっき法でパターン上に銅めっきする微細パターンの形成法が開示されている。 For example, in FIG. 1 (see Patent Document 1) of Japanese Patent Laid-Open No. 2002-344117, a printed wiring board having a thickness of 12 μm or less as a method for easily forming a copper wiring pattern having a target design value width and thickness is disclosed. A method of forming a fine pattern in which a copper foil is patterned by a subtractive method and then copper is plated on the pattern by an electrolytic copper plating method is disclosed.

特開2002−344117号公報(第1図 段落「0017」)Japanese Patent Laid-Open No. 2002-344117 (paragraph “0017” in FIG. 1)

しかしながら、特許文献1に記載のものは、銅箔2の膜厚の薄いものを使用するので高い寸法精度のパターンを形成することは可能であるものの、通常、銅張積層板は、銅箔と基材とをアンカー効果によって強固に接着させており、薄い銅箔を用いると、接着面を平滑にする必要があり、表面積が減少するため、ピール強度の低下が生じる。すなわち、銅箔2と基材1とのピール強度が低下するとエッチング時には溶液などの作用でさらにピール強度が低下する場合があり、後工程の基板ベーキング時やリフロー時に銅箔の膨れやファインパターンの剥がれが生じるという課題があった。また、特許文献1では、アンテナ開口部とスルーホール部との関係については言及されていない。 However, although the thing of patent document 1 uses the thin thing of the copper foil 2, since it is possible to form a pattern with high dimensional accuracy, normally a copper clad laminated board is copper foil and When the thin copper foil is used to firmly adhere to the base material by the anchor effect, it is necessary to make the adhesive surface smooth and the surface area is reduced, resulting in a decrease in peel strength. That is, if the peel strength between the copper foil 2 and the substrate 1 is lowered, the peel strength may be further lowered due to the action of a solution or the like at the time of etching. There was a problem that peeling occurred. Moreover, in patent document 1, the relationship between an antenna opening part and a through-hole part is not mentioned.

この発明は上記のような課題を解消するためになされたものであり、スルーホール部とアンテナ開口部とを有する導波管スロットアンテナ基板において、アンテナ開口部の寸法精度が高い導波管スロットアンテナ基板の製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and in a waveguide slot antenna substrate having a through hole portion and an antenna opening portion, a waveguide slot antenna having a high dimensional accuracy of the antenna opening portion. An object is to provide a method for manufacturing a substrate.

請求項1に係る発明の導波管スロットアンテナ基板の製造方法は、銅張基板の銅箔をエッチングし、この銅箔の膜厚を減少させるハーフエッチング工程と、前記銅箔の所望領域に貫通穴部を設ける穴あけ工程と、前記銅張基板を溶液に浸し前記銅箔と前記貫通穴部の内壁面とを導電化する無電解めっき工程と、前記所望領域以外の領域に周囲が銅箔で囲まれたアンテナ開口部をエッチングにより形成する写真製版工程と、前記アンテナ開口部と離間した前記所望領域以外の領域に周囲が銅箔で囲まれた導波管変換部をエッチングにより形成する導波管接続パターン形成工程と、形成された前記アンテナ開口部の寸法を測定する検査工程と、前記貫通穴部の内壁面に積層すると共に前記アンテナ開口部の外周に積層する金属層を形成する電解めっき工程とを備え、予め算出された前記金属層の塗布量と前記アンテナ開口部の側面付着量との情報から前記電解めっき工程で溶液の濃度、めっきエネルギー、若しくは浸漬時間を制御して前記アンテナ開口部の開口面積を縮め所定の寸法にするものである。 A method for manufacturing a waveguide slot antenna substrate according to a first aspect of the present invention includes a half-etching step of etching a copper foil of a copper-clad substrate to reduce the film thickness of the copper foil, and penetrating a desired region of the copper foil. A perforating step of providing a hole, a non-electrolytic plating step of immersing the copper-clad substrate in a solution to make the copper foil and the inner wall surface of the through-hole part conductive, and the periphery is a copper foil in a region other than the desired region A photoengraving process for forming an enclosed antenna opening by etching, and a waveguide for etching to form a waveguide converter surrounded by copper foil in a region other than the desired region apart from the antenna opening. A tube connection pattern forming step, an inspection step for measuring the dimension of the formed antenna opening, and an electrolytic layer for forming a metal layer to be laminated on the inner wall surface of the through hole and at the outer periphery of the antenna opening. A step of controlling the concentration of the solution, the plating energy, or the dipping time in the electrolytic plating step from information on the pre-calculated amount of the metal layer and the amount of side surface adhesion of the antenna opening. The opening area of the opening is reduced to a predetermined size.

請求項2に係る発明の導波管スロットアンテナ基板の製造方法は、前記貫通穴部は、前記導波管変換部から前記アンテナ開口部までの両側に沿って設けられ、前記貫通穴部を障壁として前記銅張基板の内部を伝播する高周波電力の伝送路を構成する請求項1に記載のものである。 In the method for manufacturing a waveguide slot antenna substrate according to a second aspect of the present invention, the through hole is provided along both sides from the waveguide converter to the antenna opening, and the through hole is a barrier. The high-frequency power transmission path propagating through the copper-clad substrate is configured as follows.

請求項3に係る発明の導波管スロットアンテナ基板の製造方法は、前記アンテナ開口部はアレイ状に設置された請求項1又は2に記載のものである。 A method for manufacturing a waveguide slot antenna substrate according to a third aspect of the present invention is the method according to the first or second aspect, wherein the antenna openings are arranged in an array.

