WO2021200631A1 - Drive control system - Google Patents

Drive control system Download PDF

Info

Publication number
WO2021200631A1
WO2021200631A1 PCT/JP2021/012804 JP2021012804W WO2021200631A1 WO 2021200631 A1 WO2021200631 A1 WO 2021200631A1 JP 2021012804 W JP2021012804 W JP 2021012804W WO 2021200631 A1 WO2021200631 A1 WO 2021200631A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
temperature
control system
unit
lubricant
Prior art date
Application number
PCT/JP2021/012804
Other languages
French (fr)
Japanese (ja)
Inventor
大谷 正幸
Original Assignee
日本電産シンポ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産シンポ株式会社 filed Critical 日本電産シンポ株式会社
Priority to CN202180025461.2A priority Critical patent/CN115349222A/en
Priority to JP2022512107A priority patent/JPWO2021200631A1/ja
Publication of WO2021200631A1 publication Critical patent/WO2021200631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor

Definitions

  • the present invention relates to a drive control system.
  • a conventional drive control system includes a motor, a speed reducer connected to the motor, and a control unit that controls the motor.
  • the reduction gear has a gear mechanism, and the rotational power output from the motor can be increased according to the reduction ratio. (For example, refer to JP-A-2018-035885).
  • the viscosity of the lubricant fluctuates due to the temperature change of the lubricant added to the gear mechanism.
  • the responsiveness of the motor connected to the speed reducer fluctuates. Therefore, when the motor is feedback-controlled so as to approach the target speed, there is a problem that the rotation speed exceeds the target speed and overshoots, and there is a problem that the rotation speed cannot follow the target speed.
  • An object of the present invention is to provide a drive control system capable of improving the stability of feedback control.
  • An exemplary drive control system of the present invention includes a motor, a speed reducer, and a control unit.
  • the motor includes a stator having an exciting coil and a rotor having a magnetic member that rotates about a rotation axis with respect to the stator.
  • the reduction gear has a gear mechanism to which a lubricant is added, and the rotational power output from the motor can be increased according to the reduction ratio.
  • the control unit feedback-controls the drive of the motor.
  • the control unit performs PID control by varying the integrated gain according to the temperature of the lubricant.
  • FIG. 1 is a cross-sectional view of a drive device included in the drive control system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a drive control system according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a drive control system according to a second embodiment of the present invention.
  • the direction parallel to the rotation axis of the motor is the "axial direction”
  • the direction orthogonal to the rotation axis of the motor is the “diameter direction”
  • the direction along the arc centered on the rotation axis of the motor is “circumferential”.
  • Direction respectively.
  • the shape and positional relationship of each part will be described with the axial direction being the vertical direction and the reduction gear side facing the motor.
  • the vertical direction is merely a name used for explanation, and does not limit the actual positional relationship and direction.
  • the "parallel direction” includes a substantially parallel direction.
  • the "orthogonal direction” includes a direction substantially orthogonal to each other.
  • FIG. 1 is a vertical cross-sectional view of a drive device 30 included in the drive control system 1 according to the first embodiment of the present invention.
  • the drive device 30 includes a motor 10 and a speed reducer 20.
  • the drive device 30 decelerates the rotational power of the motor 10 by the speed reducer 20 and outputs it.
  • the drive device 30 can be used as a power source for driving a robot joint or the like, for example.
  • the motor 10 and the reduction gear 20 are integrally arranged side by side in the axial direction.
  • the motor 10 is an axial gap type and has a flat shape having a larger radial dimension than the axial direction. As a result, the drive device 30 can be miniaturized in the axial direction.
  • the motor 10 includes a rotor 11, a stator 12, a bearing portion 13, and a motor housing 14. The rotor 11, the stator 12, and the bearing portion 13 are housed in the motor housing 14.
  • the stator 12 has a laminated steel plate portion 121, a base portion 122, and an exciting coil (not shown).
  • a plurality of annular magnetic materials are laminated on the laminated steel plate portion 121.
  • the outer peripheral portion of the laminated steel plate portion 121 is fixed to the motor housing 14.
