JP2008082879A - Device and method for measuring torsional vibration - Google Patents

Device and method for measuring torsional vibration Download PDF

Info

Publication number
JP2008082879A
JP2008082879A JP2006263037A JP2006263037A JP2008082879A JP 2008082879 A JP2008082879 A JP 2008082879A JP 2006263037 A JP2006263037 A JP 2006263037A JP 2006263037 A JP2006263037 A JP 2006263037A JP 2008082879 A JP2008082879 A JP 2008082879A
Authority
JP
Japan
Prior art keywords
rotating shaft
torsional vibration
rotation
detection signal
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006263037A
Other languages
Japanese (ja)
Inventor
Tatsuo Yamashita
達雄 山下
Toshio Hirano
俊夫 平野
Ikuo Saito
育夫 齊藤
Masayuki Ichimonji
正幸 一文字
Hidehiko Kuroda
英彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006263037A priority Critical patent/JP2008082879A/en
Publication of JP2008082879A publication Critical patent/JP2008082879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply, easily and accurately measure fine torsional vibration with a simple constitution. <P>SOLUTION: A gear 13 is arranged on a rotation shaft 10, a detector 14 is arranged facedly to the gear 13, the detector 14 detects projections and depressions of the gear 13 in interlock with rotation and driving of the rotation shaft 10, a continuous reference detection signal corresponding to one rotation of the rotation shaft 10 in a non-excited state of torsional vibration is obtained, the period of the reference detection signal waveform is compared with the period of the same order of the continuous reference detection signal waveform corresponding to one rotation of the rotation shaft 10 in the excited state of torsional vibration, and the torsion angle displacement is determined for each time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば大型火力タービン、発電機ユニット等の回転軸のねじり角変位変動を測定するのに用いられるねじり振動測定装置及びその方法に関する。   The present invention relates to a torsional vibration measuring apparatus and method used for measuring torsional angular displacement fluctuations of a rotating shaft of, for example, a large thermal turbine or a generator unit.

一般に、この種のねじり振動測定装置としては、非接触型のセンサを用いて回転軸等の回転体のねじり振動を測定するものが各種提案されている(例えば、特許文献1及び2参照)。   In general, as this type of torsional vibration measuring device, various types of devices that measure the torsional vibration of a rotating body such as a rotating shaft using a non-contact type sensor have been proposed (see, for example, Patent Documents 1 and 2).

ところで、このようなねじり振動測定装置は、回転軸のねじり振動変位を測定する場合、被検出部として、例えば鋼材等の磁性体で形成した歯車を回転軸に嵌着して配し、この歯車の歯先に対して周知の電磁ピックアップ等の検出器が対向配置される。この検出器は、回転軸が回転駆動されると、その回転に伴い歯車の歯先が順に対向されて、その凹凸に伴う距離の差に応じた誘導電流を発生し、電流の増減を繰り返す電気信号を検出信号波形として出力する。
この検出信号波形は、例えば図17に示すように回転軸の回転速度と歯車の凹凸の間隔に基づく周期(Ti)をもち、その凹凸のわずかな形状の差異に応じた周期差を持つ。この周期(Ti)は、連続して順に算出される。
By the way, in such a torsional vibration measuring device, when measuring the torsional vibration displacement of the rotating shaft, a gear formed of a magnetic material such as a steel material is fitted and arranged on the rotating shaft as the detected portion. A known detector such as an electromagnetic pickup is disposed opposite to the tooth tip. In this detector, when the rotation shaft is driven to rotate, the tooth tips of the gears are sequentially opposed with the rotation, and an induced current is generated according to the difference in distance due to the unevenness, and the electric current is repeatedly increased and decreased. The signal is output as a detection signal waveform.
For example, as shown in FIG. 17, this detection signal waveform has a period (Ti) based on the rotational speed of the rotary shaft and the interval between the irregularities of the gears, and has a period difference corresponding to a slight difference in shape of the irregularities. This period (Ti) is calculated sequentially in sequence.

例えば1回転分等の一定個数周期(Ti)を加重平均して基準周期(T)として求める。ねじり振動は、発生すると、ねじりの周期が含まれて周期(Ti)と違った周期(ti)が計測される。   For example, a fixed number of cycles (Ti) such as one rotation is weighted and averaged to obtain a reference cycle (T). When the torsional vibration is generated, a period (ti) different from the period (Ti) including the period of torsion is measured.

その他、測定したい状態における検出信号波形の周期(ti)と基準周期(T)と、例えば別の検出器で検出した回転軸の1回転の周期(TN)として、ねじり角変位変動(Δθi)、すなわちねじり振動を求める回転角変位変動が
ねじり角変位(Δθi)=(検出信号波形の周期(ti)−基準周期(T))/1回転の周期(TN)×360°
の式に基づいて算出される。
In addition, as a period (ti) and a reference period (T) of the detection signal waveform in a state to be measured, and a period (TN) of one rotation of the rotating shaft detected by another detector, for example, torsional angular displacement fluctuation (Δθi), That is, the rotational angular displacement fluctuation for obtaining the torsional vibration is: torsional angular displacement (Δθi) = (period of detection signal waveform (ti) −reference period (T)) / 1 period of rotation (TN) × 360 °
It is calculated based on the following formula.

また、基準パルス発生器を備えて、図18に示すように検出信号波形の周期(ti)の平均から基準周期(T)を算出するのでなく、歯車の歯数に対応する一定周期(Tp)の基準周期信号を発生させ、これを基準周期として、この基準周期(Tp)と検出信号波形の周期(ti)とに基づいて回転角変位変動(Δθi)を算出する方法がある。
即ち、いずれも検出信号波形の基準周期(T)、あるいは一定周期(Tp)と、検出信号波形の周期(ti)とに基づいてねじり角変位変動が算出されている。
特開平6−3078922号公報 特開2005−106638号公報
In addition, a reference pulse generator is provided, and the reference period (T) is not calculated from the average of the periods (ti) of the detection signal waveform as shown in FIG. 18, but a constant period (Tp) corresponding to the number of gear teeth. There is a method in which the reference angular signal is generated and the rotational angular displacement fluctuation (Δθi) is calculated based on the reference period (Tp) and the period (ti) of the detection signal waveform.
In other words, the torsional angular displacement fluctuation is calculated based on the reference period (T) or constant period (Tp) of the detection signal waveform and the period (ti) of the detection signal waveform.
Japanese Patent Laid-Open No. 6-3078922 JP-A-2005-106638

しかしながら、上記ねじり振動測定装置では、回転軸のねじり角変位変動が微小で、歯車の歯の間隔のバラツキ量に比較して小さい場合、そのバラツキ量を加重平均により求めた基準周期と、歯車の歯の設置間隔に応じた検出信号波形の周期とからねじり角変動変位量を算出しているために、歯の間隔のバラツキが、ねじり角変位変動として測定してしまい、正確な測定が困難となる。   However, in the above torsional vibration measuring device, when the fluctuation of the torsional angular displacement of the rotating shaft is small and small compared to the amount of variation in the gear tooth spacing, the variation amount is obtained by a weighted average and the gear period. Since the torsional angle variation displacement amount is calculated from the period of the detection signal waveform corresponding to the tooth installation interval, the variation in the tooth interval is measured as torsional angular displacement variation, making accurate measurement difficult. Become.

例えば大型の火力タービン・発電機ユニットにおいては、発電運用中、負荷の急激な増加、減少あるいは送電系統の故障等による負荷の急激な変化により、発電機に作用するトルクが急激に作用変化して、タービンを含むタービン・発電機軸系全体にねじり固有振動が励振されることがある。また、このような大型の火力タービン・発電機ユニットには、その軸系の質量とねじり剛性の分布に基づく、最も低い次数のねじり固有振動を、数Hzから十数Hz程度と、回転速度より低い周波数のねじり固有振動数を持つものがあり、負荷の急激な変化により、その各固有振動が励振され、軸系が持つ減衰特性に応じて振動することがある。
ところが、この回転軸を含む軸系の長さは、30m、40m以上もあり、その先端と後端との間で、ねじり角度が数度に及ぶ場合がある。このねじり変位変動を妨げようとする減衰は、回転軸を構成する材料の持つ減衰程度であり、その振動の減衰速度が比較的遅く、長い時間振動を続けてしまう場合、回転軸に繰り返し疲労が発生する虞を有する。
そこで、上記大型の火力タービン・発電機ユニットにおいては、その回転軸系に対して上記ねじり振動測定装置を組付け配置して、その検出信号波形の周期を算出することにより、回転軸の回転速度と共に、ねじり振動を測定する方法が採られている。
For example, in a large-scale thermal turbine / generator unit, the torque acting on the generator suddenly changes during a power generation operation due to a sudden increase or decrease in load or a sudden change in load caused by a power transmission system failure. The torsional natural vibration may be excited in the entire turbine / generator shaft system including the turbine. In addition, in such a large thermal turbine / generator unit, the lowest order torsional natural vibration based on the distribution of the mass of the shaft system and torsional rigidity is about several Hz to several tens of Hz, which is based on the rotational speed. Some have a low frequency torsional natural frequency, and each natural vibration is excited by a sudden change in the load, and may vibrate according to the damping characteristics of the shaft system.
However, the length of the shaft system including this rotating shaft is 30 m, 40 m or more, and the torsion angle may reach several degrees between the front end and the rear end. The attenuation that hinders the torsional displacement fluctuation is about the attenuation of the material that constitutes the rotating shaft. If the damping speed of the vibration is relatively slow and the vibration continues for a long time, the rotating shaft is repeatedly fatigued. There is a risk of occurrence.
Therefore, in the large thermal turbine / generator unit, the rotational speed of the rotary shaft is calculated by assembling and arranging the torsional vibration measuring device on the rotary shaft system and calculating the period of the detection signal waveform. In addition, a method for measuring torsional vibration is employed.

ここで、測定の対象となるねじり振動は、ねじり角変位、すなわちねじり振動振幅が大きく、その製作精度に影響を受けることがないうえ、その振動数が回転軸の回転速度に比して遅いことで、計測誤差の無い正確な測定が可能である。このため、ねじり振動測定装置は、軸系の回転軸の回転速度を、制御あるいは監視するために用いられる被検出対象である歯車と検出器が流用されている。   Here, the torsional vibration to be measured has a large torsional angular displacement, that is, the torsional vibration amplitude, and is not affected by its manufacturing accuracy, and its frequency is slower than the rotational speed of the rotating shaft. Thus, accurate measurement without measurement error is possible. For this reason, in the torsional vibration measuring apparatus, gears and detectors to be detected used for controlling or monitoring the rotational speed of the rotating shaft of the shaft system are diverted.

