JPS59220622A - Torque detector - Google Patents

Torque detector

Info

Publication number
JPS59220622A
JPS59220622A JP9540783A JP9540783A JPS59220622A JP S59220622 A JPS59220622 A JP S59220622A JP 9540783 A JP9540783 A JP 9540783A JP 9540783 A JP9540783 A JP 9540783A JP S59220622 A JPS59220622 A JP S59220622A
Authority
JP
Japan
Prior art keywords
rotation angle
phase difference
torque
signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9540783A
Other languages
Japanese (ja)
Inventor
Hideki Obayashi
秀樹 大林
Tokio Kohama
時男 小浜
Toshikazu Ina
伊奈 敏和
Seiichi Narita
成田 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP9540783A priority Critical patent/JPS59220622A/en
Priority to US06/529,865 priority patent/US4592241A/en
Publication of JPS59220622A publication Critical patent/JPS59220622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/109Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving measuring phase difference of two signals or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1435Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving magnetic or electromagnetic means

Abstract

PURPOSE:To adjust the initial value of a phase difference to a desired value by providing a phase adjustment circuit section having a phase adjuster, a frequenty-voltage converter and a saw-tooth wave generation circuit. CONSTITUTION:As an output shaft 10a rotates with the clutch 13 disengaged, a rotor 20 rotates with the transmission of a rotating force of a rotor 10 through plate springs 30. In such a case, despite a non-load state, when there is a phase difference (to) between the falling of a rotation angle (a) generated from a shaping circuit 51 connected to an electromagnetic pickup head 43a and the falling of a rotation angle signal (b) generated from a shaping circuit 51, a square wave signal (d) from a comparator 55 and a rotation angle signal (b) from the shaping circuit 51 are ORed with an OR gate 56 by adjusting a voltage VR of a phase adjuster 54 with an adjusting screw 54a to generate a correction circuit signal (e). Thus, the phase difference (to) is brought to zero or a specified value initially at a high accuracy with ease.

Description

【発明の詳細な説明】 本発明はトルク検出装置に関する。[Detailed description of the invention] The present invention relates to a torque detection device.

従来、トルク検出装置としては、例えば、駆動側出力軸
とこの出力軸に同軸的に配置した被駆動側入力軸との間
に連結されて前記出方軸が回転したとき前記出力軸にが
がる負荷に応じて弾性変形を生じる弾性部材と、前記出
方軸の回転角とこの回転角に対応する前記入力軸の回転
角との位相差を検出して、この検出結果を、前記弾性部
材の弾性変形量に対応したトルクを表わすトルク信号と
して発生ずるトルク信号発注手段とにより構成したもの
がある。
Conventionally, a torque detection device is connected, for example, between a driving side output shaft and a driven side input shaft disposed coaxially with this output shaft, so that when the output shaft rotates, there is a gap in the output shaft. detects the phase difference between the rotation angle of the output shaft and the rotation angle of the input shaft corresponding to this rotation angle; There is a device constructed by a torque signal ordering means that generates a torque signal representing the torque corresponding to the amount of elastic deformation of the torque signal.

しかしながら、このような構成においては、例えば、上
述した出力軸及び入力軸に一対の回転体をそれぞれ互い
に対向して取付けてこれら両回転体の回転角間の位相差
を前記トルク信号発生手段により検出するようにしてい
るため、この位相差の初期値が、両回転体の前記出方軸
、入力軸に対する各取付誤差等により、トルク検出装置
毎にバラツキ−義的に定まり難いという不具合があった
However, in such a configuration, for example, a pair of rotating bodies are attached to the output shaft and the input shaft, respectively, facing each other, and the phase difference between the rotation angles of these two rotating bodies is detected by the torque signal generating means. Therefore, there is a problem in that the initial value of this phase difference is difficult to define due to variations in each torque detection device due to mounting errors of the two rotating bodies with respect to the output shaft and the input shaft.

本発明は、このような不具合に対処してなされたもので
、その目的とするところは、上述した位相差の初期値を
所望の値に調整するようにしたトルク検出装置を提供す
ることにある。
The present invention has been made to address these problems, and an object of the present invention is to provide a torque detection device that adjusts the initial value of the above-mentioned phase difference to a desired value. .