請求項1に記載の発明によれば、写真製版工程で形成されたアンテナ開口部のパターン寸法を測定してから電解めっき工程でアンテナ開口部の外周側面付着量を調整するのでアンテナ開口部の側面付着量の寸法を正確に制御することで高周波電力のアンテナ利得の損失や有効通過帯域幅の通過損失のずれを軽減する効果がある。 According to the first aspect of the present invention, since the pattern size of the antenna opening formed in the photoengraving process is measured and then the outer peripheral side surface adhesion amount of the antenna opening is adjusted in the electrolytic plating process. By accurately controlling the size of the adhesion amount, there is an effect of reducing the loss of the antenna gain of the high frequency power and the shift of the pass loss of the effective pass bandwidth.

請求項2に記載の発明によれば、請求項1に記載の効果に加えて導波管変換部からアンテナ開口部までの銅張基板の誘電体内部を伝播する高周波電力の伝送路を両側に沿って設けた障壁として貫通穴部を設けているので、伝送経路における高周波電力の漏れを防止でき伝送損失の少ない導波管スロットアンテナ基板を得る効果がある。 According to the second aspect of the present invention, in addition to the effect of the first aspect, the high-frequency power transmission path propagating in the dielectric of the copper-clad substrate from the waveguide conversion portion to the antenna opening is provided on both sides. Since the through-hole portion is provided as the barrier provided along, there is an effect of preventing a leakage of high-frequency power in the transmission path and obtaining a waveguide slot antenna substrate with a small transmission loss.

請求項3に記載の発明によれば、アレイ状に複数のアンテナ開口部を設置したのでアンテナ開口部の有効面積領域が拡張され、スロットアンテナとしての送受信領域が広まり、広範囲の送受信が可能となる。 According to the third aspect of the present invention, since the plurality of antenna openings are arranged in an array, the effective area of the antenna opening is expanded, the transmission / reception area as a slot antenna is widened, and a wide range of transmission / reception is possible. .

実施の形態1.
以下、この発明の実施の形態1による導波管スロットアンテナ基板について図1を用いて説明する。図1は、実施の形態1による導波管スロットアンテナ基板の斜視図である。図1において、1は基材の両面に銅箔を形成した銅張基板(銅張積層板)、1aは銅張基板1の基材となる誘電体、2は銅張基板1の表面銅箔であり、誘電体1aの両側に銅箔2a、2bを有する。3はミリ波帯域などの高周波電力を外部に送信又は外部電波を受信する機能を有するアンテナ開口部(開口部パターン)、4は銅張基板1の表裏を電気接続するスルーホール部である。5は銅張基板1と接続される導波管、5aは導波管5と銅張基板1との接続部(導波管変換部)であり、銅箔2bのパターンの一部を剥ぎ取って導波管5の端部と接続(変換)する構成としている。
Embodiment 1 FIG.
A waveguide slot antenna substrate according to Embodiment 1 of the present invention will be described below with reference to FIG. FIG. 1 is a perspective view of a waveguide slot antenna substrate according to the first embodiment. In FIG. 1, 1 is a copper-clad substrate (copper-clad laminate) in which copper foils are formed on both sides of a base material, 1a is a dielectric that serves as a base material of the copper-clad substrate 1, and 2 is a surface copper foil of the copper-clad substrate 1. And having copper foils 2a and 2b on both sides of the dielectric 1a. Reference numeral 3 denotes an antenna opening (opening pattern) having a function of transmitting high-frequency power such as a millimeter wave band to the outside or receiving external radio waves, and 4 is a through-hole portion that electrically connects the front and back of the copper-clad substrate 1. Reference numeral 5 denotes a waveguide connected to the copper-clad substrate 1, and 5a denotes a connection part (waveguide converter) between the waveguide 5 and the copper-clad board 1, and a part of the pattern of the copper foil 2b is stripped off. Thus, it is configured to be connected (converted) to the end of the waveguide 5.

図2は、図1に示した導波管スロットアンテナ基板表面の平面図であり、接続部5aから導波管5の高周波電力は、スルーホール部4を障壁として銅張基板1の内部を分波されてアンテナ開口部3側に伝送される。すなわち、スルーホール部4と表面銅箔2により誘電体導波管を形成しており、複数のアンテナ開口部3に高周波電力は伝播する。図中、図1と同一符号は、同一又は相当部分を示す。 FIG. 2 is a plan view of the surface of the waveguide slot antenna substrate shown in FIG. 1. The high frequency power from the connecting portion 5a to the waveguide 5 is divided into the copper-clad substrate 1 with the through hole portion 4 as a barrier. Waves are transmitted to the antenna opening 3 side. That is, a dielectric waveguide is formed by the through-hole portion 4 and the surface copper foil 2, and high frequency power propagates to the plurality of antenna openings 3. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