また、その振動数が回転軸の回転速度より遅いため、1回転に要する時間の変化を連続して測定することで、ねじり振動測定ができるため、回転軸に設ける検出対象物として、周方向に凹凸を有する複数の歯を持つ歯車を用いることなく、円周上の1点に設置して、その回転周期を測定するように構成することにより、検出対象物の設置精度に影響を受けることなく、正確に測定することが可能である。   In addition, since the vibration frequency is slower than the rotation speed of the rotating shaft, torsional vibration can be measured by continuously measuring the change in time required for one rotation. Without being affected by the installation accuracy of the object to be detected, it can be installed at one point on the circumference without using a gear having a plurality of teeth with irregularities, and its rotational period is measured. It is possible to measure accurately.

ところが、上記大型の火力タービン・発電機ユニットでは、その発電運用中において、送電系統の端末に接続された電動機等の負荷の状態に応じて逆相電流が発生するために、この逆相電流によって、送電系統の2倍の周波数の変動トルクが発電機の回転子に作用する。この回転子、すなわち回転軸は、原動機であるタービン軸と連結され、原動機を介して回転駆動される。そして、タービン軸は、流体が持つ熱エネルギを回転運動エネルギに変換する翼を備えており、発電機軸、タービン軸、翼及びこれらを連結する締結部品で回転軸系が構成されている。   However, in the large-scale thermal turbine / generator unit, during the power generation operation, a negative phase current is generated according to the state of the load of the electric motor connected to the terminal of the transmission system. Fluctuating torque having a frequency twice that of the power transmission system acts on the rotor of the generator. The rotor, that is, the rotating shaft is connected to a turbine shaft, which is a prime mover, and is rotationally driven via the prime mover. The turbine shaft includes blades that convert thermal energy of the fluid into rotational kinetic energy, and a rotating shaft system is configured by the generator shaft, the turbine shaft, the blades, and the fastening parts that connect these blades.

上記逆相電流は、発電機の回転軸に対して送電系統の2倍の周波数の変動トルク、すなわちねじり加振として作用し、上記回転軸系が励振されて、軸系のねじり固有振動数と一致すると、共振して繰り返し疲労を発生させる。そのため、発電する電気の周波数の2倍、すなわち100Hzあるいは120Hz等に基づく周波数範囲内に軸系の固有振動数を持たないように軸系を製作することが、信頼性を確保するうえで重要であり、その実際の測定検証が必要となる。   The reverse phase current acts as a fluctuation torque having a frequency twice that of the power transmission system on the rotating shaft of the generator, that is, torsional excitation, and the rotating shaft system is excited to generate the torsional natural frequency of the shaft system. If they match, it will resonate and cause repeated fatigue. For this reason, it is important to ensure the reliability of the shaft system so that it does not have the natural frequency of the shaft system within the frequency range based on twice the frequency of electricity to be generated, that is, 100 Hz or 120 Hz. Yes, actual measurement verification is required.

しかし、上記回転速度と同じ振動数のねじり振動を測定するためには、回転軸表面2つ以上の被検出対象物を設置する必要があり、被検出対象物を、例えば正確に180°間隔に設置することができれば、ねじり振動の正確な測定が可能であるが、実際のところ正確に設置することが困難なために、検出信号波形の周期にずれが生じて、正確な振動測定が困難である
また、対象となるねじり固有振動数が100Hz、あるいは120Hz付近の場合には、回転速度の2倍以上の振動数であるため、回転軸の表面の円周上に設置する検出対象物が回転軸の表面に4つ以上設置する必要がある。この場合には、さらに設置作業が困難となり、正確な振動測定が困難となる。
However, in order to measure the torsional vibration having the same frequency as the rotational speed, it is necessary to install two or more objects to be detected on the surface of the rotating shaft. If it can be installed, accurate measurement of torsional vibrations is possible, but since it is actually difficult to install accurately, deviations occur in the period of the detection signal waveform, making accurate vibration measurement difficult. In addition, when the target torsional natural frequency is 100 Hz or near 120 Hz, the detection target placed on the circumference of the surface of the rotating shaft rotates because the frequency is more than twice the rotational speed. It is necessary to install four or more on the surface of the shaft. In this case, installation work becomes more difficult, and accurate vibration measurement becomes difficult.

一方、発電機の回転軸に作用する逆相電流の量は、できるだけ小さくなるように送電系統が製作され、また送電系統の端末に接続されている負荷の運用状態により刻々と変化するが、多くの場合、微小な量である。従って、軸系が発電機に作用する逆相電流により加振されても、著しく共振しない限り、軸系に生じるねじり振動振幅、すなわち、ねじり角変位変動が微小量であるために、軸系のねじり固有振動数を正確に測定することが困難である。   On the other hand, the amount of the reverse-phase current that acts on the rotating shaft of the generator is made to be as small as possible, and the transmission system is manufactured, and it changes every moment depending on the operating condition of the load connected to the terminal of the transmission system. In this case, it is a minute amount. Therefore, even if the shaft system is vibrated by a reverse-phase current acting on the generator, unless it resonates significantly, the torsional vibration amplitude generated in the shaft system, that is, the torsional angular displacement fluctuation is very small. It is difficult to accurately measure the torsional natural frequency.

そこで、大型の火力タービン・発電機ユニットを送電系統から切断した状態で、発電機の発電端を1線地絡して励振し、無効電力を生じさせて運転することにより、一定量の逆相電流を発電機に発生させ、軸系をねじり加振させて、ねじり固有振動を励振させ、実際のねじり固有振動を確認する確認試験がある。
逆相電流を多く発生させ、強い加振を行うことにより、上記ねじり振動測定装置を用いて測定可能であるが、大きなねじり振動が生じると、軸系が繰り返し疲労を起こすことで、繰り返し疲労するまでの強い加振を加えることができないため、正確な測定を行うことが困難である。
Therefore, with a large thermal turbine / generator unit disconnected from the power transmission system, the generator end of the generator is excited by grounding one line to generate reactive power. There is a confirmation test in which current is generated in the generator, the shaft system is torsionally excited, the torsional natural vibration is excited, and the actual torsional natural vibration is confirmed.
It is possible to measure with the above torsional vibration measuring device by generating a large amount of negative phase current and applying strong vibration. However, if a large torsional vibration occurs, the shaft system will repeatedly fatigue and fatigue repeatedly. Therefore, it is difficult to perform accurate measurement.

そこで、送電系統の2倍付近の周波数の微小なねじり振動は、ねじり振動している回転軸の表面に生じる0.0001%程度の僅かな歪み変動量を計測することにより、測定する方法が採られている。
ところが、上記測定方法では、回転軸の表面に複数の歪みゲージで構成されるホイートストンブリッジを設置して、このホイートストンブリッジに対して電圧を印加する電源を接続配置すると共に、検出した歪み変動信号を伝送する伝送装置を配さなければならないために、装置が複雑で、非常に大掛かりとなるうえ、その火力タービン・発電機ユニットへの組付け作業が非常に面倒であるという不都合を有する。
Therefore, a method of measuring minute torsional vibration having a frequency near twice that of the power transmission system by measuring a slight distortion fluctuation amount of about 0.0001% generated on the surface of the rotating shaft that is torsionally vibrating. It has been.
However, in the measurement method described above, a Wheatstone bridge composed of a plurality of strain gauges is installed on the surface of the rotating shaft, and a power source for applying a voltage to the Wheatstone bridge is connected and arranged, and the detected strain fluctuation signal is transmitted. Since a transmission device for transmission has to be provided, the device is complicated and very large, and the assembly work to the thermal turbine / generator unit is very troublesome.

この発明は、上記の事情に鑑みてなされたもので、簡易な構成で、且つ、簡便にして容易に微小なねじり振動の高精度な測定を実現し得るようにしたねじり振動測定装置及びその方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a torsional vibration measuring apparatus and method capable of realizing simple and easy high-accuracy measurement of minute torsional vibrations with a simple configuration. The purpose is to provide.

この発明は、回転軸の軸回りに配置され、一体に回転される被検出部と、この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期を比較してねじり角変位変動量を算出する演算手段とを備えてねじり振動測定装置を構成した。   The present invention provides a detected part that is arranged around the axis of a rotating shaft and is rotated integrally with the detected part, and is arranged to be opposed to the detected part and is rotated integrally with the rotating shaft. Detecting means for detecting a part and outputting a detection signal; and a detection signal waveform for one rotation of the rotating shaft detected by the detecting means in a state where torsional vibration is not applied to the rotating shaft. An arithmetic operation for calculating a torsional angular displacement fluctuation amount by comparing a period and a period of a detection signal waveform for one rotation of the rotating shaft detected by the detecting means in a state where torsional vibration is applied to the rotating shaft. And a torsional vibration measuring device.

上記構成によれば、ねじり振動の加振されていない状態における回転軸1回転分の連続した検出信号波形の周期と、ねじり振動の加振された状態における回転軸1回転分の連続した検出信号波形の同一順番の周期を順に比較してねじり角変位を求めていることにより、時刻に対するねじり角変位変動量を算出することができる。従って、被検出部の配置精度に制約を受けることなく、正確なねじり角変位変動の測定が可能となり、ねじり振動の振幅、周波数等の高精度な振動特性を求めることできる。   According to the above configuration, the period of the continuous detection signal waveform for one rotation of the rotating shaft in a state where the torsional vibration is not applied, and the continuous detection signal for one rotation of the rotating shaft in the state where the torsional vibration is applied. By calculating the torsional angular displacement by sequentially comparing the cycles in the same order of the waveforms, the torsional angular displacement fluctuation amount with respect to time can be calculated. Therefore, accurate torsional angular displacement fluctuations can be measured without being restricted by the placement accuracy of the detected portion, and highly accurate vibration characteristics such as torsional vibration amplitude and frequency can be obtained.

また、この発明は、回転軸の軸回りに配置され、一体に回転される被検出部と、この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形を比較してねじり角変位変動量を算出する演算手段とを備えてねじり振動測定装置を構成した。   In addition, the present invention is arranged around the axis of the rotation shaft, and the detected portion that is rotated integrally with the detection portion, and is arranged so as to face the detected portion, and is rotated integrally with the rotation shaft. Detection means for detecting a detected portion and outputting a detection signal; and detection signal for one rotation of the rotary shaft detected by the detection means in a state where torsional vibration is not applied to the rotary shaft A calculating means for calculating a torsional angular displacement fluctuation amount by comparing a waveform with a detection signal waveform for one rotation of the rotating shaft detected by the detecting means in a state where torsional vibration is applied to the rotating shaft; A torsional vibration measuring device was configured.