かかる目的を達成するにあたり、本発明の構成上の特徴
は、上述したトルク検出装置おいて、前記トルク信号発
生手段が、前記位相差の初期値を所望の値に調整する調
整手段を具備して、この調整手段による調整結果との関
連により前記位相差を検出するようにしたことにある。
In order to achieve such an object, a structural feature of the present invention is that in the above-mentioned torque detection device, the torque signal generating means includes an adjusting means for adjusting the initial value of the phase difference to a desired value. , the phase difference is detected in relation to the adjustment result by the adjustment means.

しかして、このように本発明を構成したことにより、上
述した位相差に不適正な初期値が生じても、この位相差
の初期値を、前記調整手段による調整のみによって、容
易にしかも精度良く所望の値に調整することができ、そ
の結果、常に適正なトルク検出が可能となる。
By configuring the present invention in this manner, even if an inappropriate initial value of the above-mentioned phase difference occurs, the initial value of this phase difference can be easily and accurately adjusted only by the adjustment means. It can be adjusted to a desired value, and as a result, appropriate torque detection is always possible.

以下、本発明の一実施例を図面により説明すると、第1
図は、本発明が適用された車両用トルク検出装置の一例
を示している。このトルク検出装置は、トルクセンサS
を有しており、トルクセンサSは、回転体10と、この
回転体10に対向した環状の回転体20を備えている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The figure shows an example of a vehicle torque detection device to which the present invention is applied. This torque detection device is a torque sensor S
The torque sensor S includes a rotating body 10 and an annular rotating body 20 facing the rotating body 10.

回転体10ば、その環状ボス11を、車両用原動機の出
力軸10aの先端軸支部に嵌装して複数のボルト12〜
12により取付けられており、一方回転体20は、その
内周縁部21にて、環状ボス11の段部11aにこれに
対し相対回転可能にかつ軸方向には移動不能に嵌装され
ている。
The rotary body 10 is fitted with its annular boss 11 into the end shaft support of the output shaft 10a of the vehicle prime mover, and the plurality of bolts 12-
12, and the rotating body 20 is fitted at its inner peripheral edge 21 into the stepped portion 11a of the annular boss 11 so as to be rotatable relative thereto but immovable in the axial direction.

両回転体10.20間には、複数の板バネ30〜30が
、第1図及び第2図に示すごとく、その各両端部を、環
状ボス11の外周部及び回転体20の環状段部22にそ
れぞれ嵌入して、等角度間隔にかつ半径方向に放射状に
連結されており、これら各板バネ30〜30は、回転体
10の回転下にてクラッチ13の係合時に回転体20に
かかる負荷に応じて回転体10とは反対方向に撓みを生
じる。この場合、各板バネ30〜30の撓み量は、原動
機のトルクに対応する。なお、クラッチ13は、その入
力軸13aを出力軸10aに同軸的に配設してなり、そ
の係合時にはクラッチプレート13bをタラソチフェー
シング13Cにより回転体20の背面に圧接してこの回
転体20と一体的に回転する。
As shown in FIGS. 1 and 2, a plurality of leaf springs 30 to 30 are arranged between the two rotating bodies 10 and 20, with their respective ends connected to the outer periphery of the annular boss 11 and the annular stepped portion of the rotating body 20. 22 and are radially connected at equal angular intervals and in the radial direction, and each of these leaf springs 30 to 30 is applied to the rotating body 20 when the clutch 13 is engaged while the rotating body 10 rotates. Deflection occurs in the opposite direction to the rotating body 10 depending on the load. In this case, the amount of deflection of each leaf spring 30 to 30 corresponds to the torque of the prime mover. The clutch 13 has its input shaft 13a disposed coaxially with the output shaft 10a, and when engaged, the clutch plate 13b is pressed against the back surface of the rotating body 20 by the thalassochi facing 13C. rotates integrally with.