図3は、図2に示した導波管スロットアンテナ基板のA−A断面図であり、銅箔2aには周囲の銅箔を除去されたアンテナ開口部3が設置される。銅箔2bには周囲の銅箔が除去された導波管変換部5aが設置される。6は導波管5と銅張基板1とを固定する半田材又は導電性の接着剤で構成した接続手段である。なお、銅張基板1内部を伝播する高周波電力は双方向性がある。図中、図1と同一符号は、同一又は相当部分を示す。 FIG. 3 is a cross-sectional view of the waveguide slot antenna substrate shown in FIG. 2 taken along the line AA. The copper foil 2a is provided with the antenna opening 3 from which the surrounding copper foil is removed. A waveguide converter 5a from which the surrounding copper foil is removed is installed on the copper foil 2b. Reference numeral 6 denotes a connection means composed of a solder material or a conductive adhesive for fixing the waveguide 5 and the copper-clad substrate 1. The high-frequency power propagating through the copper-clad substrate 1 is bidirectional. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

次に動作について説明する。図1において、導波管5から伝送されてきた高周波電力(信号)は、導波管変換部5aで誘電体(導波管)内に取り込まれ、地導体となる表面銅箔2とスルーホール部4とで囲まれた誘電体1aの内部をアンテナ開口部3に向かって伝播する。アンテナ開口部3はアレイ状に構成され、所定の電気波長の長さで長溝形状としている。また、スルーホール部4は、短絡地導体となる銅箔2aと地導体となる銅箔2bとを電気接続するほか、アンテナ開口部3や導波管5とのインピーダンス調整機能の役目も果たす。 Next, the operation will be described. In FIG. 1, the high-frequency power (signal) transmitted from the waveguide 5 is taken into the dielectric (waveguide) by the waveguide converter 5a, and the surface copper foil 2 and the through hole serving as the ground conductor. It propagates toward the antenna opening 3 through the inside of the dielectric 1 a surrounded by the portion 4. The antenna opening 3 is formed in an array shape and has a long groove shape with a predetermined electrical wavelength length. In addition, the through-hole portion 4 serves not only to electrically connect the copper foil 2a serving as the short-circuit ground conductor and the copper foil 2b serving as the ground conductor, but also serves as an impedance adjustment function with the antenna opening 3 and the waveguide 5.

図4は、図1に示した導波管スロットアンテナ基板表面の部分拡大平面パターン図であり、アンテナ開口部3は、所定の設計中心周波数(fc)に対して寸法幅(W)が0.2mm、寸法長さ(L)が1.7mmであるのに対応して銅箔2aの幅は0.24mm(W)X1.74mm(L)となっている。図中、図1と同一符号は、同一又は相当部分を示す。 FIG. 4 is a partially enlarged plan pattern diagram of the surface of the waveguide slot antenna substrate shown in FIG. 1. The antenna opening 3 has a dimension width (W) of 0. 0 with respect to a predetermined design center frequency (fc). Corresponding to 2 mm and dimension length (L) of 1.7 mm, the width of the copper foil 2 a is 0.24 mm (W) × 1.74 mm (L). In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

次に、この発明の実施の形態1による導波管スロットアンテナ基板の製造方法について図5を用いて説明する。図5において、4aはスルーホール部4形成前の貫通穴部、7は銅めっき層(無電解めっき層)、8は金属層(電解めっき層)、21a及び21bは表面銅箔(銅箔)2a、2bがハーフエッチングにより薄膜化された銅箔を示す。 Next, a method for manufacturing the waveguide slot antenna substrate according to the first embodiment of the present invention will be described with reference to FIG. In FIG. 5, 4a is a through-hole portion before forming the through-hole portion 4, 7 is a copper plating layer (electroless plating layer), 8 is a metal layer (electrolytic plating layer), and 21a and 21b are surface copper foils (copper foil). Reference numerals 2a and 2b denote copper foils that have been thinned by half etching.

図5(a)は銅張積層板(銅張基板)1を表しており、誘電体1aはBTレジン又は汎用のFR−4材料を用いた汎用基材が適当である。表面銅箔2は圧延銅又は電解銅を用いた汎用銅箔が適当であり、2aは誘電体1aの一方の表面側に形成した導箔、2bは誘電体1aの他方の表面側に形成した導箔とする。導箔2は両面にそれぞれ18μm(1/2オンス銅箔)の厚みを有する。銅張積層板1は、銅箔2と基材1aとの接着面をアンカー効果(くい込み)によって強固に接着されている。本実施の形態1では、両面銅張基板を用いて説明しているが、多層のプリプレグを用いた誘電体1aであっても良い。 FIG. 5A shows a copper-clad laminate (copper-clad substrate) 1, and a general-purpose base material using a BT resin or a general-purpose FR-4 material is suitable for the dielectric 1a. The surface copper foil 2 is suitably a general-purpose copper foil using rolled copper or electrolytic copper, 2a is a conductive foil formed on one surface side of the dielectric 1a, and 2b is formed on the other surface side of the dielectric 1a. Use conductive foil. The conductive foil 2 has a thickness of 18 μm (1/2 ounce copper foil) on each side. In the copper-clad laminate 1, the bonding surface between the copper foil 2 and the substrate 1a is firmly bonded by an anchor effect (biting). Although the first embodiment has been described using a double-sided copper-clad substrate, a dielectric 1a using a multilayer prepreg may be used.

図5(b)はハーフエッチング工程を示しており、図4(a)の銅張積層板1をエッチング液を用いて表面銅箔2をハーフエッチングすることで厚さ5〜6μmの銅箔21a、21bを得る。ハーフエッチングは本実施の形態1では銅箔2a、2bの両方を薄膜化したがアンテナ開口部3が一方の面にある場合には銅箔2aのみを薄膜化しても良い。 FIG. 5B shows a half-etching step, and the copper-clad laminate 1 of FIG. 4A is half-etched with the surface copper foil 2 using an etching solution, thereby a copper foil 21a having a thickness of 5 to 6 μm. , 21b is obtained. In half-etching, both copper foils 2a and 2b are thinned in the first embodiment. However, when the antenna opening 3 is on one surface, only the copper foil 2a may be thinned.