上記構成によれば、ねじり振動の加振されていない状態における回転軸1回転分の連続した検出信号波形と、ねじり振動の加振された状態における回転軸1回転分の連続した検出信号波形を順に比較してねじり角変位を求めていることにより、時刻に対するねじり角変位変動量を算出することができる。従って、被検出部の配置精度に制約を受けることなく、正確なねじり角変位変動の測定が可能となり、ねじり振動の振幅、周波数等の高精度な振動特性を求めることできる。   According to the above configuration, the continuous detection signal waveform for one rotation of the rotating shaft in a state where the torsional vibration is not applied, and the continuous detection signal waveform for one rotation of the rotating shaft in the state where the torsional vibration is applied. By calculating the torsional angular displacement by comparison in order, the torsional angular displacement fluctuation amount with respect to time can be calculated. Therefore, accurate torsional angular displacement fluctuations can be measured without being restricted by the placement accuracy of the detected portion, and highly accurate vibration characteristics such as torsional vibration amplitude and frequency can be obtained.

以上述べたように、この発明によれば、簡易な構成で、且つ、簡便にして容易に微小なねじり振動の高精度な測定を実現し得るようにしたねじり振動測定装置及びその方法を提供することができる。   As described above, according to the present invention, there is provided a torsional vibration measuring apparatus and method which can realize a highly accurate measurement of minute torsional vibrations with a simple configuration and easily. be able to.

以下、この発明の実施の形態に係るねじり振動測定装置及びその方法について、図面を参照して詳細に説明する。   Hereinafter, a torsional vibration measuring apparatus and method according to embodiments of the present invention will be described in detail with reference to the drawings.

図1は、この発明の一実施の形態に係るねじり振動測定装置を示すもので、大型の火力タービン・発電機ユニット等の回転子である回転軸10は、支持架台11上に軸受部12を介して回転自在に設置される。そして、この回転軸の一端には、被検出部を構成する歯車13が嵌着される。この歯車13には、その歯先に対して検出手段を構成する、例えば電磁ピックアップ等の検出器14が所定の隙間を有して対向配置される。この検出器14は、図2に示すように取付け治具15を用いて例えば回転軸10の支持架台11に取付けられ、演算手段を構成する演算処理部16に接続される。
演算処理部16は、例えば図3に示すように1回転周期検出部161に上記検出部14の出力端が接続される。この1回転周期検出部161は、波形周期計数部162に接続され、上記検出器14を介して入力された検出信号を例えば図4に示すように、低い電圧から高い電圧に変化する途中で一定の電圧をしきい値として、しきい値を横切る時間の間隔から回転軸1回転分の検出信号波形の周期を算出して波形周期計数部162に出力する。なお、この検出信号波形としては、電流の変化に変換された信号であってもよい。
FIG. 1 shows a torsional vibration measuring apparatus according to an embodiment of the present invention. A rotary shaft 10 which is a rotor of a large-scale thermal turbine / generator unit or the like has a bearing 12 on a support frame 11. It is installed so that it can rotate freely. And the gearwheel 13 which comprises a to-be-detected part is fitted by the end of this rotating shaft. A detector 14 such as an electromagnetic pickup, which constitutes a detecting means for the tooth tip, is disposed opposite to the gear 13 with a predetermined gap. As shown in FIG. 2, this detector 14 is attached to, for example, the support base 11 of the rotary shaft 10 using an attachment jig 15, and is connected to an arithmetic processing unit 16 constituting arithmetic means.
In the arithmetic processing unit 16, for example, as shown in FIG. 3, the output end of the detection unit 14 is connected to the one rotation period detection unit 161. This one-rotation period detector 161 is connected to the waveform period counter 162 and is constant during the change of the detection signal input via the detector 14 from a low voltage to a high voltage as shown in FIG. The period of the detection signal waveform corresponding to one rotation of the rotating shaft is calculated from the time interval crossing the threshold, and the voltage is output to the waveform period counter 162. The detection signal waveform may be a signal converted into a change in current.

上記波形周期計数部162は、スイッチ163の可動接点aに接続され、検出信号波形の周期を求めてスイッチ163の可動接点aに出力する。このスイッチ163は、その固定接点bに基準波形周期記憶部164の入力端が接続され、その固定接点cにねじり角度演算部165の一方の入力端が接続される。そして、このスイッチ163は、図示しない制御部により切換え制御され、例えば、上記回転軸10にねじり振動が加振されていない状態で、その可動接点aが、固定接点bに切換え設定され、該回転軸10にねじり振動が加振された状態で、固定接点cに切換え設定される。   The waveform cycle counting unit 162 is connected to the movable contact a of the switch 163, obtains the cycle of the detection signal waveform, and outputs it to the movable contact a of the switch 163. The switch 163 has the fixed contact b connected to the input end of the reference waveform cycle storage unit 164 and the fixed contact c connected to one input end of the torsion angle calculation unit 165. The switch 163 is controlled to be switched by a control unit (not shown). For example, the movable contact a is switched to the fixed contact b while the torsional vibration is not applied to the rotary shaft 10, and the rotation is performed. In a state where torsional vibration is applied to the shaft 10, the setting is switched to the fixed contact c.

上記ねじり角度演算部165には、その他方の入力端に上記基準波形周期記憶部164の出力端が接続され、その出力端には、D/A変換部166の入力端が接続される。ねじり角度演算部165は、基準波形周期記憶部164に記憶されるねじり振動の加わらない基準検出信号波形と、スイッチ163を介して入力されるねじり振動発生後の検出信号波形とに基づいてねじり角変位を測定データとして求めてD/A変換部166に出力する。D/A変換部166は、入力した測定データをデジタル/アナログ変換してアナログデータに変換する。   The torsion angle calculation unit 165 is connected to the other input end of the reference waveform cycle storage unit 164 and the output end of the D / A conversion unit 166. The torsion angle calculation unit 165 is based on the reference detection signal waveform to which torsional vibration is not applied, which is stored in the reference waveform cycle storage unit 164, and the detection signal waveform after occurrence of torsional vibration input via the switch 163. The displacement is obtained as measurement data and output to the D / A converter 166. The D / A converter 166 performs digital / analog conversion on the input measurement data and converts it into analog data.

また、この演算処理部16のD/A変換部166には、例えば回転軸系の寿命を評価する分析部17の第1及び第2の演算部171,172が接続される。この第1及び第2の演算部171,172の各出力端は、第1の比較処理部173の一方の入力端が接続され、上記D/A変換部166からの測定データに基づいて計測部位におけるねじり角度変位変動及びねじり角度最大値を算出して、第1の比較処理部173に出力する。この第1の比較処理部173には、その他方の入力端に第1のメモリ部174の出力端が接続され、その出力端に第3の演算部175が接続される。   The D / A conversion unit 166 of the arithmetic processing unit 16 is connected to, for example, first and second arithmetic units 171 and 172 of the analysis unit 17 that evaluates the life of the rotating shaft system. Each output terminal of the first and second arithmetic units 171 and 172 is connected to one input terminal of the first comparison processing unit 173, and the measurement part is based on the measurement data from the D / A conversion unit 166. The torsional angle displacement fluctuation and the torsional angle maximum value are calculated and output to the first comparison processing unit 173. In the first comparison processing unit 173, the output terminal of the first memory unit 174 is connected to the other input terminal, and the third arithmetic unit 175 is connected to the output terminal.

上記第1のメモリ部174には、回転軸10の軸系を構成する回転軸系全体のねじり振動応答特性として、例えばタービン軸、発電機軸、及びこれらの回転軸に付属する翼、締結ボルト・ナット等の回転軸系全体の質量、ねじり剛性、減衰特性に基づく一定量のねじり振動の加振に対するねじり振動特性である軸系各部の振動振幅及び周波数、その各部の形状に基づく各部の変動応力、回転軸系の回転速度と回転直径に基づく遠心力により生じる引張り応力や発電出力に応じた伝達トルク、回転軸形状に基づくねじり応力や回転軸の熱変形に基づく圧縮や引張り応力等の運転中に回転軸系の各部に生じる定常応力等が記憶される。   The first memory unit 174 includes, for example, a turbine shaft, a generator shaft, blades attached to these rotating shafts, fastening bolts, Fluctuation stress of each part based on the vibration amplitude and frequency of each part of the shaft system, which is the torsional vibration characteristics for the excitation of a certain amount of torsional vibration based on the mass, torsional rigidity, and damping characteristics of the entire rotating shaft system such as nuts During operation, such as tensile stress generated by centrifugal force based on the rotational speed and diameter of the rotating shaft system, transmission torque according to the power generation output, torsional stress based on the rotating shaft shape, and compression and tensile stress based on thermal deformation of the rotating shaft The steady stress generated in each part of the rotating shaft system is stored.

第1の比較処理部173は、上記第1及び第2の演算部171,172からの計測部位におけるねじり角度変位変動及びねじり角度最大値データに基づいて、第1のメモリ部174に記憶される特性データの回転軸系全体のねじり振動応答特性情報の中から必要部位のねじり振動応答特性を選択して第3の演算部175に出力する。第3の演算部175は、計測部位におけるねじり角度変位変動及びねじり角度最大値データと、回転軸系の必要部位のねじり振動応答特性とに基づいて回転軸系計における必要部位のねじり振動応答を算出する。   The first comparison processing unit 173 is stored in the first memory unit 174 based on the torsion angle displacement variation and the torsion angle maximum value data at the measurement site from the first and second arithmetic units 171 and 172. The torsional vibration response characteristic of the necessary part is selected from the torsional vibration response characteristic information of the entire rotation axis system of the characteristic data, and is output to the third calculation unit 175. The third calculation unit 175 calculates the torsional vibration response of the necessary part in the rotation axis system meter based on the torsional angle displacement fluctuation and torsion angle maximum value data in the measurement part and the torsional vibration response characteristics of the necessary part of the rotation axis system. calculate.

第3の演算部175には、第2の比較処理部176の一方の入力端が接続され、この第2の比較処理部176の他方の入力端には、第2のメモリ部177が接続される。この第2のメモリ部177には、例えば回転軸系を構成している各部材の大きさと、繰返し回数及び定常応力に対する強度である疲労強度等の部材強度特性データが各部材毎に記憶される。   One input terminal of the second comparison processing unit 176 is connected to the third calculation unit 175, and the second memory unit 177 is connected to the other input terminal of the second comparison processing unit 176. The The second memory unit 177 stores, for each member, member strength characteristic data such as fatigue strength, which is the strength of each member constituting the rotating shaft system, the number of repetitions, and the strength against steady stress, for example. .