  • the base portion 122 has a cylindrical shape, and the outer peripheral portion of the base portion 122 is fixed to the inner peripheral portion of the laminated steel plate portion 121.
  • the inner peripheral portion of the base portion 122 holds the bearing portion 13.
  • the exciting coil (not shown) is formed by winding a conducting wire, and the magnetic core extends parallel to the rotation axis C.
  • the rotor 11 has a shaft 111, disk portions 112a and 112b, and magnetic members 113a and 113b.
  • the shaft 111 is formed in a columnar shape extending in the axial direction.
  • the shaft 111 is rotatably held by the bearing portion 13.
  • the disc portions 112a and 112b have a disc shape and are coaxially fixed on the shaft 111.
  • the disk portion 112a is arranged on the upper side in the axial direction of the laminated steel plate portion 121, and the disk portion 112b is arranged on the lower side in the axial direction of the laminated steel plate portion 121.
  • the upper surface of the disk portion 112a is connected to a cam 21 described later of the speed reducing device 20, and the rotational power of the rotor 11 is output to the cam 21.
  • the magnetic member 113a is fixed to the lower surface of the disk portion 112a, and the magnetic member 113b is fixed to the upper surface of the disk portion 112b.
  • the exciting coils (not shown) are aligned with the magnetic members 113a and 113b in the axial direction.
  • the magnetic members 113a and 113b are fixed to the entire circumference of the disc portions 112a and 112b, and the north and south poles are alternately arranged along the circumferential direction.
  • the circuit board 123 is arranged between the stator 12 and the disk portion 112b.
  • a temperature detection unit 123a and a position detection sensor 123b are mounted on the circuit board 123.
  • the temperature detection unit 123a is arranged near the lower end portion of the exciting coil (not shown) 122. That is, the temperature detection unit 123a is arranged so as to face the exciting coil. As a result, the temperature detection unit 123a can accurately detect the temperature of the exciting coil.
  • the position detection sensor 123b is for detecting the rotational position of the rotor 11, and may be, for example, any of a mechanical type, a magnetic type, an optical type, and an electromagnetic induction type.
  • the speed reduction device 20 is a so-called wave gear device, and includes a cam 21, an external gear 22, an internal gear 23, an output member 24, a flexible bearing 25, and a gear housing 26. Since the speed reduction device 20 is composed of wave gears, the drive device 30 can be miniaturized in the axial direction.
  • the cam 21 is an annular member having an elliptical outer shape.
  • An external gear 22 is arranged on the radial outer side of the cam 21, and an internal gear 23 is arranged on the radial outer side of the external gear 22.
  • the cam 21, the external gear 22, the internal gear 23, and the flexible bearing 25 are housed in the gear housing 26.
  • the outer peripheral portion of the internal gear 23 is fixed to the inner peripheral portion of the gear housing 26.
  • the gear housing 26 and the motor housing 14 are axially connected to each other.
  • the external tooth gear 22 is formed in a flexible cup shape, and the opening surface is arranged on the lower side in the axial direction.
  • the output member 24 is fixed to the upper part of the external gear 22.
  • the flexible bearing 25 is arranged between the cam 21 and the external gear 22.
  • the inner ring is fixed to the cam 21, and the flexible outer ring is arranged in contact with the outer gear 22.
  • the external gear 22 bends and deforms in an elliptical shape while shifting the position of the long axis in the circumferential direction as the cam 21 rotates.
  • the external gear 33 Since the external teeth of the external gear 22 and the internal teeth of the internal gear 23 have different numbers of teeth, the external gear 33 has a difference in the number of teeth with respect to the internal gear 23 each time the meshing position makes one revolution. Only relative rotation. As a result, the rotational power of the cam 21 is decelerated and transmitted to the external gear 22. The rotational power increased by the speed reducer 20 is output via the output member 24.
  • a lubricant is added to the gear mechanism including the external gear 22 and the internal gear 23, so that the gear mechanism rotates smoothly.
  • the lubricating material oil, grease or the like is used. That is, the reduction gear 20 has a gear mechanism to which a lubricant is added, and the rotational power output from the motor 10 can be increased according to the reduction ratio.