図5(c)は、スルーホール部4を形成する穴あけ工程を示しており、等間隔で所望領域にNC(数値制御)で銅張積層板1の表裏を貫通させる貫通穴4aをドリルで形成する。 FIG.5 (c) has shown the drilling process which forms the through-hole part 4, and forms the through-hole 4a which penetrates the front and back of the copper clad laminated board 1 by NC (numerical control) in a desired area | region with equal intervals by a drill To do.

図5(d)は、無電解めっき工程を示しており、化学銅をめっき液とした槽に5〜10分程度銅張積層板1を浸漬し、主として貫通穴(貫通穴部)4aの内壁面に銅めっき層7を施し、誘電体1aの表裏銅箔2の導通を確保する。銅めっき層7は本実施の形態1では、銅材を使用したがニッケル(Ni)材を使用した無電解ニッケルめっきであっても同等の役目を果たす。また、無電解めっき工程は、貫通穴部4aの導通が目的であるので表面銅箔2の貫通穴部4aを除く領域はマスクなどを行って表面にめっき材が付着しないようにしても良い。なお、貫通穴(貫通穴部)4aにめっきが施されたものをスルーホール穴部4と呼ぶ。 FIG.5 (d) has shown the electroless-plating process, the copper clad laminated board 1 is immersed for about 5 to 10 minutes in the tank which used the chemical copper as the plating solution, and the inside of the through-hole (through-hole part) 4a mainly A copper plating layer 7 is applied to the wall surface to ensure conduction between the front and back copper foils 2 of the dielectric 1a. In the first embodiment, the copper plating layer 7 uses a copper material. However, even if it is an electroless nickel plating using a nickel (Ni) material, the copper plating layer 7 plays an equivalent role. In addition, since the electroless plating process is intended to conduct the through hole 4a, a region other than the through hole 4a of the surface copper foil 2 may be masked to prevent the plating material from adhering to the surface. In addition, what plated the through-hole (through-hole part) 4a is called the through-hole hole part 4. FIG.

図5(e)は、写真製版工程を示しており、感光性フォトレジスト(図示せず)を用いて露光・現像後、エッチングし、サイズが0.24mm(W)X1.74mm(L)の所定のアンテナ開口部3を形成する。したがってアンテナ開口部3は周囲が銅箔2で覆われた(囲まれた)抜きパターンとなる。同様にアンテナ開口部3から離間した導波管変換部5aも表面銅箔2を一部剥ぎ取って抜きパターンを形成する。導波管変換部5の形成工程(導波管接続パターン形成工程)は、銅張積層板1の一部パターンを導波管5の形状に合わせて剥ぎ取るだけなのでエッチングにより前工程で予め形成しておいても良い。また、送受信領域の妨げにならない場合には、導波管変換部5は表面銅箔2a側に設置しても良い。 FIG. 5E shows a photolithography process, which is exposed and developed using a photosensitive photoresist (not shown), etched, and has a size of 0.24 mm (W) × 1.74 mm (L). A predetermined antenna opening 3 is formed. Therefore, the antenna opening 3 has a blank pattern in which the periphery is covered (enclosed) with the copper foil 2. Similarly, a part of the surface copper foil 2 is also peeled off from the waveguide conversion portion 5a apart from the antenna opening 3 to form a removal pattern. The formation process of the waveguide conversion part 5 (waveguide connection pattern formation process) is performed in advance in the previous process by etching because only a part of the pattern of the copper-clad laminate 1 is peeled off according to the shape of the waveguide 5. You can keep it. In addition, when it does not interfere with the transmission / reception area, the waveguide converter 5 may be installed on the surface copper foil 2a side.

図5(f)は、電解めっき工程を示しており、電解銅めっき液槽に銅張積層板1を浸漬し、主としてアンテナ開口部3周辺に金属層8を銅めっきすることでアンテナ開口部3の側面(厚み方向)も銅めっきされる。同時に貫通穴部4aの内壁面の導通の強化も図る。導通強化された貫通穴部4aをスルーホール穴部4と呼ぶ。 FIG. 5 (f) shows an electrolytic plating process, in which the copper-clad laminate 1 is immersed in an electrolytic copper plating solution tank, and the antenna layer 3 is mainly plated with a metal layer 8 around the antenna opening 3. The side surface (thickness direction) is also plated with copper. At the same time, the conduction of the inner wall surface of the through-hole portion 4a is enhanced. The through hole 4a with enhanced conduction is referred to as a through hole 4.

なお、本実施の形態1では、金属層8は銅材を使用したが電解金などの金(Au)材を使用した電解金めっきであっても同等の役目を果たす。 In the first embodiment, a copper material is used for the metal layer 8, but an equivalent role is achieved even by electrolytic gold plating using a gold (Au) material such as electrolytic gold.