第2の比較処理部176は、寿命評価部178に接続され、第3の演算部175からの回転軸系の必要部位のねじり振動応答に基づいて第2のメモリ部177に記憶される記憶情報の中から回転軸系の必要部位の情報を選択して寿命評価部178に出力する。寿命評価部178は、第3の演算部175からの回転軸系の必要部位のねじり振動応答と、第2のメモリ部177から選択した必要部位を構成する部材の記録情報とに基づいて回転軸系の必要部位の疲れ寿命の評価が行われる。   The second comparison processing unit 176 is connected to the life evaluation unit 178, and stored information stored in the second memory unit 177 based on the torsional vibration response of the necessary part of the rotating shaft system from the third calculation unit 175. The information on the necessary part of the rotating shaft system is selected from among the information and output to the life evaluation unit 178. The life evaluation unit 178 determines the rotation axis based on the torsional vibration response of the necessary part of the rotation axis system from the third arithmetic unit 175 and the recorded information of the members constituting the necessary part selected from the second memory unit 177. An assessment of the fatigue life of the necessary parts of the system is performed.

上記構成において、ねじり振動を測定する場合、回転軸10にねじり振動が加振されていない状態において、回転軸10の回転駆動に連動して回転する歯車13の凹凸(歯先と歯元)が検出器14で検出される。この検出器14で検出された検出信号は、1回転周期検出部161に入力され、該1回転周期検出部161で、上述したように検出信号波形が1回転分の歯車13の凹凸の間隔に応じた周期を連続して検出し、1回転分の連続した検出信号波形の周期を波形周期計数部162に出力する。波形周期計数部162は、図4に示すように回転軸10の1回転の検出信号波形の周期(Ti)(ti)を、回転パルスが立ち上がる位置を歯車13の歯の先頭として、次の回転パルスが立ち上がる位置までを一周期(TN)として算出する。   In the above configuration, when measuring the torsional vibration, the unevenness (tooth tip and tooth root) of the gear 13 that rotates in conjunction with the rotational drive of the rotating shaft 10 in a state where the torsional vibration is not applied to the rotating shaft 10. It is detected by the detector 14. The detection signal detected by the detector 14 is input to the one-rotation period detection unit 161, and the detection signal waveform is set at the interval of the unevenness of the gear 13 for one rotation as described above. The corresponding period is continuously detected, and a continuous period of the detection signal waveform for one rotation is output to the waveform period counter 162. As shown in FIG. 4, the waveform period counting unit 162 sets the period (Ti) (ti) of the detection signal waveform of one rotation of the rotating shaft 10 to the next rotation with the position where the rotation pulse rises as the head of the teeth of the gear 13. The period until the pulse rises is calculated as one period (TN).

なお、この回転パルスは、例えば上記回転軸10上の別の位置に配される図示しない回転速度検出用の被検出部と、この被検出部(図示せず)に対応して配され、回転軸10の回転に連動して回転される被検出部(図示せず)を検出する図示しない検出部により生成される。   The rotation pulse is arranged corresponding to the detected part for detecting the rotational speed (not shown) arranged at another position on the rotating shaft 10 and the detected part (not shown), for example. It is generated by a detection unit (not shown) that detects a detected part (not shown) that is rotated in conjunction with the rotation of the shaft 10.

ここで、スイッチ163が、可動接点aが固定接点bに切換え設定され、波形周期計数部162で求めたねじり振動が加振されていない状態での1回転分の検出信号波形の周期が基準検出信号波形の周期(Ti)として基準周期記憶部164に記憶される。   Here, the switch 163 is set so that the movable contact a is switched to the fixed contact b, and the period of the detection signal waveform for one rotation in the state where the torsional vibration obtained by the waveform period counting unit 162 is not excited is the reference detection. It is stored in the reference period storage unit 164 as the period (Ti) of the signal waveform.

次に、例えば発電機の発電端を1線地絡して、逆相電流を発生させて回転軸10をねじり加振して、ねじり振動を励振させる。ここで、検出器14は、回転軸10の回転に連動して一体に回転する歯車13の凹凸(歯先と歯元)を検出して検出信号を1回転周期検出部161に出力する。   Next, for example, the generator end of the generator is grounded by one line, a negative phase current is generated, and the rotating shaft 10 is torsionally excited to excite the torsional vibration. Here, the detector 14 detects the unevenness (tooth tip and tooth root) of the gear 13 that rotates integrally with the rotation of the rotating shaft 10 and outputs a detection signal to the one-rotation period detection unit 161.

1回転周期検出部161は、入力した検出信号を、例えば低い電圧から高い電圧に変化する途中で一定の電圧をしきい値として、しきい値を横切る時間の間隔から回転軸10の1回転分の検出信号波形の周期を算出して波形周期計数部162に出力する。波形周期計数部162は、回転軸10の1回転の検出信号波形の周期(ti)を、同様に上記回転パルスが立ち上がり位置を歯車13の歯の先頭として、次の回転パルスが立ち上がる位置までを周期(TN)として算出する。   The one-rotation period detection unit 161 uses the input detection signal as a threshold value during the change from a low voltage to a high voltage, for example, and takes one rotation of the rotary shaft 10 from the time interval crossing the threshold value. The detection signal waveform period is calculated and output to the waveform period counter 162. The waveform period counting unit 162 similarly determines the period (ti) of the detection signal waveform of one rotation of the rotating shaft 10 until the position where the rotation pulse rises is the leading edge of the teeth of the gear 13 and the next rotation pulse rises. Calculated as a period (TN).

ここで、スイッチ163は、可動接点aが固定接点cに切換え設定され、波形周期計数部162で求めたねじり振動が加振されている状態での1回転分の検出信号波形の連続した周期(ti)がねじり角度演算部165に入力される。ねじり角度演算部165は、入力した検出信号波形の周期(ti)と基準周期記憶部164に記憶される基準信号波形の同一順番の周期(Ti)とを、
ねじり角変位(Δθi)=(検出信号波形の周期(ti)−基準検出信号波形の周期(Ti))/1回転の周期(TN)×360°
の演算処理を行ってねじり角変位(Δθi)を算出して、このねじり角変位(Δθi)の変位を時刻(周期)毎に求めて、ねじり角変位変動を算出する。これにより、歯車13の歯間が不均一な場合においても、正確なねじり角変位変動が測定されて、高精度なねじり振動の振幅あるいは周波数等の振動特性が算出される。
この測定データは、D/A変換部166でアナログデータに変換され、例えば上述したように分析部17で、回転軸の軸系を構成する火力タービン・発電機ユニット等の疲れ寿命の評価が行われる。
Here, the switch 163 is configured so that the movable contact a is switched to the fixed contact c, and the continuous period of the detection signal waveform for one rotation (when the torsional vibration obtained by the waveform period counting unit 162 is vibrated ( ti) is input to the torsion angle calculation unit 165. The torsion angle calculation unit 165 calculates the period (ti) of the input detection signal waveform and the period (Ti) of the reference signal waveform stored in the reference period storage unit 164 in the same order.
Torsional angular displacement (Δθi) = (period of detection signal waveform (ti) −period of reference detection signal waveform (Ti)) / 1 period of rotation (TN) × 360 °
The torsional angular displacement (Δθi) is calculated by performing the above calculation process, and the displacement of the torsional angular displacement (Δθi) is obtained every time (cycle) to calculate the torsional angular displacement fluctuation. As a result, even when the teeth of the gear 13 are non-uniform, accurate torsional angular displacement fluctuations are measured, and vibration characteristics such as highly accurate torsional vibration amplitude or frequency are calculated.
This measurement data is converted into analog data by the D / A conversion unit 166, and for example, as described above, the analysis unit 17 evaluates the fatigue life of the thermal turbine / generator unit or the like constituting the shaft system of the rotating shaft. Is called.

このように、上記ねじり振動測定装置は、回転軸10に歯車13を配して、この歯車13に対設して検出器14を配し、検出器14で回転軸10の回転駆動に連動して歯車13の凹凸を検出し、ねじり振動の加振されていない状態における回転軸10の1回転分の連続した基準検出信号を取得して、その基準検出信号波形の周期と、ねじり振動の加振された状態における回転軸10の1回転分の連続した検出信号波形の同一順番の周期を比較して時刻毎にねじり角変位を求めるように構成した。   As described above, the torsional vibration measuring device has the gear 13 on the rotating shaft 10, the detector 14 is disposed opposite to the gear 13, and the detector 14 is interlocked with the rotational drive of the rotating shaft 10. The unevenness of the gear 13 is detected, a continuous reference detection signal for one rotation of the rotary shaft 10 in a state where the torsional vibration is not applied is obtained, the period of the reference detection signal waveform and the torsional vibration are applied. The period of the same detection signal waveform for one rotation of the rotating shaft 10 in the shaken state is compared in the same order, and the torsional angular displacement is obtained at each time.

これによれば、検出信号波形に基づいて時刻に対するねじり角変位変動量を算出することができるため、歯車10の配置精度に影響されることなく、正確なねじり角変位変動の測定が実現されることにより、簡易な構成で、高精度なねじり振動の振幅、周波数等の振動特性を求めることできる。   According to this, since the torsional angular displacement fluctuation amount with respect to the time can be calculated based on the detection signal waveform, accurate measurement of the torsional angular displacement fluctuation is realized without being affected by the arrangement accuracy of the gear 10. As a result, it is possible to obtain vibration characteristics such as amplitude and frequency of torsional vibration with high accuracy with a simple configuration.

なお、この発明は、上記実施の形態に限ることなく、その他、例えば図5に示すようにねじり角変位を測定するように構成してもよく、同様の効果が期待される。但し、図5においては、上記実施の形態と同一部分について、同一符号を付して、その詳細な説明を省略する。   The present invention is not limited to the above-described embodiment, but may be configured to measure torsional angular displacement as shown in FIG. 5, for example, and the same effect is expected. However, in FIG. 5, the same reference numerals are given to the same portions as those in the above embodiment, and the detailed description thereof is omitted.

即ち、上記検出器14は、回転軸10の1回転分における歯車13の歯の設置間隔に基づく検出信号波形を検出して演算処理部16に出力する。ここで、演算処理部16は、入力した検出信号を記録し、その検出信号の量、例えば電圧あるいは電流の大きさと、基準時刻からの経過時間を一組として求めて、ねじり振動が加振されていない状態の検出信号を基準検出信号として記録する。   That is, the detector 14 detects a detection signal waveform based on the installation interval of the teeth of the gear 13 in one rotation of the rotary shaft 10 and outputs the detection signal waveform to the arithmetic processing unit 16. Here, the arithmetic processing unit 16 records the input detection signal, determines the amount of the detection signal, for example, the magnitude of the voltage or current, and the elapsed time from the reference time as a set, and the torsional vibration is vibrated. The detection signal in a state of not being recorded is recorded as a reference detection signal.