  • FIG. 2 is a block diagram showing the drive control system 1.
  • the drive control system 1 includes a motor 10, a speed reducer 20, and a control unit 100 that PID controls the drive of the motor 10.
  • the control unit 100 includes a CPU, a ROM, and a RAM, and is connected to the temperature detection unit 123a and the position detection sensor 123b.
  • the control unit 100 is composed of a computer provided in the device including the drive device 30, and the entire device including the drive device 30 functions as the drive control system 1.
  • the control unit 100 includes a rotation speed detection unit 110, a target speed setting unit 120, a subtraction unit 125, a PID control unit 130, a lubricant temperature detection unit 140, a gain variable unit 150, and a drive circuit unit 160. including.
  • the rotation speed detection unit 110 sequentially detects the pulse signals output from the position detection sensor 123b, and calculates the rotation speed of the motor 10 from the detection cycle.
  • the target speed setting unit 120 When the target speed setting unit 120 receives a command to output a predetermined rotational power to the output member 24, the target speed setting unit 120 outputs the target speed for outputting the predetermined rotational power to the subtraction unit 125.
  • the subtraction unit 125 calculates the difference between the target speed output from the target speed setting unit 120 and the detection speed output from the rotation speed detection unit 110, and outputs this difference to the PID control unit 130.
  • the PID control unit 130 includes a proportional unit 131, a differential unit 132, an integral unit 133, and an addition unit 134.
  • the proportional unit 131 outputs a signal obtained by multiplying the difference between the detection speed and the target speed by the proportional gain Kp to the addition unit 134.
  • the differentiation unit 132 outputs a signal obtained by differentiating the difference between the detection speed and the target speed and multiplying by the differential gain Kd to the addition unit 134.
  • the integrating unit 133 integrates the difference between the detection speed and the target speed, multiplies the integration gain Ki, and outputs a signal to the adding unit 134.
  • the addition unit 134 adds the signals output from the proportional unit 131, the differentiation unit 132, and the integration unit 133.
  • the signal added by the addition unit 134 is a signal for matching the actual rotation speed of the motor 10 detected by the rotation speed detection unit 110 with the target speed, and is output to the drive circuit unit 160.
  • the differential gain Kd can always be set to zero.
  • the PID control unit 130 can easily create a signal for matching the rotation speed of the motor 10 with the target speed.
  • the drive circuit unit 160 energizes and shuts off the three-phase exciting coils of the motor 10 in the forward and reverse directions based on the signal input from the PID control unit 130.
  • the rotor 11 is rotationally driven by the electromagnetic action between the stator 12 and the rotor 11.
  • the rotation speed of the motor 10 is constantly controlled so as to match the target speed.
  • the rotational power is output to the reduction gear 20 by the rotation of the shaft 111, and the rotational power decelerated by the reduction ratio of the wave gear mechanism is output via the output member 24.
  • the lubricant temperature detection unit 140 derives the temperature of the lubricant of the speed reducer 20 from the temperature in the vicinity of the exciting coil detected by the temperature detection unit 123a.
  • the temperature of the exciting coil and the temperature of the lubricant increase in conjunction with the increase in the rotation speed of the rotor 11. Therefore, the temperature of the lubricant can be derived by detecting the temperature of the exciting coil. That is, the control unit 100 derives the temperature of the lubricant based on the temperature detected by the temperature detection unit 123a. As a result, the temperature of the lubricant can be derived accurately with a simple configuration.
  • the gain variable unit 150 changes the integrated gain Ki according to the temperature of the lubricating material derived from the lubricating material temperature detecting unit 140.
  • the responsiveness of the motor 10 connected to the speed reducer 20 varies depending on the viscosity of the lubricant added to the gear mechanism. Further, the viscosity of the lubricant is linked to the temperature of the lubricant. Therefore, the responsiveness of the motor 10 can be stabilized by setting the optimum integrated gain Ki with respect to the temperature of the lubricant of the speed reducer 20.
  • the optimum integrated gain Ki with respect to the temperature of the lubricant is stored in advance.
  • the optimum integrated gain Ki can be expressed as a linear function, a higher order function, or a discretized table with respect to the temperature of the lubricant.