両回転体10.20の各外周縁部には、複数の突起14
.23が互いに対応する角度位置にて等角度間隔でもっ
て形成されており、これら各突起14.23には本発明
の要部を構成する検出機構40がクラッチハウジング1
3bに組付けられて対向している。検出機構4oは、ケ
ーシング41を有しており、このケーシング41は、一
対の筒部41a、41bを、それぞれ両回転体1o、2
0の各突起14.23に対向するように、クラッチハウ
ジング13bに挿通させるとともに、フランジ部41c
 (第3図参照)を複数のネジ42〜42によりクラッ
チハウジング13bに締着して組付けられている。なお
、第1図にて、符号24はリングギアを示す。
A plurality of protrusions 14 are provided on each outer peripheral edge of both rotating bodies 10.20.
.. 23 are formed at equal angular intervals at angular positions corresponding to each other, and each of these protrusions 14, 23 is provided with a detection mechanism 40, which constitutes a main part of the present invention, on the clutch housing 1.
3b and facing each other. The detection mechanism 4o has a casing 41, and the casing 41 connects a pair of cylinder parts 41a and 41b to both rotating bodies 1o and 2, respectively.
The flange portion 41c is inserted through the clutch housing 13b so as to face each protrusion 14.23 of 0.
(see FIG. 3) is fastened and assembled to the clutch housing 13b with a plurality of screws 42-42. In addition, in FIG. 1, the reference numeral 24 indicates a ring gear.

ケーシング41の両筒部41a、4Ib内には、一対の
電磁ピンクアンプヘッド43a、43bが、それぞれ、
両筒部41a、41’bの各先端開口部を通して両突起
14.23を臨みこれら突起と磁気的関係を形成するよ
うに挿入されている。しかして、電磁ピンクアンプヘッ
ド43aは、回転体10の各突起14に順次対向したと
きこれら各々を磁気的に順次検出し一連の検出信号とし
て発生し、一方電磁ビツクアンプヘッド43bは、回転
体20の各突起23に順次対向したときこれら各々を磁
気的に順次検出し一連の検出信号として発生する。なお
、電磁ピンクアンプヘッド43aからの各検出信号は、
図示しない整形回路により波形整形されて順次回転角信
号a (第5図参照)として発生される。
Inside the cylindrical parts 41a and 4Ib of the casing 41, a pair of electromagnetic pink amplifier heads 43a and 43b are installed, respectively.
It is inserted so as to face both protrusions 14 and 23 through the respective tip openings of both cylindrical parts 41a and 41'b and to form a magnetic relationship with these protrusions. Thus, when the electromagnetic pink amplifier head 43a sequentially faces each protrusion 14 of the rotating body 10, it sequentially magnetically detects each protrusion 14 and generates a series of detection signals, while the electromagnetic pink amplifier head 43b When facing each of the protrusions 23 in sequence, each of these is sequentially detected magnetically and generated as a series of detection signals. Note that each detection signal from the electromagnetic pink amplifier head 43a is
The waveform is shaped by a shaping circuit (not shown) and sequentially generated as a rotation angle signal a (see FIG. 5).

また、ケーシング41内に組付けた配線基板44上には
、本発明の要部を構成する位相調整回路部Mが配線接続
されており、この位相調整回路部Mは、第4図に示すご
とく、電磁ピンクアップヘッド43bに接続した整形回
路51と、この整形回路51に接続した周波数−電圧変
換器52(以下、F−V変換器52という)と、整形回
路51及びF−V変換器52に接続した鋸歯抜歯発生回
路53を備えている。整形回路51は、電磁ピソクアソ
プヘソド43bからの各検出信号を波形整形して回転角
信号b(第5図参照)として発生する。F−V変換器5
2は、整形回路51からの各回転角信号すの周波数をこ
れに比例したアナログ電圧に変換する。
Further, on the wiring board 44 assembled in the casing 41, a phase adjustment circuit section M constituting the main part of the present invention is wire-connected, and this phase adjustment circuit section M is as shown in FIG. , a shaping circuit 51 connected to the electromagnetic pink-up head 43b, a frequency-voltage converter 52 (hereinafter referred to as F-V converter 52) connected to this shaping circuit 51, and shaping circuit 51 and F-V converter 52. The sawtooth extraction generating circuit 53 is connected to the sawtooth extraction generating circuit 53. The shaping circuit 51 shapes the waveform of each detection signal from the electromagnetic assemblies 43b and generates a rotation angle signal b (see FIG. 5). F-V converter 5
2 converts the frequency of each rotation angle signal from the shaping circuit 51 into an analog voltage proportional to the frequency.