この検出信号波形の記録は、例えば回転軸10に配される図示しない回転速度検出用被検出部と、回転速度検出用の検出部を用いて検出される回転基準パルス(時刻)を基準として、時刻の経過と共に変化していく検出信号の量、例えば電圧あるいは電流の大きさと、基準時刻からの経過時間を一組として、次に上記被検出部が検出部を通過する回転基準パルスが立ち上がるまで連続して行われる。   The recording of the detection signal waveform is based on a rotation reference pulse (time) detected using a rotation speed detection target portion (not shown) arranged on the rotation shaft 10 and a rotation speed detection detection portion, for example. The amount of detection signal that changes with the passage of time, for example, the magnitude of voltage or current, and the elapsed time from the reference time are taken as a set until the rotation reference pulse that the detected part passes through the detection part next rises. It is done continuously.

上記構成により、ねじり振動を測定する場合には、先ず、ねじり振動が加振されていない状態で、回転軸10を、測定したい回転速度で回転駆動して、上記回転基準パルスに基づいて1回転分の検出信号を検出器14で検出し、これを基準検出信号波形の周期(T2i)として記憶する。   In the case of measuring torsional vibration with the above configuration, first, in a state where no torsional vibration is applied, the rotary shaft 10 is rotationally driven at the rotational speed to be measured, and one rotation is performed based on the rotational reference pulse. The detection signal of the minute is detected by the detector 14, and this is stored as the period (T2i) of the reference detection signal waveform.

続いて、回転軸10にねじり振動を、例えば上述した実施の形態と同様にして加振し、基準時刻に基づいて1回転分の検出信号の量と、経過時間を検出信号波形の周期(t2i)として連続して検出する。そして、この検出信号の量と、記録しておいた同じ量の基準検出信号を選択して、その回転基準パルスに基づいて経過時間を再生する。この再生作業としては、検出信号の量の他、その前の時間に検出した量から増加しているか、減少しているか、その変化量の割合、経過時間が比較しようとしている検出信号と一定範囲にあるかなどを判定条件として、基準検出信号を選択する。   Subsequently, torsional vibration is applied to the rotating shaft 10 in the same manner as in the above-described embodiment, for example, and the amount of detection signal for one rotation and the elapsed time are determined based on the reference time and the period of the detection signal waveform (t2i). ) Continuously detected. Then, the amount of the detection signal and the same amount of the recorded reference detection signal are selected, and the elapsed time is reproduced based on the rotation reference pulse. This reproduction work includes the amount of detection signal, whether it has increased or decreased from the amount detected in the previous time, the ratio of the amount of change, and the detection signal for which the elapsed time is to be compared to a certain range The reference detection signal is selected using the determination condition as to whether or not it is present.

次に、選択した基準検出信号の回転基準パルスの立ち上がりからの経過時間、すなわち基準検出信号波形の周期(T2i)と検出信号波形の周期(t2i)のずれ時間を求めて、そのときの回転基準パルスの周期(TN)から算出される回転速度に基づいて、各周期におけるねじり角変位(Δθ2i)を、回転パルスの周期(TN)から求めたれる回転速度に基づき
ねじり角変位(Δθ2i)=(検出信号波形の周期(t2i)−基準検出信号波形の周期(T2i))/1回転の周期(TN)×360°
の演算処理を実施して求め、この演算処理を全ての検出信号波形について連続して行うことで、ねじり変位変動を算出する。
Next, an elapsed time from the rise of the rotation reference pulse of the selected reference detection signal, that is, a deviation time between the reference detection signal waveform period (T2i) and the detection signal waveform period (t2i) is obtained, and the rotation reference at that time is obtained. Based on the rotational speed calculated from the pulse period (TN), the torsional angular displacement (Δθ2i) in each period is calculated based on the rotational speed obtained from the rotational pulse period (TN). Period of detection signal waveform (t2i) −period of reference detection signal waveform (T2i)) / 1 period of rotation (TN) × 360 °
The torsional displacement fluctuation is calculated by performing this calculation process and performing this calculation process continuously for all the detection signal waveforms.

この実施の形態によれば、検出信号について周期毎に連続してねじり角変位変動を算出していることにより、同様に歯車の配置精度に影響されることなく、正確なねじり振動を測定できるため、高精度なねじり振動の振幅及び周波数等の振動特性を求めることが可能となる。   According to this embodiment, since torsional angular displacement fluctuations are continuously calculated for each period of the detection signal, accurate torsional vibration can be measured without being similarly affected by the gear placement accuracy. Therefore, it is possible to obtain vibration characteristics such as amplitude and frequency of torsional vibration with high accuracy.

また、この発明は、上記実施の形態では、回転パルス検出専用の検出手段を設けて、回転軸10の1回転分を検出するように構成した場合について説明したが、これに限ることなく、その他、被検出部を構成する複数の被検出物として、回転軸10の軸回りの周壁に、例えば図6に示すようにその中の少なくとも一つが、他に比して異なる波形、例えば電圧、あるいは電流の大きさ、一定時間における電圧、あるいは電流が変化する等の量が可変するように配して、その異なる波形に基づいて回転軸10の1回転を検出可能に構成することも可能で、同様の効果が期待される。この実施の形態では、測定中に取得される検出信号波形の量に対して回転パルス検出用しきい値を設定して、その量に達した状態で回転軸10上の基準位置を通過したものと判定して、周期の順番あるいは周期を求める。   Further, in the above-described embodiment, the present invention has been described with respect to the case where the detection means dedicated to the detection of the rotation pulse is provided to detect one rotation of the rotation shaft 10, but the present invention is not limited to this. As a plurality of detected objects constituting the detected part, at least one of the peripheral walls around the axis of the rotating shaft 10 has a waveform different from the others, for example, a voltage, for example, as shown in FIG. It is also possible to arrange such that the magnitude of the current, the voltage at a certain time, or the amount of change of the current is variable, so that one rotation of the rotating shaft 10 can be detected based on the different waveforms. A similar effect is expected. In this embodiment, a rotation pulse detection threshold is set for the amount of the detection signal waveform acquired during measurement, and the reference value on the rotary shaft 10 is passed when the threshold is reached. To determine the order or cycle of the cycles.

さらに、この発明は、被検出部として、同様に回転パルス検出専用の検出手段を設けることなく、例えば被検出部を構成する複数の被検出物を、回転軸10の軸回りの周壁に、図7に示すようにその中の少なくとも一つが、他に比して異なる周期を検出可能に配して、その異なる波形に基づいて回転軸10の1回転を検出可能に構成することも可能で、同様の効果が期待される。この実施の形態では、測定中に取得される検出信号波形の周期に対して回転パルス検出用しきい値を設定して、その周期が算出された状態で回転軸10上の基準位置を通過したものと判定して、周期の順番を求める。   Furthermore, this invention does not provide a detection means dedicated to detection of the rotation pulse as the detected part, and for example, a plurality of detected objects constituting the detected part are arranged on the peripheral wall around the axis of the rotary shaft 10. As shown in FIG. 7, at least one of them can be arranged to detect a different period compared to the other, and it is possible to detect one rotation of the rotary shaft 10 based on the different waveform. A similar effect is expected. In this embodiment, a rotation pulse detection threshold is set for the period of the detection signal waveform acquired during measurement, and the reference position on the rotary shaft 10 is passed with the period calculated. Judgment is made and the order of the cycles is obtained.

また、この発明は、上記構成に限ることなく、その他、図8及び図9に示すように被検出部及び検出手段を構成しても、同様に有効な効果が期待される。但し、この図8及び図9においては、上記実施の形態と同一部分について、同一符号を付して、その詳細な説明を省略する。   In addition, the present invention is not limited to the above-described configuration, and the same effective effect can be expected even if the detected portion and the detection means are configured as shown in FIGS. 8 and 9. However, in FIG. 8 and FIG. 9, the same reference numerals are given to the same parts as those in the above-described embodiment, and the detailed description thereof is omitted.

この実施の形態では、被検出部として、反射部材である複数の反射片20を回転軸10の周壁の軸回りに所定の間隔を有して配し、検出手段として、光照射装置21及び受光装置22を上記支持架台11に対して取付け具15を用いて回転軸10の反射片20に所定の隙間を有して対向配置する。即ち、この実施の形態では、回転駆動される回転軸10の反射片20に向けて光照射装置21から光を照射して、その反射光を受光装置22で検出し、この受光装置22で受光した光を光電変換部23で光電変換して電気信号を生成する。この電気信号を検出信号波形として、上述したように演算処理してねじり角変位が算出されて、ねじり変位変動が求められる。   In this embodiment, a plurality of reflecting pieces 20 as reflecting members are arranged with a predetermined interval around the axis of the peripheral wall of the rotating shaft 10 as the detected portion, and the light irradiation device 21 and the light receiving device are used as the detecting means. The device 22 is disposed opposite to the support frame 11 with a predetermined gap with respect to the reflecting piece 20 of the rotating shaft 10 using the fixture 15. That is, in this embodiment, light is irradiated from the light irradiation device 21 toward the reflecting piece 20 of the rotating shaft 10 that is rotationally driven, the reflected light is detected by the light receiving device 22, and the light receiving device 22 receives the light. The converted light is photoelectrically converted by the photoelectric conversion unit 23 to generate an electric signal. Using this electrical signal as a detection signal waveform, the torsional angular displacement is calculated by the arithmetic processing as described above, and the torsional displacement fluctuation is obtained.

また、被検出部としては、その他、図10に示すように上記複数の反射片20を、粘着テープ201に設けて、この粘着テープ201を、上記回転軸10に貼付けて複数の反射片20を回転軸10の周壁の軸回りに配し、この粘着テープ201上の複数の反射片20からの反射光を受光して光電変換して電気信号を生成するように構成しても、同様に有効な効果が期待される。   Further, as the detected part, as shown in FIG. 10, the plurality of reflecting pieces 20 are provided on the adhesive tape 201, and the adhesive tape 201 is affixed to the rotating shaft 10 to attach the plurality of reflecting pieces 20. Even if it is arranged around the axis of the peripheral wall of the rotating shaft 10 and receives light reflected from the plurality of reflecting pieces 20 on the adhesive tape 201 and photoelectrically converts it to generate an electric signal, it is also effective. Expected.