  • the gain variable unit 150 sets the integrated gain Ki smaller as the temperature of the lubricant rises. As a result, it is possible to prevent the viscosity of the lubricant from decreasing and the responsiveness of the motor 10 from becoming hypersensitive.
  • the gain variable unit 150 sets the integrated gain Ki larger as the temperature of the lubricant decreases. As a result, it is possible to prevent the viscosity of the lubricant from increasing and the responsiveness of the motor 10 from becoming dull. Therefore, it is possible to prevent the viscosity of the lubricant from changing depending on the temperature of the lubricant, which makes the responsiveness of the motor 10 irritable or insensitive. That is, the control unit 100 PID controls the drive of the motor 10 by varying the integrated gain Ki according to the temperature of the lubricant. Thereby, the drive control system 1 capable of improving the stability of the feedback control can be provided.
  • the gain variable unit 150 may be constantly variable with respect to the temperature of the lubricant of the speed reducer 20, or may be variable at predetermined temperature intervals. Further, the variable may be started after the motor 10 is started and the temperature of the lubricant exceeds a predetermined value.
  • FIG. 3 is a block diagram showing the drive control system 1 according to the second embodiment.
  • the second embodiment is different from the first embodiment in that the integrated gain Ki is changed according to the magnetic force of the magnetic member. Other parts are the same as those in the first embodiment.
  • the magnetic force detection unit 170 derives the magnetic force of the magnetic members 113a and 113b from the temperature in the vicinity of the exciting coil detected by the temperature detection unit 123a.
  • the magnetic force of the magnetic members 113a and 113b decreases in conjunction with the temperature rise of the magnetic members 113a and 113b. Therefore, by detecting the temperature in the vicinity of the exciting coil, the magnetic force of the magnetic members 113a and 113b can be derived with high accuracy.
  • the gain variable unit 150 changes the integrated gain Ki according to the temperature of the lubricating material derived by the lubricating material temperature detecting unit 140 and the magnetic force of the magnetic members 113a and 113b derived by the magnetic force detecting unit 170. That is, the control unit 100 derives the magnetic force of the magnetic members 113a and 113b based on the temperature detected by the temperature detection unit 123a, and sets the derived magnetic force of the magnetic members 113a and 113b and the temperature detected by the temperature detection unit 123a.
  • the drive of the motor 10 is PID-controlled by varying the integrated gain Ki according to the temperature of the lubricant derived based on the above. Thereby, the stability of the feedback control can be further improved.
  • the combination of the axial gap type motor 10 and the speed reduction device 20 having a wave gear structure has been described as an example, but the present invention is not limited to these.
  • the motor 10 may be of a radial gap type.
  • the reduction gear 20 may be composed of other gear mechanisms such as planetary gears.
  • the PID control unit 130 is composed of the proportional unit 131, the differential unit 132, and the integrating unit 133, it may be composed of only the proportional unit 131 and the integrating unit 133.
  • the temperature detection unit 123a is arranged inside the motor housing 14, it may be arranged outside the motor housing 14. Further, the temperature detection unit 123a may be arranged outside the gear housing 26 to detect the temperature of the lubricant. Further, the temperature detection unit 123a may be arranged inside the gear housing 26 to directly detect the temperature of the lubricant.
  • the feedback control controls the speed based on the rotation speed of the motor 10, but the speed may be controlled based on the rotation speed on the output member 24 side of the speed reducer 20.
  • feedback control may be performed by position control and torque control.
  • the entire device including the drive device 30 functions as the drive control system 1.
  • the control unit 100 may be provided separately from the device including the drive device 30.
  • the control unit 100 may be configured by a computer or the like that collectively controls the factory, and the drive device 30 may be controlled based on a signal transmitted from the outside of the device including the drive device 30.
  • the control unit 100 may be provided integrally with the drive device 30 so that the drive device 30 itself functions as the drive control system 1.