鋸歯上歯発生回路53は、演算増幅器53aと、両抵抗
53b、53Cと、コンデンサ53dと、アナログスイ
ッチ53eを有しており、アナログスイッチ53eは、
整形回路51からの各回転角信2号すの立下りに応答し
てゲートを開き、抵抗53bとコンデンサ53.dとの
間に充電回路を形成せしめるとともに、各回転角信号す
の立上りに応答してゲートを閉じ、抵抗53Cとコンデ
ンサ53dとの間に放電回路(前記充電回路よりも小さ
な時定数を有する)を形成せしめる。演算増幅器−53
aば、前記充電回路の形成と同時に、F−V変換器52
からのアナログ電圧を受けて鋸歯状波信号C(第5図参
照)の上昇波形部分を形成し、かつ前記放電回路の形成
と同時に鋸歯状波信号Cの下降波形部分を形成する。か
かる場合、鋸歯状波信号Cの上昇波形部分の傾き、則ち
前記充電回路の充電速度がF−V変換器52からのアナ
ログ電圧に比例して定まり、また前記充電回路の充電時
間が整形回路51からの各回転角信号すの周波数に反比
例して定まるので、前記比例及び反比例の各定数を適当
に設定することにより、鋸歯状波信号Cのピーク値Vp
 (第5図参照)が回転角信号すの周波数とは関係なく
一定になるようにしである。
The sawtooth generation circuit 53 includes an operational amplifier 53a, resistors 53b and 53C, a capacitor 53d, and an analog switch 53e.
In response to the fall of each rotation angle signal 2 from the shaping circuit 51, the gate is opened, and the resistor 53b and capacitor 53. A charging circuit is formed between the resistor 53C and the capacitor 53d, the gate is closed in response to the rise of each rotation angle signal, and a discharging circuit (having a smaller time constant than the charging circuit) is formed between the resistor 53C and the capacitor 53d. to form. Operational amplifier-53
a. At the same time as forming the charging circuit, the F-V converter 52
A rising waveform portion of the sawtooth wave signal C (see FIG. 5) is formed in response to an analog voltage from the sawtooth wave signal C (see FIG. 5), and a falling waveform portion of the sawtooth wave signal C is formed at the same time as the discharge circuit is formed. In such a case, the slope of the rising waveform portion of the sawtooth wave signal C, that is, the charging speed of the charging circuit is determined in proportion to the analog voltage from the F-V converter 52, and the charging time of the charging circuit is determined in proportion to the shaping circuit. Since the peak value Vp of the sawtooth wave signal C is determined inversely proportional to the frequency of each rotation angle signal C from 51, the peak value Vp of the sawtooth wave signal C can be determined by appropriately setting each of the proportional and inverse proportional constants.
(see FIG. 5) is made constant regardless of the frequency of the rotation angle signal.

位相調整器54は、ポテンショメータからなるもので、
調整ネジ54a (第1図及び第3図参照)の調整のも
とに、直流電源からの給電電圧を分圧し、摺動子54b
から位相調整電圧VRを生じる。
The phase adjuster 54 is composed of a potentiometer.
Under the adjustment of the adjustment screw 54a (see Figures 1 and 3), the voltage supplied from the DC power supply is divided, and the slider 54b
A phase adjustment voltage VR is generated from the phase adjustment voltage VR.