さらに、被検出部として、その他、図11に示すように白や金属光沢色等の反射光量の多い高反射領域241と、黒や艶消し色等の反射光量の少ない低反射領域242を、粘着テープ201上に交互にランダムに配して、この粘着テープ201を、上記回転軸10の周壁の軸回りに貼付けて、同様に高反射領域241と低反射領域242からの反射光を受光して光電変換し、電気信号を生成するように構成することも可能で、同様に有効な効果が期待される。この場合においても、これら高反射領域241及び低反射領域242を、粘着テープ201を介して配することなく、回転軸10の軸回りに直接的に配するように構成してもよい。   Further, as shown in FIG. 11, a high reflection region 241 with a large amount of reflected light such as white or metallic luster color, and a low reflection region 242 with a small amount of reflected light such as black or matte color are adhered as the detected portion. Arranged at random on the tape 201, the adhesive tape 201 is pasted around the axis of the peripheral wall of the rotating shaft 10, and similarly, the reflected light from the high reflection region 241 and the low reflection region 242 is received. It can also be configured to photoelectrically convert and generate an electrical signal, and similarly effective effects are expected. Even in this case, the high reflection region 241 and the low reflection region 242 may be arranged directly around the axis of the rotary shaft 10 without being arranged via the adhesive tape 201.

また、被検出部としては、その他、図12及び図13に示すように構成してもよく、同様の効果が期待される。但し、図12及び図13においては、上記実施の形態と同一部分について、同一符号を付して、その説明を省略する。   Moreover, as a to-be-detected part, you may comprise as shown in FIG.12 and FIG.13 other than that, and the same effect is anticipated. However, in FIG.12 and FIG.13, the same code | symbol is attached | subjected about the same part as the said embodiment, and the description is abbreviate | omitted.

図12に示す実施の形態では、回転機械の起動前あるいは停止後の回転軸の熱変形を防止するために数回転毎分程度回転させのターニング装置の回転軸30に嵌着される大歯車31を被検出部として用いて構成したものである。   In the embodiment shown in FIG. 12, in order to prevent thermal deformation of the rotating shaft before or after the rotating machine is started, the large gear 31 is fitted to the rotating shaft 30 of the turning device that is rotated about several revolutions per minute. As a detected part.

この実施の形態では、大歯車31の歯面に対して所定の隙間を採って上記検出器32をハウジング33に取付けて対向配置する。この検出器32としては、例えば電磁式センサを用いて構成され、上記大歯車31の回転に連動してその歯面の凹凸表面が順に通過することで、その隙間の変化に応じた誘起電圧信号が出力されることで、この誘起電圧信号を検出信号波形として、同様にして上述したねじり角変位が算出され、ねじり角変位変動が求められる。   In this embodiment, the detector 32 is attached to the housing 33 with a predetermined gap with respect to the tooth surface of the large gear 31 so as to face the toothed surface. The detector 32 is configured by using, for example, an electromagnetic sensor, and an induced voltage signal corresponding to a change in the clearance is obtained by sequentially passing through the uneven surface of the tooth surface in conjunction with the rotation of the large gear 31. As a result, the torsional angular displacement described above is calculated in the same manner using the induced voltage signal as a detection signal waveform, and the torsional angular displacement fluctuation is obtained.

なお、上記検出器32としては、その他、電磁式センサに代えて渦電流式変位センサを用いて構成しても良い。この渦電流式変位センサの場合には、大歯車31の回転に連動して隙間の変化に応じた渦電流信号が出力され、この渦電流信号を検出信号波形として、同様にして上述したねじり角変位が算出されて、ねじり角変位変動が求められる。   In addition, the detector 32 may be configured using an eddy current displacement sensor instead of the electromagnetic sensor. In the case of this eddy current type displacement sensor, an eddy current signal corresponding to the change in the gap is output in conjunction with the rotation of the large gear 31, and this eddy current signal is used as a detection signal waveform in the same manner as described above. The displacement is calculated and the torsional angular displacement variation is determined.

また、図13の実施の形態では、例えばタービン軸と発電機軸との回転軸40の軸継ぎ手部41の連結に供する締結用ボルト・ナット42を被検出部として用いて構成したものである。   In the embodiment shown in FIG. 13, for example, a fastening bolt / nut 42 used for connecting the shaft joint portion 41 of the rotating shaft 40 between the turbine shaft and the generator shaft is used as the detected portion.

この実施の形態の場合には、被検出部を構成する締結用ボルト・ナット42が鋼材等の導体や磁性体で形成されることで、検出器43として、電磁式センサ(あるいは渦電流式変位センサ)がハウジング44に所定の隙間を有して対向配置される。この検出器43を構成する電磁式センサ(あるいは渦電流式変位センサ)は、回転軸40の回転に連動してその締結用ボルト・ナット42が順に通過することで、その隙間の変化に応じた誘起電圧信号(あるいは渦電流信号)を出力する。そして、この誘起電圧信号(あるいは渦電流信号)が検出信号波形として、同様にして上述したねじり角変位が算出されて、ねじり角変位変動が求められる。   In the case of this embodiment, the fastening bolt and nut 42 constituting the detected portion is formed of a conductor such as steel or a magnetic material, so that the detector 43 can be an electromagnetic sensor (or eddy current displacement). Sensor) is disposed opposite to the housing 44 with a predetermined gap. The electromagnetic sensor (or eddy current type displacement sensor) constituting the detector 43 responds to the change in the clearance by passing through the fastening bolts and nuts 42 in order in conjunction with the rotation of the rotary shaft 40. An induced voltage signal (or eddy current signal) is output. The induced voltage signal (or eddy current signal) is used as a detection signal waveform, and the torsional angular displacement described above is calculated in the same manner to determine the torsional angular displacement fluctuation.

さらに、被検出部として、その他、例えば上記回転軸10(30,40)の壁面を利用して、この壁面の軽微な腐食や潤滑油の付着等に伴う経年変化により生じる反射量の差に応じた検出信号波形を取得するように構成することも可能で、同様に有効な効果が期待される。   Further, as the detected part, for example, the wall surface of the rotating shaft 10 (30, 40) is used to respond to a difference in reflection amount caused by aging due to minor corrosion of the wall surface or adhesion of lubricating oil. It is also possible to obtain a detection signal waveform, and the same effective effect is expected.

この実施の形態では、回転軸10(30,40)の壁面に隙間を有して上記光照射装置21及び受光装置22(図8参照)を対向配置して、光照射装置21から光を照射し、回転軸10(30,40)の壁面で反射した光を受光装置22で受光して、この反射光を光電変換して電気信号を生成する。そして、この電気信号から、図14に示すように予め設定したしきい値に基づいて検出信号波形を取得し、この検出信号波形に基づいて、同様に上述したねじり角変位が算出されて、ねじり角変位変動が求められる。   In this embodiment, the light irradiating device 21 and the light receiving device 22 (see FIG. 8) are arranged to face each other with a gap in the wall surface of the rotating shaft 10 (30, 40), and light is emitted from the light irradiating device 21. Then, the light reflected by the wall surface of the rotating shaft 10 (30, 40) is received by the light receiving device 22, and the reflected light is photoelectrically converted to generate an electrical signal. Then, a detection signal waveform is obtained from this electrical signal based on a preset threshold value as shown in FIG. 14, and the above-described torsional angular displacement is calculated in the same manner based on this detection signal waveform. Angular displacement variation is required.

また、回転軸10(30,40)に生じた加工時の精度誤差に基づく、いわゆる微小な振れなどによる許容範囲内の軸真円ずれや、軸組立て作業や保守点検作業に伴う回転軸10(30,40)の壁面表面の傷を被検出部として、検出手段として、渦電流式変位センサを回転軸の壁面表面に対向配置して検出するように構成することも可能で、同様の効果が期待される。この渦電流式変位センサは、回転軸10(30,40)の壁面との微小な隙間の変化を検出して例えば図14に示すように予め設定したしきい値に基づいて検出信号波形を取得して、この検出信号波形に基づいて、同様に上述したねじり角変位が算出され、ねじり角変位変動が求められる。   Further, based on an accuracy error during machining that has occurred on the rotary shaft 10 (30, 40), the shaft perfect circle deviation within an allowable range due to a so-called minute runout, the rotary shaft 10 ( 30 and 40) can be configured such that the surface of the wall surface is detected as a detected portion, and an eddy current type displacement sensor is disposed opposite to the wall surface of the rotating shaft as a detection means. Be expected. This eddy current displacement sensor detects a minute gap change with the wall surface of the rotating shaft 10 (30, 40) and acquires a detection signal waveform based on a preset threshold value as shown in FIG. 14, for example. Then, based on this detection signal waveform, the above-described torsional angular displacement is similarly calculated, and the torsional angular displacement fluctuation is obtained.

ここで、上記実施の形態のうち光照射装置21から回転軸10(30,40)の被検出部に光を照射して、その反射光を受光装置22で受光して、その反射光を光電変換して検出信号波形を取得する光学検出構造においては、例えば図15に示すように回転軸10(30,40)の1回転分の基準検出信号波形の周期あるいは基準検出信号波形を記録する手法として、検出信号波形あるいは周期に1回転に一箇所、大きな特徴が出るように照射光量を1回転の周期に合わせて変化させるように構成してもよい。この手法によれば、回転軸10(30,40)の1回転分の検出信号波形のくぎりが明確となるため、さらに正確なねじり角変位の算出を容易に実現することが可能となる。   Here, in the above-described embodiment, the light irradiation device 21 irradiates light to the detected portion of the rotating shaft 10 (30, 40), the reflected light is received by the light receiving device 22, and the reflected light is photoelectrically converted. In the optical detection structure that converts and acquires the detection signal waveform, for example, as shown in FIG. 15, a method of recording the period of the reference detection signal waveform for one rotation of the rotating shaft 10 (30, 40) or the reference detection signal waveform. As described above, the amount of irradiation light may be changed in accordance with the cycle of one rotation so that a large feature appears at one position per rotation of the detection signal waveform or cycle. According to this method, the detection signal waveform for one rotation of the rotating shaft 10 (30, 40) is clearly defined, so that more accurate torsional angular displacement can be easily calculated.

また、この発明は、上記実施の形態に限ることなく、その他、図16に示すように被検出部及び検出手段を構成しても、同様に有効な効果が期待される。但し、この図16においては、上記実施の形態と同一部分について、同一符号を付して、その詳細な説明を省略する。   In addition, the present invention is not limited to the above-described embodiment. In addition, even if the detected portion and the detection means are configured as shown in FIG. However, in FIG. 16, the same parts as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

この実施の形態では、被検出部として、回転軸50を中空状に形成して、その周壁の軸回りに軸方向と直交する複数の透過窓501を、所定の間隔に形成して、検出手段として、放射状に光を投光可能な光源51を回転軸50内に収容配置して、受光装置52を上記支持架台11に対して取付け具15を用いて回転軸50の透過窓501に所定の隙間を有して対向配置するように構成する。この受光装置52には、回転軸50の回転に連動して該回転軸50の透過窓501が順に対向され、該透過窓501を通して光源51からの光が受光される。   In this embodiment, the rotating shaft 50 is formed in a hollow shape as the detected portion, and a plurality of transmission windows 501 orthogonal to the axial direction are formed around the axis of the peripheral wall at predetermined intervals, thereby detecting means. The light source 51 capable of projecting light radially is accommodated in the rotation shaft 50, and the light receiving device 52 is attached to the transmission window 501 of the rotation shaft 50 with a predetermined tool 15 with respect to the support frame 11. It is configured so as to face each other with a gap. The light receiving device 52 is sequentially opposed to the transmission window 501 of the rotation shaft 50 in conjunction with the rotation of the rotation shaft 50, and light from the light source 51 is received through the transmission window 501.