  • the present invention can be used, for example, for a robot that drives a joint or the like using a drive device provided with a drive control system as a power source, and an electric vehicle that uses a drive device provided with a drive control system as a power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Retarders (AREA)

Abstract

This drive control system comprises a motor, a reduction device, and a control unit. The motor includes a stator having an excitation coil, and a rotor having a magnetic member which rotates centered on an axis of rotation with respect to the stator. The reduction device has a gear mechanism to which a lubricating material is added, and can increase the rotation power output from the motor in accordance with the reduction ratio. The control unit varies an integration gain in accordance with the temperature of the lubricating material to perform PID control of the driving of the motor.

Description

駆動制御システムDrive control system
 本発明は、駆動制御システムに関する。 The present invention relates to a drive control system.
 従来の駆動制御システムは、モータと、モータに連結される減速装置と、モータを制御する制御部と、を有する。減速装置は歯車機構を有し、モータから出力される回転動力を減速比に応じて増大できる。(例えば、特開2018-035885号公報参照)。 A conventional drive control system includes a motor, a speed reducer connected to the motor, and a control unit that controls the motor. The reduction gear has a gear mechanism, and the rotational power output from the motor can be increased according to the reduction ratio. (For example, refer to JP-A-2018-035885).
特開2018-035885号公報Japanese Unexamined Patent Publication No. 2018-035885
 しかしながら、上記のような駆動制御システムは、歯車機構に添加される潤滑材の温度変化によって潤滑材の粘性が変動する。これにより、減速装置に接続されるモータの応答性が変動する。従って、目標速度に近づくようにモータをフィードバック制御する際に、回転速度が目標速度を超えてオーバーシュートする問題や、回転速度が目標速度に追従できない問題があった。 However, in the drive control system as described above, the viscosity of the lubricant fluctuates due to the temperature change of the lubricant added to the gear mechanism. As a result, the responsiveness of the motor connected to the speed reducer fluctuates. Therefore, when the motor is feedback-controlled so as to approach the target speed, there is a problem that the rotation speed exceeds the target speed and overshoots, and there is a problem that the rotation speed cannot follow the target speed.
 本発明は、フィードバック制御の安定性を向上できる駆動制御システムを提供することを目的とする。 An object of the present invention is to provide a drive control system capable of improving the stability of feedback control.
 本発明の例示的な駆動制御システムは、モータと、減速装置と、制御部と、を備える。モータは、励磁コイルを有するステータと、ステータに対して回転軸を中心に回転する磁性部材を有するロータと、を備える。減速装置は、潤滑材が添加された歯車機構を有し、モータから出力される回転動力を減速比に応じて増大可能である。制御部は、モータの駆動をフィードバック制御する。制御部は、潤滑材の温度に応じて積分ゲインを可変してPID制御を行う。 An exemplary drive control system of the present invention includes a motor, a speed reducer, and a control unit. The motor includes a stator having an exciting coil and a rotor having a magnetic member that rotates about a rotation axis with respect to the stator. The reduction gear has a gear mechanism to which a lubricant is added, and the rotational power output from the motor can be increased according to the reduction ratio. The control unit feedback-controls the drive of the motor. The control unit performs PID control by varying the integrated gain according to the temperature of the lubricant.
 例示的な本発明によれば、フィードバック制御の安定性を向上できる駆動制御システムを提供することができる。 According to an exemplary invention, it is possible to provide a drive control system capable of improving the stability of feedback control.
図1は、本発明の第1実施形態に係る駆動制御システムに含まれる駆動装置の断面図である。FIG. 1 is a cross-sectional view of a drive device included in the drive control system according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る駆動制御システムを示すブロック図である。FIG. 2 is a block diagram showing a drive control system according to the first embodiment of the present invention. 図3は、本発明の第2実施形態に係る駆動制御システムを示すブロック図である。FIG. 3 is a block diagram showing a drive control system according to a second embodiment of the present invention.