かかる場合、腑整ネジ54aの調整は、ケーシング41
の土壁に設けた開口41dを通して行うようになってい
る。コンパレータ55は、鋸歯状波発生回路53からの
鋸歯状波信号Cを位相調整器54からの位相調整電圧V
Rと比較して、鋸歯状波信号Cのレベルが位相調整電圧
VRより低いとき矩形波信号d(第5図参照)を発生す
るとともに、鋸歯状波信号Cのレベルが位相調整電圧V
Rより高いとき矩形波信号dを消滅させる。この場  
  ・合、矩形波信号dの立下りは、整形回路51がら
の回転信号すの立下り、Uμぢ鋸歯状波発生回路53か
らの鋸歯状波信号Cの立上りよりも位相差to (第5
図参照)だけ遅れており、この位相差toに対応する回
転角差θは、原動機の同一負荷のもとにおける回転速度
(即ち回転角信号すの周波数)の変化とは関係なく一定
となる。ORゲート56は、整形回路51がらの各回転
角信号す及びコンパレータ55からの矩形波信号dを受
けて修正回転角信号e (第5図参照)を発生する。こ
の場合、修正回転角信号eの立下りは、矩形波信号dの
立下りに一致する。なお、第1図にて、符号60はトル
ク信号発生回路を示し、このトルク信号発生回路60は
、ケーシング41の開口41eを通して配線基板上に接
続したコネクタ61により、ORゲート56及び電磁ピ
ソクアソプヘソト41aに接続されている。
In such a case, the adjustment of the adjustment screw 54a is performed using the casing 41.
This is done through an opening 41d provided in the earthen wall. The comparator 55 converts the sawtooth wave signal C from the sawtooth wave generation circuit 53 into a phase adjustment voltage V from the phase adjuster 54.
R, when the level of the sawtooth wave signal C is lower than the phase adjustment voltage VR, a rectangular wave signal d (see FIG. 5) is generated, and the level of the sawtooth wave signal C is lower than the phase adjustment voltage V.
When higher than R, the rectangular wave signal d disappears. this place
・In this case, the fall of the rectangular wave signal d is smaller than the fall of the rotation signal S from the shaping circuit 51, and the phase difference to (5th
The rotation angle difference θ corresponding to this phase difference to remains constant regardless of changes in the rotation speed (that is, the frequency of the rotation angle signal) under the same load of the prime mover. The OR gate 56 receives each rotation angle signal from the shaping circuit 51 and the rectangular wave signal d from the comparator 55, and generates a corrected rotation angle signal e (see FIG. 5). In this case, the fall of the corrected rotation angle signal e coincides with the fall of the rectangular wave signal d. In FIG. 1, reference numeral 60 indicates a torque signal generation circuit, and this torque signal generation circuit 60 is connected to the OR gate 56 and the electromagnetic pinsocket by a connector 61 connected to the wiring board through the opening 41e of the casing 41. It is connected to the heel 41a.