上記構成により、この実施の形態では、回転駆動される回転軸50内の光源51を駆動して光が発光されると、その光が回転軸50の透過窓501を通して軸外に放射される。この際、受光装置52は、回転軸50の回転に伴って順に対向される透過窓501から放射される光が受光される。この受光装置52で検出される複数の透過窓501から放射される光の周期は、回転軸50の回転速度とねじり振動の振幅と周期とに応じた周期となる。この受光装置52で受光した光は、光電変換されて電気信号に変換され、この電気信号を検出信号波形として、上述したように演算処理してねじり角変位が算出されて、ねじり変位変動が求められる。   With this configuration, in this embodiment, when light is emitted by driving the light source 51 in the rotational shaft 50 that is rotationally driven, the light is emitted off-axis through the transmission window 501 of the rotational shaft 50. At this time, the light receiving device 52 receives light emitted from the transmission windows 501 that are sequentially opposed with the rotation of the rotation shaft 50. The period of light emitted from the plurality of transmission windows 501 detected by the light receiving device 52 is a period according to the rotational speed of the rotating shaft 50 and the amplitude and period of torsional vibration. The light received by the light receiving device 52 is photoelectrically converted into an electric signal, and the electric signal is detected as a detection signal waveform, and the torsional angular displacement is calculated by calculating as described above to obtain the torsional displacement fluctuation. It is done.

よって、この発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   Therefore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

例えば実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problems described in the column of problems to be solved by the invention can be solved, and the effects described in the effects of the invention can be obtained. In some cases, a configuration from which this configuration requirement is deleted can be extracted as an invention.

この発明の一実施の形態に係るねじり振動測定装置の構成を説明するために示した配置構成図である。It is the arrangement block diagram shown in order to demonstrate the structure of the torsional vibration measuring apparatus which concerns on one embodiment of this invention. 図1の歯車と検出器との配置関係を示した断面図である。It is sectional drawing which showed the arrangement | positioning relationship between the gearwheel of FIG. 1, and a detector. 図2の演算処理部の構成例を示したブロック図である。FIG. 3 is a block diagram illustrating a configuration example of an arithmetic processing unit in FIG. 2. 図3の演算処理部で算出するなじり角変位を求める手順を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the procedure which calculates | requires the cornering angle displacement calculated by the arithmetic processing part of FIG. この発明の他の実施の形態に係るねじり角変位の算出手順を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the calculation procedure of the torsion angle displacement which concerns on other embodiment of this invention. この発明の他の実施の形態に係る回転軸の1回転分の検出方法を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the detection method for 1 rotation of the rotating shaft which concerns on other embodiment of this invention. この発明の他の実施の形態に係るねじり回転軸の1回転分の他の検出方法を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the other detection method for 1 rotation of the torsion rotating shaft which concerns on other embodiment of this invention. この発明の他の実施の形態に係るねじり振動測定装置の要部を取出して示した断面図である。It is sectional drawing which extracted and showed the principal part of the torsional vibration measuring apparatus which concerns on other embodiment of this invention. 図8の要部詳細を示した斜視図である。It is the perspective view which showed the principal part detail of FIG. この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。It is the perspective view which took out and showed the to-be-detected part of the torsional vibration measuring apparatus which concerns on other embodiment of this invention. この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。It is the perspective view which took out and showed the to-be-detected part of the torsional vibration measuring apparatus which concerns on other embodiment of this invention. この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。It is the perspective view which took out and showed the to-be-detected part of the torsional vibration measuring apparatus which concerns on other embodiment of this invention. この発明の他の実施の形態に係るねじり振動測定装置の被検出部を取出して示した斜視図である。It is the perspective view which took out and showed the to-be-detected part of the torsional vibration measuring apparatus which concerns on other embodiment of this invention. この発明の他の実施の形態に係る検出信号波形から周期を求める方法を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the method of calculating | requiring a period from the detection signal waveform which concerns on other embodiment of this invention. この発明の他の実施の形態に係る検出信号波形から周期を求めるその他の方法を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the other method of calculating | requiring a period from the detection signal waveform which concerns on other embodiment of this invention. この発明の他の実施の形態に係るねじり振動測定装置の被検出部及び検出手段を取出して示した断面図である。It is sectional drawing which extracted and showed the to-be-detected part and detection means of the torsional vibration measuring apparatus which concerns on other embodiment of this invention. 従来のねじり角変位の算出手順を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the calculation procedure of the conventional torsion angle displacement. 従来のねじり角変位の算出手順の他の例を説明するために示した波形図である。It is the wave form diagram shown in order to demonstrate the other example of the calculation procedure of the conventional torsion angle displacement.

符号の説明Explanation of symbols

10…回転軸、11…支持架台、12…軸受部、13…歯車、14…検出器、15…取付け冶具、16…演算処理部、161…1回転周期検出部、162…波形周期計数部、163…スイッチ、164…基準波形周期記憶部、165…ねじり角度演算部、166…D/A変換部、17…分析部、171…第1の演算部、172…第2の演算部、173…第1の比較処理部、174…第1のメモリ部、175…第3の演算部、176…第2の比較処理部、177…第2のメモリ部、178…寿命評価部、20…反射片、201…粘着テープ、21…光照射装置、22…受光装置、23…光電変換部、241…高反射領域、242…低反射領域、30…回転軸、31…大歯車、32…検出器、33…ハウジング、40…回転軸、41…軸継ぎ手部、42…締結用ボルト・ナット、43…検出器、44…ハウジング、50…回転軸、501…透過窓、52…光源、52…受光装置。   DESCRIPTION OF SYMBOLS 10 ... Rotating shaft, 11 ... Supporting stand, 12 ... Bearing part, 13 ... Gear, 14 ... Detector, 15 ... Mounting jig, 16 ... Arithmetic processing part, 161 ... One rotation period detection part, 162 ... Waveform period counting part, 163: Switch, 164: Reference waveform cycle storage unit, 165 ... Torsion angle calculation unit, 166 ... D / A conversion unit, 17 ... Analysis unit, 171 ... First calculation unit, 172 ... Second calculation unit, 173 ... 1st comparison process part, 174 ... 1st memory part, 175 ... 3rd calculating part, 176 ... 2nd comparison process part, 177 ... 2nd memory part, 178 ... Life evaluation part, 20 ... Reflection piece 201 ... Adhesive tape, 21 ... Light irradiation device, 22 ... Light receiving device, 23 ... Photoelectric conversion unit, 241 ... High reflection region, 242 ... Low reflection region, 30 ... Rotating shaft, 31 ... Large gear, 32 ... Detector, 33 ... Housing, 40 ... Rotating shaft, 41 ... Shaft joint 42 ... fastening bolts and nuts, 43 ... detector, 44 ... housing, 50 ... rotary shaft, 501 ... transmission window, 52 ... light source, 52 ... light-receiving device.

Claims (16)