電解めっき工程におけるめっき厚は機器の使用環境に対するスルーホールの信頼性と基板厚等により設定され、10μm〜30μmが望ましい。本実施の形態1ではスルーホール穴部4のめっき厚を20μm程度としているので電解めっき前工程におけるアンテナ開口部の寸法は設計寸法より幅・長さとも大きい表面形状としている。すなわち、幅・長さで決まる外周より大きい寸法としている。図5中、図1と同一符号は、同一又は相当部分を示す。 The plating thickness in the electrolytic plating process is set according to the reliability of the through hole with respect to the use environment of the equipment, the substrate thickness, etc., and is preferably 10 μm to 30 μm. In the first embodiment, since the plating thickness of the through-hole hole 4 is about 20 μm, the size of the antenna opening in the pre-electrolytic plating process is a surface shape whose width and length are larger than the design size. That is, the dimensions are larger than the outer circumference determined by the width and length. In FIG. 5, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

図6は、銅張積層板1に設置されるアンテナ開口部3の寸法を図4のB−B断面を参考にして説明する図である。銅箔2aには無電解めっき層7が付着するが、写真製版工程でアンテナ開口部3のめっき層はエッチングされる。したがって、感光性フォトレジストサイズで定められた開口部パターン3寸法(W)が形成され0.24mmとなる。同様に開口部パターン3寸法(L)は1.74mmとなる。 FIG. 6 is a diagram for explaining the dimensions of the antenna opening 3 installed in the copper clad laminate 1 with reference to the BB cross section of FIG. Although the electroless plating layer 7 adheres to the copper foil 2a, the plating layer of the antenna opening 3 is etched in the photolithography process. Accordingly, the opening pattern 3 dimension (W) defined by the photosensitive photoresist size is formed to be 0.24 mm. Similarly, the opening pattern 3 dimension (L) is 1.74 mm.

以上のことから、本実施の形態1では、電解めっき工程でめっき後の開口部パターン3寸法(W)を正確に0.20mmとし、開口部パターン3寸法(L)を正確に1.70mmとするため開口部パターン3外周側面に付着する金属層8の側面付着量を制御する。 From the above, in the first embodiment, the dimension (W) of the opening pattern after plating in the electrolytic plating process is accurately set to 0.20 mm, and the dimension (L) of the opening pattern is accurately set to 1.70 mm. Therefore, the amount of side surface adhesion of the metal layer 8 attached to the outer peripheral side surface of the opening pattern 3 is controlled.

図7は、導波管スロットアンテナ基板のアンテナ開口部3の寸法が変化した場合のアンテナ利得に関する周波数特性を説明する図である。fhは通過帯域上限周波数、flは通過帯域下限周波数、fcは通過帯域中心周波数とし、アンテナ開口部3のパターンサイズが1.7mm(L)X0.2mm(W)が最適値とした場合、伝送損失(利得損失)は、所定の通過帯域に対して15μmの寸法偏差で約0.5dB程度、30μmの寸法偏差では1.5dB程度となり、アンテナ開口部3のパターン精度がアンテナ利得損失に大きな影響を及ぼすことが解かる。また所定の通過帯域幅(fl〜fh)に対する利得損失にもずれが発生する。 FIG. 7 is a diagram for explaining the frequency characteristics related to the antenna gain when the dimensions of the antenna opening 3 of the waveguide slot antenna substrate are changed. fh is the passband upper limit frequency, fl is the passband lower limit frequency, fc is the passband center frequency, and the pattern size of the antenna opening 3 is 1.7 mm (L) X 0.2 mm (W) as the optimum value. The loss (gain loss) is about 0.5 dB with a dimensional deviation of 15 μm with respect to a predetermined pass band, and about 1.5 dB with a dimensional deviation of 30 μm, and the pattern accuracy of the antenna opening 3 has a great influence on the antenna gain loss. Can be seen. There is also a shift in gain loss for a predetermined passband width (fl to fh).

図8は、アンテナ開口部3の側面に付着する電解銅の付着時間(浸漬時間)と付着量(付着幅)との関係を示す図である。図8では、電解銅の溶液濃度(A>B)、めっき電流(A>B)、浸漬時間により、30μm程度の側面付着量の変化があることが解かる。この付着量の変化を情報として電解めっき工程で、最適な付着量を塗布する。すなわち、アンテナ開口部3のパターンサイズが1.70mm(L)X0.2mm(W)を最適値とした場合、写真製版工程5(e)後にアンテナ開口部3の外周部寸法を測定(検査)する。そして最適値と測定したそれぞれのアンテナ開口部3寸法の平均値との差分を求めてから電解めっき工程5(f)で、差分に相当する溶液濃度、電解めっきエネルギー(めっき電圧、めっき電流、めっきパルスデュティなど)、若しくは浸漬時間を制御する。 FIG. 8 is a diagram showing the relationship between the adhesion time (immersion time) of electrolytic copper adhering to the side surface of the antenna opening 3 and the adhesion amount (adhesion width). In FIG. 8, it is understood that there is a change in the side surface adhesion amount of about 30 μm depending on the electrolytic copper solution concentration (A> B), the plating current (A> B), and the immersion time. Using this change in adhesion amount as an information, an optimum adhesion amount is applied in the electrolytic plating process. That is, when the pattern size of the antenna opening 3 is 1.70 mm (L) X 0.2 mm (W), the outer peripheral dimension of the antenna opening 3 is measured (inspected) after the photolithography process 5 (e). To do. Then, after obtaining the difference between the optimum value and the average value of the measured dimensions of each antenna opening 3, in electrolytic plating step 5 (f), the solution concentration, electrolytic plating energy corresponding to the difference (plating voltage, plating current, plating) Pulse duration, etc.) or control immersion time.