以上のように構成した本実施例において、クラッチ13
の非係合状態にて出方軸10aが回転すると、回転体2
0が回転体1oの回転力を各板バネ3°0〜30を介し
て伝達されて回転する。かがる場合、各板ハネ30〜3
oが出力軸10aの無負荷状態における回転下にて撓み
を生じていないにもかかわらず、電磁ピックアンプヘッ
ド43aに接続した整形回路から生じる回転角信号aの
立下りが、整形回路51がら生じる回転角信号すの立下
りとの間において、第5図に示すごとく、位相差to(
適宜な波形観察手段により知ることができる)を生じて
いるものとすれば、位相調整器54から生じる位相調整
電圧VRを調整ネジ54aにより弱整して、鋸歯状波発
生回路53がら整形回路51及びF−V変換器52との
協働により生じる鋸歯状波信号Cのレベルと位相調整電
圧■Rとの交点を調整しつつ、コンパレータ55がら鋸
歯状波発生回路53と位相調整器54との協働により生
じる矩形波信号d及び整形回路51がらの回転角信号す
の論理和をORゲート56によりとって修正回転角信号
eを発生させる。換言すれば、p1回転体10.20の
組付誤差、各突起14゜23の加工誤差に起因して、回
転体1oが無負荷状態にて回転しているにもかかわらず
、両回転体1.0.20の互いに対応する各突起14.
24間に角度位置のずれ及び両電磁ピンクアップヘッド
4.3a、43b間の機能差が存在し両回転角信号a、
bの各立下り間に第5図に示すごとく位相差toが生じ
ていても、回転体10の回転速度に関係なく、位相調整
器54の調整のみによりかかる位相差toを初期的に精
度よく容易に零とすることができる。かかる場合は、両
回転体10.20の入出力軸への組付後に位相調整器5
4の調整により位相調整すればよいので、両回転体10
,20における突起の加工精度、両回転体10.20の
組付精度が低くてもよく、生産コストの低減につながる
。また、位相調整器54が、クラッチハウジング13b
に組付けたケーシング41内に外部から調整し易いよう
に設けられているので、トルク検出装置の組付後、その
場において、入出力軸の回転状態を観察しつつ位相調整
できて作業性の改善に役立フ。
In this embodiment configured as described above, the clutch 13
When the output shaft 10a rotates in the disengaged state, the rotating body 2
0 rotates by transmitting the rotational force of the rotating body 1o through each leaf spring 3°0 to 30. When overcasting, each plate has 30 to 3
Even though the output shaft 10a is not bent under the rotation of the output shaft 10a under no load, the rotation angle signal a generated from the shaping circuit connected to the electromagnetic pick amplifier head 43a falls due to the shaping circuit 51. As shown in FIG. 5, there is a phase difference to(
(which can be determined by an appropriate waveform observation means), the phase adjustment voltage VR generated from the phase adjuster 54 is slightly adjusted by the adjustment screw 54a, and the sawtooth wave generation circuit 53 is changed to the shaping circuit 51. While adjusting the intersection point between the level of the sawtooth wave signal C generated by the cooperation with the F-V converter 52 and the phase adjustment voltage The rectangular wave signal d generated by the cooperation and the rotation angle signal S from the shaping circuit 51 are logically summed by an OR gate 56 to generate a corrected rotation angle signal e. In other words, due to the assembly error of the p1 rotary body 10.20 and the machining error of each protrusion 14°23, both rotary bodies 1 Each protrusion 14.0.20 corresponds to each other.
There is a difference in the angular position between the two electromagnetic pink-up heads 4.3a and 43b, and the two rotation angle signals a,
Even if a phase difference to occurs as shown in FIG. 5 between each falling edge of b, the phase difference to can be initially accurately adjusted only by adjusting the phase adjuster 54, regardless of the rotational speed of the rotating body 10. It can be easily made zero. In such a case, after assembling both rotors 10 and 20 to the input and output shafts, the phase adjuster 5
Since the phase can be adjusted by adjusting step 4, both rotating bodies 10
, 20 and the assembly accuracy of both rotating bodies 10 and 20 may be low, leading to a reduction in production costs. Further, the phase adjuster 54
Since the torque detection device is installed in the casing 41 assembled in the casing 41 so as to be easily adjusted from the outside, after the torque detection device is assembled, the phase can be adjusted on the spot while observing the rotational state of the input/output shaft, which improves work efficiency. Helpful for improvement.

このような状態にて、フランチ13の係合により負荷が
増大すると、これに応じて各板ハネ30〜30に撓みが
生じ、両回転体10.20の各突起14.23間の位相
差が増大し、回転角信号a及び修正回転角信号eの各立
下り間に位相差もが生じる。すると、トルク信号発生回
路が回転角信号a及び修正回転角信号eに応答してその
位相差tを計算し、予め定めた位相差tとトルク(以下
トルクτという)との間の直線関係τ−Kt/T(第6
図参照)に基き計算位相差tに応じトルクτを計算し、
これをトルク信号として発生する。
In such a state, when the load increases due to the engagement of the flange 13, each of the plate springs 30 to 30 is deflected accordingly, and the phase difference between the protrusions 14 and 23 of both rotating bodies 10 and 20 is reduced. As a result, a phase difference also occurs between each falling edge of the rotation angle signal a and the corrected rotation angle signal e. Then, the torque signal generation circuit calculates the phase difference t in response to the rotation angle signal a and the corrected rotation angle signal e, and calculates the linear relationship τ between the predetermined phase difference t and torque (hereinafter referred to as torque τ). -Kt/T (6th
(see figure), calculate the torque τ according to the calculated phase difference t,
This is generated as a torque signal.