回転軸の軸回りに配置され、一体に回転される被検出部と、
この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、
前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形の周期を比較してねじり角変位変動量を算出する演算手段と、
を具備することを特徴とするねじり振動測定装置。
A to-be-detected part that is arranged around the axis of rotation and rotated together;
Detecting means for detecting the detected portion that is arranged to be opposed to the detected portion and that rotates together with the rotation shaft and outputs a detection signal;
In a state where no torsional vibration is applied to the rotating shaft, the period of the detection signal waveform for one rotation of the rotating shaft detected by the detecting means and torsional vibration is applied to the rotating shaft. In the state, the calculation means for calculating the torsional angular displacement fluctuation amount by comparing the period of the detection signal waveform for one rotation of the rotary shaft detected by the detection means;
A torsional vibration measuring apparatus comprising:
回転軸の軸回りに配置され、一体に回転される被検出部と、
この被検出部に対設して配置され、前記回転軸に連動して一体に回転される前記被検出部を検出して検出信号を出力する検出手段と、
前記回転軸に対してねじり振動が加振されていない状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形と、前記回転軸にねじり振動が加振された状態において、前記検出手段で検出される前記回転軸の1回転分の検出信号波形を比較してねじり角変位変動量を算出する演算手段と、
を具備することを特徴とするねじり振動測定装置。
A to-be-detected part that is arranged around the axis of rotation and rotated together;
Detecting means for detecting the detected portion that is arranged to be opposed to the detected portion and that rotates together with the rotation shaft and outputs a detection signal;
In a state where torsional vibration is not applied to the rotating shaft, a detection signal waveform for one rotation of the rotating shaft detected by the detecting means, and in a state where torsional vibration is applied to the rotating shaft Calculating means for calculating a torsional angular displacement fluctuation amount by comparing detection signal waveforms of one rotation of the rotating shaft detected by the detecting means;
A torsional vibration measuring apparatus comprising:
前記被検出部は、複数個配置され、少なくとも一つが他と異なる検出信号波形が検出可能に設定されることを特徴とする請求項1又は2記載のねじり振動測定装置。   3. The torsional vibration measuring apparatus according to claim 1, wherein a plurality of the detected parts are arranged, and at least one of the detected parts is set to be able to detect a detection signal waveform different from the other. 前記被検出部は、複数個配置され、少なくとも一つが他と異なる検出信号波形の周期が検出可能に設定されることを特徴とする請求項1又は2記載のねじり振動測定装置。   The torsional vibration measuring apparatus according to claim 1 or 2, wherein a plurality of the detected parts are arranged, and at least one of the detected parts is set to be able to detect a period of a detection signal waveform different from the others. 前記被検出部は、光が照射される複数の反射部材で構成され、前記検出手段は、前記反射部材に光を照射し、その反射光を受光して電気信号に変換し、前記回転軸の1回転分の検出信号を生成することを特徴とする請求項1乃至4のいずれか記載のねじり振動測定装置。   The detected portion is composed of a plurality of reflecting members irradiated with light, and the detecting means irradiates the reflecting member with light, receives the reflected light and converts it into an electric signal, and The torsional vibration measuring device according to any one of claims 1 to 4, wherein a detection signal for one rotation is generated. 前記反射部材は、複数の光反射部が所定間隔に配され、前記回転軸の軸回りに貼り付けられたテープ材で形成されることを特徴とする請求項5記載のねじり振動測定装置。   The torsional vibration measuring device according to claim 5, wherein the reflecting member is formed of a tape material in which a plurality of light reflecting portions are arranged at predetermined intervals and pasted around the rotation axis. 前記光反射部は、反射量の異なる第1及び第2の光反射部で形成されることを特徴とする請求項6記載のねじり振動測定装置。   The torsional vibration measuring apparatus according to claim 6, wherein the light reflecting portion is formed of first and second light reflecting portions having different reflection amounts. 前記被検出部は、前記回転軸に嵌着される歯車で構成され、前記検出手段は、前記歯車の歯先に対向配置される電磁式センサで構成されることを特徴とする請求項1又は2記載のねじり振動測定装置。   The detection target is configured by a gear fitted to the rotating shaft, and the detection unit is configured by an electromagnetic sensor disposed to face a tooth tip of the gear. 2. The torsional vibration measuring device according to 2. 前記被検出部は、前記回転軸に嵌着される歯車で構成され、前記検出手段は、前記歯車の歯先に対向配置される過電流式変位センサで構成されることを特徴とする請求項1又は2記載のねじり振動測定装置。   The said detected part is comprised by the gear fitted by the said rotating shaft, and the said detection means is comprised by the overcurrent type displacement sensor arrange | positioned facing the tooth tip of the said gear. The torsional vibration measuring device according to 1 or 2. 前記被検出部は、回転軸の軸継ぎ手を形成する複数の締結用ボルト・ナットで構成されることを特徴とする請求項8又は9に記載のねじり振動測定装置。   10. The torsional vibration measuring device according to claim 8, wherein the detected portion includes a plurality of fastening bolts and nuts forming a shaft joint of the rotating shaft. 10. 前記被検出部は、前記回転軸の周壁面で構成され、前記検出手段は、前記回転軸の周壁面に光を照射し、その反射光を受光して電気信号に変換し、該回転軸の1回転分の検出信号を生成することを特徴とする請求項1又は2記載のねじり振動測定装置。   The detected part is constituted by a peripheral wall surface of the rotating shaft, and the detecting means irradiates light to the peripheral wall surface of the rotating shaft, receives the reflected light and converts it into an electric signal, The torsional vibration measuring device according to claim 1 or 2, wherein a detection signal for one rotation is generated. 前記被検出部は、回転軸の周壁面で構成され、前記検出手段は、前記回転軸の周壁面に対向配置される過電流式変位センサで構成されることを特徴とする請求項1又は2記載のねじり振動測定装置。   3. The detected part is constituted by a peripheral wall surface of a rotating shaft, and the detecting means is constituted by an overcurrent displacement sensor arranged to face the peripheral wall surface of the rotating shaft. The torsional vibration measuring device described. 前記検出手段から照射される光は、回転軸の1回転を周期として照射光量が可変されることを特徴とする請求項5,6,7,11のいずれか記載のねじり振動測定装置。   12. The torsional vibration measuring device according to claim 5, wherein the light emitted from the detection means is variable in amount of irradiation with a period of one rotation of the rotation axis. 前記検出手段は、前記回転軸内に光源を配して、該回転軸の周壁に前記光源からの光を透過する複数の透過孔を配し、この透過窓を透過した光を受光して電気信号に変換して回転軸の1回転分の検出信号を生成することを特徴とする請求項1乃至4のいずれか記載のねじり振動測定装置。   The detection means includes a light source disposed in the rotating shaft, and a plurality of transmission holes that transmit light from the light source are disposed on a peripheral wall of the rotating shaft, and the light transmitted through the transmission window is received to be electrically The torsional vibration measuring apparatus according to claim 1, wherein the torsional vibration measuring apparatus generates a detection signal for one rotation of the rotating shaft by converting into a signal. さらに、前記演算手段で算出したねじり角変位変動量に基づいて前記回転軸が構成する軸系の振動応答値を予測して寿命を予測する分析手段を備えることを特徴とする請求項1乃至14のいずれか記載のねじり振動測定装置。   15. The apparatus according to claim 1, further comprising an analysis unit that predicts a life by predicting a vibration response value of a shaft system formed by the rotating shaft based on a torsional angular displacement fluctuation amount calculated by the calculation unit. The torsional vibration measuring device according to any one of the above. 回転軸の軸回りに配置される被検出部を、前記回転軸の回転に連動して検出して検出信号を取得する検出工程と、
この検出工程において、前記回転軸に対してねじり振動を加振していない状態で取得した前記回転軸の1回転分の検出信号波形の周期と、前記回転軸にねじり振動を加振した状態で取得した前記回転軸の1回転分の検出信号波形の周期を比較してねじり角変位変動量を算出する演算工程と、
を具備することを特徴とするねじり振動測定方法。
A detection step of detecting a detected part arranged around the axis of the rotation axis in conjunction with the rotation of the rotation axis to obtain a detection signal;
In this detection step, the period of the detection signal waveform for one rotation of the rotating shaft acquired in a state where the torsional vibration is not applied to the rotating shaft, and the state in which the torsional vibration is applied to the rotating shaft A calculation step of calculating a torsional angular displacement fluctuation amount by comparing the cycles of the acquired detection signal waveform for one rotation of the rotating shaft;
A torsional vibration measuring method comprising:
JP2006263037A 2006-09-27 2006-09-27 Device and method for measuring torsional vibration Pending JP2008082879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263037A JP2008082879A (en) 2006-09-27 2006-09-27 Device and method for measuring torsional vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263037A JP2008082879A (en) 2006-09-27 2006-09-27 Device and method for measuring torsional vibration

Publications (1)

Publication Number Publication Date
JP2008082879A true JP2008082879A (en) 2008-04-10

Family

ID=39353897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263037A Pending JP2008082879A (en) 2006-09-27 2006-09-27 Device and method for measuring torsional vibration

Country Status (1)

Country Link
JP (1) JP2008082879A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286483A (en) * 2009-06-06 2010-12-24 Nuovo Pignone Spa Lateral, angular and torsional vibration monitoring of rotordynamic system
US8990031B2 (en) 2009-12-10 2015-03-24 Industrial Technology Research Institute Torsional resonance frequency measuring device and method
CN105136285A (en) * 2015-08-28 2015-12-09 中国神华能源股份有限公司 Generator shafting torsional oscillation component extraction device and method
CN108152026A (en) * 2017-12-20 2018-06-12 卧龙电气集团股份有限公司 A kind of rotating structural elements fatigue test device
JP2019203814A (en) * 2018-05-24 2019-11-28 三菱日立パワーシステムズ株式会社 Revolving shaft system torsional vibration measuring device and torsional vibration measuring method
CN110546477A (en) * 2018-03-29 2019-12-06 三菱重工业株式会社 contact vibration detection device, rotary machine provided with same, and contact vibration detection method
CN113029481A (en) * 2021-02-25 2021-06-25 中国人民解放军国防科技大学 Method for measuring torsional vibration of blade

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286483A (en) * 2009-06-06 2010-12-24 Nuovo Pignone Spa Lateral, angular and torsional vibration monitoring of rotordynamic system
US9404791B2 (en) 2009-06-06 2016-08-02 Nuovo Pignone S.P.A. Lateral, angular and torsional vibration monitoring of rotordynamic systems
US8990031B2 (en) 2009-12-10 2015-03-24 Industrial Technology Research Institute Torsional resonance frequency measuring device and method
CN105136285A (en) * 2015-08-28 2015-12-09 中国神华能源股份有限公司 Generator shafting torsional oscillation component extraction device and method
CN108152026A (en) * 2017-12-20 2018-06-12 卧龙电气集团股份有限公司 A kind of rotating structural elements fatigue test device
CN110546477A (en) * 2018-03-29 2019-12-06 三菱重工业株式会社 contact vibration detection device, rotary machine provided with same, and contact vibration detection method
EP3605052A4 (en) * 2018-03-29 2020-06-17 Mitsubishi Heavy Industries, Ltd. Contact vibration detection device, rotating machine provided with same, and contact vibration detection method
CN110546477B (en) * 2018-03-29 2021-12-14 三菱重工船用机械株式会社 Contact vibration detection device, rotary machine provided with same, and contact vibration detection method
US11525753B2 (en) 2018-03-29 2022-12-13 Mitsubishi Heavy Industries Marine Machinery & Equipment Co., Ltd Contact vibration detection device, rotary machine including the same, and contact vibration detection method
JP2019203814A (en) * 2018-05-24 2019-11-28 三菱日立パワーシステムズ株式会社 Revolving shaft system torsional vibration measuring device and torsional vibration measuring method
CN113029481A (en) * 2021-02-25 2021-06-25 中国人民解放军国防科技大学 Method for measuring torsional vibration of blade
CN113029481B (en) * 2021-02-25 2023-03-03 中国人民解放军国防科技大学 Method for measuring torsional vibration of blade

Similar Documents

Publication Publication Date Title
US8666682B2 (en) Rotational torque measurement device
US9404791B2 (en) Lateral, angular and torsional vibration monitoring of rotordynamic systems
JP2008082879A (en) Device and method for measuring torsional vibration
US7322794B2 (en) Method and apparatus for condition-based monitoring of wind turbine components
EP2698619B1 (en) Rotational torsion tester
CN104011515B (en) For monitoring the method for power train, computing unit and device
JP2824523B2 (en) Method and apparatus for measuring fatigue of vibrating member
WO2017018112A1 (en) Abnormality diagnosing device and sensor detachment detecting method
JPH11254340A (en) Measurement method of fixing torque of screw joint, tightening control method, quality inspection method of tightening and torque impact supplying power tool for tightening screw joint
JP2018179735A (en) Abnormality diagnostic method and abnormality diagnostic device for rotary component
Arebi et al. A comparative study of misalignment detection using a novel Wireless Sensor with conventional Wired Sensors
US20160283622A1 (en) Obtaining Dynamic Properties of a Part of Wind Turbine
KR101656482B1 (en) Simulator for endurance test of wind turbine
Meroño et al. Measurement techniques of torsional vibration in rotating shafts
JP2009036544A (en) Gear noise evaluation method of gear transmission, and device therefor
De León et al. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations
JP2013024771A (en) Vibration meter and vibration measurement device
US11236732B2 (en) Generator, measuring device, use of a measuring device, method for operating a generator, wind energy installation and method for operating a wind energy installation
RU2239803C2 (en) Method of diagnostics of shafts for rotor machines transmitting torque loading
JP2008151700A (en) Torque measuring method and device
JP2010230347A (en) Torque measuring device
Bhattacharya Identification of torsional response of rotating machinery train through tests.
JPS61181904A (en) Measuring or monitoring axial displacement of rotating body without contacting
Parikh et al. Design and Development of a Fast Response Torque Meter for Unsteady Flows in Turbocharger Applications
Angrilli et al. Monitoring and diagnostics of stresses in reciprocating machines