すなわち、写真製版工程で形成されたアンテナ開口部3のパターン寸法を測定してから電解めっき工程でアンテナ開口部3の外周側面付着量を制御し、アンテナ開口部3の開口面積を縮め所定の寸法に調整する。 That is, after measuring the pattern dimension of the antenna opening 3 formed in the photoengraving process, the amount of adhesion of the outer peripheral side surface of the antenna opening 3 is controlled in the electrolytic plating process to reduce the opening area of the antenna opening 3 to a predetermined dimension. Adjust to.

以上から予め算出された金属層8の塗布量と開口パターン部3の側面付着量との関係(情報)から電解めっき工程で溶液の濃度や浸漬時間を制御して金属層8で囲まれたアンテナ開口部3寸法を最適値に調整するので開口部パターン3の側面付着量の寸法を高精度に制御することが可能となり、アンテナ利得の損失や側面付着量のばらつきにより帯域周波数における中心周波数からの通過損失のずれがあっても仕様で定められた有効通過帯域幅の通過損失のずれを軽減する効果がある。 The antenna surrounded by the metal layer 8 by controlling the concentration of the solution and the immersion time in the electrolytic plating process from the relationship (information) between the coating amount of the metal layer 8 calculated in advance and the side surface adhesion amount of the opening pattern portion 3. Since the size of the opening 3 is adjusted to the optimum value, it is possible to control the size of the side surface adhesion amount of the opening pattern 3 with high accuracy. Even if there is a shift in the pass loss, there is an effect of reducing the shift in the pass loss of the effective pass bandwidth defined in the specification.

実施の形態2.
この発明の実施の形態2による導波管スロットアンテナ基板について図9を用いて説明する。図9は、実施の形態2による導波管スロットアンテナ基板の断面図である。図9において、11は銅張積層板1を介して両面に貼り付けられた誘電体(補強板)であり、アンテナ開口部3や導波管変換部5aの設置領域を除き銅張積層板1を覆う構造としている。図9中、図3と同一符号は、同一又は相当部分を示す。
Embodiment 2. FIG.
A waveguide slot antenna substrate according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 9 is a cross-sectional view of a waveguide slot antenna substrate according to the second embodiment. In FIG. 9, 11 is a dielectric (reinforcing plate) affixed on both sides via the copper-clad laminate 1, and the copper-clad laminate 1 except for the installation area of the antenna opening 3 and the waveguide converter 5a. The structure is covered. 9, the same reference numerals as those in FIG. 3 denote the same or corresponding parts.

次に動作について説明する。表面銅箔2により誘電体導波管を形成している点については実施の形態1と同様である。図9において導波管5から伝送されてきた高周波電力は、導波管変換部5aで誘電体導波管内に取り込まれ、地導体となる表面銅箔2とスルーホール部4とで囲まれた誘電体1aの内部をアンテナ開口部3に向かって伝播する。アンテナ開口部3はアレイ状に構成され、所定の電気波長の長さで長溝形状としている。 Next, the operation will be described. The point that the dielectric waveguide is formed by the surface copper foil 2 is the same as that of the first embodiment. In FIG. 9, the high-frequency power transmitted from the waveguide 5 is taken into the dielectric waveguide by the waveguide converter 5a, and is surrounded by the surface copper foil 2 and the through-hole portion 4 serving as a ground conductor. It propagates through the inside of the dielectric 1 a toward the antenna opening 3. The antenna opening 3 is formed in an array shape and has a long groove shape with a predetermined electrical wavelength length.

また、スルーホール部4は、短絡地導体となる表面銅箔2aと地導体となる表面銅箔2bとを電気接続する。また、誘電体導波管の伝送線路に沿って伝送線路を挟むように誘電体などの補強板11を貼り付けることにより、銅箔2a、2bなどの地導体による伝送線路の機械的強度を強化する構成としている。なお、誘電体に代えて金属板(補強板)を貼り付けることにより、表面銅箔2の地導体を含む伝送線路の電気性能の強化を図っても良く、誘電体や金属板表面に電磁遮蔽塗料や耐湿防止塗料を塗布しても良い。 Further, the through-hole portion 4 electrically connects the surface copper foil 2a serving as the short-circuit ground conductor and the surface copper foil 2b serving as the ground conductor. Moreover, the mechanical strength of the transmission line by the ground conductors such as the copper foils 2a and 2b is enhanced by attaching the reinforcing plate 11 such as a dielectric so as to sandwich the transmission line along the transmission line of the dielectric waveguide. It is configured to do. In addition, the electric performance of the transmission line including the ground conductor of the surface copper foil 2 may be enhanced by attaching a metal plate (reinforcing plate) instead of the dielectric, and electromagnetic shielding is applied to the surface of the dielectric or the metal plate. A paint or moisture-proof paint may be applied.

以上から実施の形態2による導波管スロットアンテナ基板によれば表面銅箔2により誘電体導波管を形成している伝送線路に補強板11を貼り付けさらに補強板11の表面に電磁遮蔽塗料や防湿塗料を施すことにより誘電体導波管の伝送線路の機械的強度を強化するとともに環境条件の変化があっても導波管スロットアンテナ基板の性能を安定に維持する効果がある。 From the above, according to the waveguide slot antenna substrate according to the second embodiment, the reinforcing plate 11 is attached to the transmission line in which the dielectric waveguide is formed by the surface copper foil 2, and the electromagnetic shielding paint is applied to the surface of the reinforcing plate 11. In addition, the mechanical strength of the transmission line of the dielectric waveguide can be enhanced by applying a moisture-proof coating, and the performance of the waveguide slot antenna substrate can be stably maintained even if the environmental conditions change.