かかる場合、上述したごとく両回転角信号a、  b間
の立下り位相差は無負荷時に零となるように初期調整済
み故、トルク信号の値では各板ハネ3゜の撓み量に精度
よく比例したものとなる。
In such a case, as mentioned above, the falling phase difference between the two rotation angle signals a and b has been initially adjusted so that it becomes zero when no load is applied, so the torque signal value is accurately proportional to the amount of deflection of each plate spring by 3 degrees. It becomes what it is.

なお、前記実施例においては、無負荷状態における両回
転角信号a、b間の位相差を零に初期調整する場合につ
いて説明したが、これに代えて、両回転角信号a、b間
の無負荷時位相差を所定の値に初期調整するようにして
もよい。
In the above embodiment, a case was described in which the phase difference between the rotation angle signals a and b in the no-load state is initially adjusted to zero, but instead of this, the phase difference between the rotation angle signals a and b may be The phase difference under load may be initially adjusted to a predetermined value.

また、本発明の実施にあたっては、一対の回転体間の位
相差に基きトルクを検出する検出手段であれば、電磁ピ
ンクアップヘットを採用したものに限ることなく、どの
ような検出手段であっても、本発明を適用して実施する
ことにより前記実施例と同様の作用効果を達成できる。
Furthermore, in carrying out the present invention, any detection means that detects torque based on the phase difference between a pair of rotating bodies is not limited to one that employs an electromagnetic pink up head. By applying and carrying out the present invention, the same effects as those of the above-mentioned embodiments can be achieved.

また、前記実施例においては、位相調整回路部Mにより
電磁ピソクアソプヘソド4.3 bがらの検出信号を位
相調整する例について説明したが、これに代えて、電磁
ビソクアソプヘノド43aがらの検出信号を位相調整す
るようにしてもよい。
Furthermore, in the embodiment described above, an example has been described in which the phase adjustment circuit section M adjusts the phase of the detection signal from the electromagnetic associator 4.3b. Alternatively, the phase of the detection signal may be adjusted.

また、前記実施例においては、本実施例発明を車両用ト
ルク検出装置に適用した例について説明したが、これに
限ることはなく、駆動側出方軸と被駆動側入力軸との間
の回転角位相差をトルクとして検出するにあたり本実施
例発明を適用し得る。
Further, in the above embodiment, an example in which the present invention is applied to a torque detection device for a vehicle has been described, but the present invention is not limited to this, and the rotation between the drive side output shaft and the driven side input shaft is The present invention can be applied to detecting an angular phase difference as torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、トルクセンサの一実施例を示す断面図、第2
図は、1−ルクセンサの部分拡大破断面、第3図は検出
機構の破断平面図、第4図は、第1図における位相調整
回路部の電気回路図、第5図は、第4図における各回路
素子の出方波形図、及び第6図は位相差とトルクの関係
を示すグラフである。 符号の説明 10a・・・出力軸、13a・・・クチ・7チの入力軸
、30・・・板ハネ、4o・・・検出機構、43a、4
3b・・・電磁ピソクアソブヘソド、54・・・位相調
整器、Go・・・トルク信号発生回路、M・・・位相調
整回路部。 出願人  株式会社日本自動車部品総合研究所(ほか]
名) 代理人  弁理士  長 谷 照 − 第5図 h 第6図
FIG. 1 is a sectional view showing one embodiment of the torque sensor, and FIG.
The figure shows a partially enlarged fractured surface of the 1-lux sensor, FIG. 3 is a fractured plan view of the detection mechanism, FIG. 4 is an electrical circuit diagram of the phase adjustment circuit in FIG. 1, and FIG. The output waveform diagram of each circuit element and FIG. 6 are graphs showing the relationship between phase difference and torque. Explanation of symbols 10a... Output shaft, 13a... Input shaft of tip/7 tip, 30... Plate blade, 4o... Detection mechanism, 43a, 4
3b...Electromagnetic pressure assembly, 54...Phase adjuster, Go...Torque signal generation circuit, M...Phase adjustment circuit section. Applicant: Japan Auto Parts Research Institute Co., Ltd. (and others)
Name) Agent Patent Attorney Teru Hase - Figure 5 h Figure 6

Claims (1)