 以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。なお、本明細書では、モータの回転軸と平行な方向を「軸方向」、モータの回転軸に直交する方向を「径方向」、モータの回転軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、本願では、軸方向を上下方向とし、モータに対して減速装置側を上として、各部の形状や位置関係を説明する。なお、上下方向は単に説明のための用いられる名称であって、実際の位置関係及び方向を限定しない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, the direction parallel to the rotation axis of the motor is the "axial direction", the direction orthogonal to the rotation axis of the motor is the "diameter direction", and the direction along the arc centered on the rotation axis of the motor is "circumferential". "Direction", respectively. Further, in the present application, the shape and positional relationship of each part will be described with the axial direction being the vertical direction and the reduction gear side facing the motor. The vertical direction is merely a name used for explanation, and does not limit the actual positional relationship and direction.
 また、本願において「平行な方向」とは、略平行な方向も含む。また、本願において「直交する方向」とは、略直交する方向も含む。 Further, in the present application, the "parallel direction" includes a substantially parallel direction. Further, in the present application, the "orthogonal direction" includes a direction substantially orthogonal to each other.
<第1実施形態>
<1.駆動装置の構成>
 本発明の例示的な一実施形態の駆動装置について説明する。図1は、本発明の第1実施形態に係る駆動制御システム1に含まれる駆動装置30の縦断面図である。
<First Embodiment>
<1. Drive unit configuration>
An exemplary embodiment of the driving device of the present invention will be described. FIG. 1 is a vertical cross-sectional view of a drive device 30 included in the drive control system 1 according to the first embodiment of the present invention.
 駆動装置30は、モータ10と、減速装置20と、を有する。駆動装置30は、モータ10の回転動力を減速装置20で減速して出力する。駆動装置30は、例えば、ロボットの関節等を駆動させる動力源として利用可能である。 モータ10及び減速装置20は、軸方向に並んで一体に構成されている。 The drive device 30 includes a motor 10 and a speed reducer 20. The drive device 30 decelerates the rotational power of the motor 10 by the speed reducer 20 and outputs it. The drive device 30 can be used as a power source for driving a robot joint or the like, for example. The motor 10 and the reduction gear 20 are integrally arranged side by side in the axial direction.
<2.モータの構成> <2. Motor configuration>
 モータ10は、アキシャルギャップ型であり、軸方向よりも径方向の寸法が大きい扁平状である。これにより、駆動装置30を軸方向に小型化できる。モータ10は、ロータ11と、ステータ12と、軸受部13と、モータハウジング14と、を備える。ロータ11、ステータ12、及び軸受部13は、モータハウジング14内に収容される。 The motor 10 is an axial gap type and has a flat shape having a larger radial dimension than the axial direction. As a result, the drive device 30 can be miniaturized in the axial direction. The motor 10 includes a rotor 11, a stator 12, a bearing portion 13, and a motor housing 14. The rotor 11, the stator 12, and the bearing portion 13 are housed in the motor housing 14.
 ステータ12は、積層鋼板部121と、ベース部122と、励磁コイル(不図示)と、を有する。積層鋼板部121は、円環状の磁性体が複数積層されている。積層鋼板部121の外周部は、モータハウジング14に固定されている。ベース部122は、円筒状であり、ベース部122の外周部は、積層鋼板部121の内周部に固定されている。ベース部122の内周部は軸受部13を保持している。励磁コイル(不図示)は、導線を巻回して構成され、磁芯が回転軸Cと平行に延びる。 The stator 12 has a laminated steel plate portion 121, a base portion 122, and an exciting coil (not shown). A plurality of annular magnetic materials are laminated on the laminated steel plate portion 121. The outer peripheral portion of the laminated steel plate portion 121 is fixed to the motor housing 14. The base portion 122 has a cylindrical shape, and the outer peripheral portion of the base portion 122 is fixed to the inner peripheral portion of the laminated steel plate portion 121. The inner peripheral portion of the base portion 122 holds the bearing portion 13. The exciting coil (not shown) is formed by winding a conducting wire, and the magnetic core extends parallel to the rotation axis C.
 ロータ11は、シャフト111と、円板部112a、112bと、磁性部材113a、113bと、を有する。シャフト111は、軸方向に延びる円柱状に形成されている。シャフト111は、軸受部13に回転可能に保持されている。 The rotor 11 has a shaft 111, disk portions 112a and 112b, and magnetic members 113a and 113b. The shaft 111 is formed in a columnar shape extending in the axial direction. The shaft 111 is rotatably held by the bearing portion 13.