この発明の実施の形態1による導波管スロットアンテナ基板の斜視図である。It is a perspective view of the waveguide slot antenna board | substrate by Embodiment 1 of this invention. この発明の実施の形態1による導波管スロットアンテナ基板表面の平面図である。It is a top view of the waveguide slot antenna board | substrate surface by Embodiment 1 of this invention. この発明の実施の形態1による図2に示した導波管スロットアンテナ基板の断面図である。It is sectional drawing of the waveguide slot antenna board | substrate shown in FIG. 2 by Embodiment 1 of this invention. この発明の実施の形態1による導波管スロットアンテナ基板表面の部分拡大平面パターン図である。It is a partial expansion plane pattern figure of the waveguide slot antenna board | substrate surface by Embodiment 1 of this invention. この発明の実施の形態1による導波管スロットアンテナ基板の製造方法を説明する図である。It is a figure explaining the manufacturing method of the waveguide slot antenna board | substrate by Embodiment 1 of this invention. この発明の実施の形態1による導波管スロットアンテナ基板の銅張基板に設置されるアンテナ開口部の寸法を説明する図である。It is a figure explaining the dimension of the antenna opening part installed in the copper clad board | substrate of the waveguide slot antenna board | substrate by Embodiment 1 of this invention. この発明の実施の形態1による導波管スロットアンテナ基板のアンテナ開口部の寸法が変化した場合のアンテナ利得に関する周波数特性を説明する図である。It is a figure explaining the frequency characteristic regarding the antenna gain when the dimension of the antenna opening part of the waveguide slot antenna board | substrate by Embodiment 1 of this invention changes. この発明の実施の形態1による導波管スロットアンテナ基板のアンテナ開口部の側面に付着する電解銅の付着時間と付着量との関係を示す図である。It is a figure which shows the relationship between the adhesion time of the electrolytic copper adhering to the side surface of the antenna opening part of the waveguide slot antenna board | substrate by Embodiment 1 of this invention, and the adhesion amount. この発明の実施の形態2による導波管スロットアンテナ基板の断面図である。It is sectional drawing of the waveguide slot antenna board | substrate by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1・・銅張積層板(銅張基板) 1a・・誘電体(基材) 2・・銅箔(表面銅箔)
2a・・一方の表面銅箔(銅箔) 2b・・他方の表面銅箔(銅箔)
3・・アンテナ開口部(開口部パターン) 4・・スルーホール部
4a・・貫通穴部(貫通穴) 5・・導波管 5a・・導波管変換部(接続部)
6・・接続手段
7・・銅めっき層(無電解めっき層) 8・・金属層(電解めっき層)
11・・補強板 21・・薄膜化された表面銅箔 21a・・銅箔 21b・・銅箔
1 .. Copper-clad laminate (copper-clad substrate) 1a .. Dielectric (base material) 2 .. Copper foil (surface copper foil)
2a .. One surface copper foil (copper foil) 2b .. The other surface copper foil (copper foil)
3. ・ Antenna opening (opening pattern) 4. ・ Through hole 4a ・ ・ Through hole (through hole) 5. ・ Waveguide 5a ・ ・ Waveguide converter (connection part)
6. ・ Connecting means 7 ・ ・ Copper plating layer (electroless plating layer) 8. ・ Metal layer (electrolytic plating layer)
11 .. Reinforcement plate 21 .. Thinned surface copper foil 21a ... Copper foil 21b ... Copper foil

Claims (3)

銅張基板の銅箔をエッチングし、この銅箔の膜厚を減少させるハーフエッチング工程と、前記銅箔の所望領域に貫通穴部を設ける穴あけ工程と、前記銅張基板を溶液に浸し前記銅箔と前記貫通穴部の内壁面とを導電化する無電解めっき工程と、前記所望領域以外の領域に周囲が銅箔で囲まれたアンテナ開口部をエッチングにより形成する写真製版工程と、前記アンテナ開口部と離間した前記所望領域以外の領域に周囲が銅箔で囲まれた導波管変換部をエッチングにより形成する導波管接続パターン形成工程と、形成された前記アンテナ開口部の寸法を測定する検査工程と、前記貫通穴部の内壁面に積層すると共に前記アンテナ開口部の外周に積層する金属層を形成する電解めっき工程とを備え、予め算出された前記金属層の塗布量と前記アンテナ開口部の側面付着量との情報から前記電解めっき工程で溶液の濃度、めっきエネルギー、若しくは浸漬時間を制御して前記アンテナ開口部の開口面積を縮め所定の寸法にする前記導波管スロットアンテナ基板の製造方法。 Etching the copper foil of the copper-clad substrate and reducing the film thickness of the copper foil; a drilling step of providing a through hole in a desired region of the copper foil; and immersing the copper-clad substrate in a solution An electroless plating step for making the foil and the inner wall surface of the through hole portion conductive, a photoengraving step for etching to form an antenna opening surrounded by a copper foil in a region other than the desired region, and the antenna A waveguide connection pattern forming step for etching to form a waveguide converter surrounded by copper foil in a region other than the desired region apart from the opening, and measuring the dimensions of the formed antenna opening And an electroplating step of forming a metal layer that is laminated on the inner wall surface of the through-hole portion and that is laminated on the outer periphery of the antenna opening, The waveguide slot antenna having a predetermined size by reducing the opening area of the antenna opening by controlling the concentration of the solution, the plating energy, or the dipping time in the electrolytic plating process based on the information about the amount of the side opening of the opening. A method for manufacturing a substrate. 前記貫通穴部は、前記導波管変換部から前記アンテナ開口部までの両側に沿って設けられ、前記貫通穴部を障壁として前記銅張基板の内部を伝播する高周波電力の伝送路を構成する請求項1に記載の導波管スロットアンテナ基板の製造方法。 The through hole is provided along both sides from the waveguide converter to the antenna opening, and constitutes a transmission path for high-frequency power propagating through the copper-clad substrate using the through hole as a barrier. A method for manufacturing a waveguide slot antenna substrate according to claim 1. 前記アンテナ開口部はアレイ状に設置された請求項1又は2に記載の導波管スロットアンテナ基板の製造方法。 The method of manufacturing a waveguide slot antenna substrate according to claim 1 or 2, wherein the antenna openings are arranged in an array.
JP2008287788A 2008-11-10 2008-11-10 Method of manufacturing waveguide slot antenna substrate Pending JP2010114826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287788A JP2010114826A (en) 2008-11-10 2008-11-10 Method of manufacturing waveguide slot antenna substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287788A JP2010114826A (en) 2008-11-10 2008-11-10 Method of manufacturing waveguide slot antenna substrate