【特許請求の範囲】[Claims] 駆動側出力軸とこの出力軸に同軸的に配置した被駆動側
入力軸との間に連結されて前記出力軸が回転したとき前
記入力軸にかかる負荷に応じて弾性変形を生じる弾性部
材と、前記出力軸の回転角とこの回転角に対応する前記
入力軸の回転角との間の位相差を検出して、この検出結
果を、前記弾性部材の弾性変形量に対応したトルクを表
わすトルク信号として発生ずる1−ルク信号発生手段と
を備えたトルク検出装置において、前記トルク信号発生
手段が、前記位相差の初期値を所望の値に調整する調整
手段を具備して、この調整手段による調整結果との関連
により前記位相差を検出するようにしたことを特徴とす
るトルク検出装置。
an elastic member connected between a driving-side output shaft and a driven-side input shaft disposed coaxially with the output shaft, and elastically deforms in response to a load applied to the input shaft when the output shaft rotates; The phase difference between the rotation angle of the output shaft and the rotation angle of the input shaft corresponding to this rotation angle is detected, and this detection result is converted into a torque signal representing the torque corresponding to the amount of elastic deformation of the elastic member. In the torque detection device, the torque signal generating means is provided with an adjusting means for adjusting the initial value of the phase difference to a desired value, and the torque signal generating means is provided with an adjusting means for adjusting the initial value of the phase difference to a desired value, and the adjustment by the adjusting means is A torque detection device characterized in that the phase difference is detected in relation to a result.
JP9540783A 1982-09-08 1983-05-30 Torque detector Pending JPS59220622A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9540783A JPS59220622A (en) 1983-05-30 1983-05-30 Torque detector
US06/529,865 US4592241A (en) 1982-09-08 1983-09-07 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9540783A JPS59220622A (en) 1983-05-30 1983-05-30 Torque detector

Publications (1)

Publication Number Publication Date
JPS59220622A true JPS59220622A (en) 1984-12-12

Family

ID=14136817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9540783A Pending JPS59220622A (en) 1982-09-08 1983-05-30 Torque detector

Country Status (1)

Country Link
JP (1) JPS59220622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217863A1 (en) * 2014-02-06 2015-08-06 Bell Helicopter Textron Inc. Variable hub-to-hub phasing rotor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217863A1 (en) * 2014-02-06 2015-08-06 Bell Helicopter Textron Inc. Variable hub-to-hub phasing rotor system
US9889927B2 (en) * 2014-02-06 2018-02-13 Bell Helicopter Textron Inc. Variable hub-to-hub phasing rotor system
US10549849B1 (en) 2014-02-06 2020-02-04 Bell Helicopter Textron Inc. Variable hub-to-hub phasing rotor system

Similar Documents

Publication Publication Date Title
US4592241A (en) Torque detector
KR910009242B1 (en) Torque control apparatus for rotating motor machine
US7772836B2 (en) Device for detecting absolute angle of multiple rotation and angle detection method
KR920004045A (en) Vibration generator
GB2062875A (en) Rotation and axial displacement transducers
JPS6244604B2 (en)
WO2005095062A1 (en) Impact type fastening tool
JPS61182546A (en) Method of monitoring torque
JPH0712506A (en) Angle position sensor
JP2008082879A (en) Device and method for measuring torsional vibration
JPS59220622A (en) Torque detector
JPH06254775A (en) Power rotary tool having torque detection and automatic stopping mechanism
EP0726452A2 (en) Angular displacement signalling device
CN114323656B (en) Electromechanical integrated rotary excitation device capable of generating high-low frequency excitation force simultaneously
Godler et al. Torque control of harmonic drive gears with built-in sensing
JPS6229007B2 (en)
JPH06225550A (en) Ultrasonic motor
EP0571886A1 (en) Apparatus for measuring angular acceleration
JPS63290182A (en) Torque control type rotary motor machine
JP3089323B2 (en) Ultrasonic motor
JP4387046B2 (en) Rotation position sensor
JPS6323585A (en) Torque control rotary motor
WO2023105957A1 (en) Actuator
CN113760012B (en) Rotary driving device and method for correcting systematic error of rotary driving device
WO2021200631A1 (en) Drive control system