Publications (1)

Publication Number Publication Date
JP2010114826A true JP2010114826A (en) 2010-05-20

Family

ID=42303007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287788A Pending JP2010114826A (en) 2008-11-10 2008-11-10 Method of manufacturing waveguide slot antenna substrate

Country Status (1)

Country Link
JP (1) JP2010114826A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190720A (en) * 2013-03-26 2014-10-06 Mitsubishi Electric Corp Radar device
CN105680135A (en) * 2014-10-16 2016-06-15 现代摩比斯株式会社 Transit structure of waveguide and dielectric waveguide
WO2019142409A1 (en) * 2018-01-19 2019-07-25 株式会社フジクラ Antenna
CN111129716A (en) * 2020-01-15 2020-05-08 大连理工大学 5G mobile terminal antenna system working in millimeter wave and Sub-6G frequency bands and application thereof
JP2021111938A (en) * 2020-01-15 2021-08-02 株式会社東芝 Antenna device and search device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190720A (en) * 2013-03-26 2014-10-06 Mitsubishi Electric Corp Radar device
CN105680135A (en) * 2014-10-16 2016-06-15 现代摩比斯株式会社 Transit structure of waveguide and dielectric waveguide
WO2019142409A1 (en) * 2018-01-19 2019-07-25 株式会社フジクラ Antenna
JP2019125985A (en) * 2018-01-19 2019-07-25 株式会社フジクラ antenna
US11223122B2 (en) 2018-01-19 2022-01-11 Fujikura Ltd. Antenna
CN111129716A (en) * 2020-01-15 2020-05-08 大连理工大学 5G mobile terminal antenna system working in millimeter wave and Sub-6G frequency bands and application thereof
JP2021111938A (en) * 2020-01-15 2021-08-02 株式会社東芝 Antenna device and search device
JP7228536B2 (en) 2020-01-15 2023-02-24 株式会社東芝 Antenna device and search device

Similar Documents

Publication Publication Date Title
JP6269127B2 (en) High frequency module and manufacturing method thereof
TWI665943B (en) Multi-layer flexible printed wiring board and manufacturing method thereof
US7317245B1 (en) Method for manufacturing a semiconductor device substrate
JP5198105B2 (en) Manufacturing method of multilayer flexible printed wiring board
JP2014523120A (en) Method of manufacturing rigid flexible printed circuit board and rigid flexible printed circuit board
JP2007128970A (en) Manufacturing method of multilayer wiring board having cable section
JP2006287034A (en) Manufacturing method of wiring substrate utilizing electrolytic plating
JP2010114826A (en) Method of manufacturing waveguide slot antenna substrate
US7665208B2 (en) Through hole forming method
JP2008016482A (en) Manufacturing method of multilayer printed wiring board
WO2009131182A1 (en) Flex-rigid wiring board and method for manufacturing the same
JP2006237088A (en) Method of manufacturing multilayer printed wiring board
JP3259873B2 (en) Flex-rigid multilayer board for high frequency circuits
US20050062160A1 (en) Double-sided wiring circuit board and process for producing the same
JP2012243836A (en) Flexible wiring board and manufacturing method of the same
KR20140098675A (en) Wiring substrate and method for manufacturing the same
CN114423186B (en) Radar antenna PCB manufacturing process and antenna pattern manufacturing process and application thereof
JP2741238B2 (en) Flexible printed wiring board and method of manufacturing the same
JP2007281303A (en) Printed wiring board, and its manufacturing method
JPH1197491A (en) Manufacturing for double sided tape carrier
CN114286507B (en) Double-sided FPC and manufacturing method thereof
JP2005072256A (en) Method of manufacturing substrate and multilayer substrate and satellite broadcast receiver
JP4023339B2 (en) Wiring board manufacturing method
JP2006128291A (en) Multilayered printed wiring board, manufacturing method thereof and electronic device
JPH10290544A (en) Thick film printed coil and its manufacture