 円板部112a、112bは、円板状であり、シャフト111上に同軸に固定されている。円板部112aは、積層鋼板部121の軸方向上側に配置され、円板部112bは、積層鋼板部121の軸方向下側に配置される。円板部112aの上面は、減速装置20の後述するカム21に接続され、ロータ11の回転動力は、カム21に出力される。 The disc portions 112a and 112b have a disc shape and are coaxially fixed on the shaft 111. The disk portion 112a is arranged on the upper side in the axial direction of the laminated steel plate portion 121, and the disk portion 112b is arranged on the lower side in the axial direction of the laminated steel plate portion 121. The upper surface of the disk portion 112a is connected to a cam 21 described later of the speed reducing device 20, and the rotational power of the rotor 11 is output to the cam 21.
 磁性部材113aは、円板部112aの下面に固定され、磁性部材113bは、円板部112bの上面に固定される。これにより、励磁コイル(不図示)が、磁性部材113a、113bと軸方向に並ぶ。磁性部材113a、113bは、円板部112a、112bの全周に固定され、周方向に沿ってN極とS極とが交互に配列されている。 The magnetic member 113a is fixed to the lower surface of the disk portion 112a, and the magnetic member 113b is fixed to the upper surface of the disk portion 112b. As a result, the exciting coils (not shown) are aligned with the magnetic members 113a and 113b in the axial direction. The magnetic members 113a and 113b are fixed to the entire circumference of the disc portions 112a and 112b, and the north and south poles are alternately arranged along the circumferential direction.
 回路基板123は、ステータ12と円板部112bとの間に配置される。回路基板123には、温度検知部123a及び位置検出センサ123bが実装される。温度検知部123aは、励磁コイル(不図示)122の下端部近傍に配置される。すなわち、温度検知部123aが、励磁コイルに臨んで配置される。これにより、温度検知部123aは、励磁コイルの温度を精度よく検知できる。位置検出センサ123bは、ロータ11の回転位置を検出するためのもので、例えば、機械式、磁気式、光学式、電磁誘導式のいずれでもよい。 The circuit board 123 is arranged between the stator 12 and the disk portion 112b. A temperature detection unit 123a and a position detection sensor 123b are mounted on the circuit board 123. The temperature detection unit 123a is arranged near the lower end portion of the exciting coil (not shown) 122. That is, the temperature detection unit 123a is arranged so as to face the exciting coil. As a result, the temperature detection unit 123a can accurately detect the temperature of the exciting coil. The position detection sensor 123b is for detecting the rotational position of the rotor 11, and may be, for example, any of a mechanical type, a magnetic type, an optical type, and an electromagnetic induction type.
<3.減速装置の構成>
 減速装置20は、いわゆる波動歯車装置であり、カム21、外歯歯車22、内歯歯車23、出力部材24、可撓性軸受25、及びギアハウジング26を備える。減速装置20が、波動歯車で構成されることにより、駆動装置30を軸方向に小型化できる。カム21は、楕円状の外形を有する環状部材である。カム21の径方向外側には、外歯歯車22が配置され、外歯歯車22の径方向外側には内歯歯車23が配置されている。カム21、外歯歯車22、内歯歯車23、及び可撓性軸受25、はギアハウジング26に収容されている。内歯歯車23の外周部は、ギアハウジング26の内周部に固定されている。ギアハウジング26とモータハウジング14とは軸方向に連結している。
<3. Configuration of speed reducer>
The speed reduction device 20 is a so-called wave gear device, and includes a cam 21, an external gear 22, an internal gear 23, an output member 24, a flexible bearing 25, and a gear housing 26. Since the speed reduction device 20 is composed of wave gears, the drive device 30 can be miniaturized in the axial direction. The cam 21 is an annular member having an elliptical outer shape. An external gear 22 is arranged on the radial outer side of the cam 21, and an internal gear 23 is arranged on the radial outer side of the external gear 22. The cam 21, the external gear 22, the internal gear 23, and the flexible bearing 25 are housed in the gear housing 26. The outer peripheral portion of the internal gear 23 is fixed to the inner peripheral portion of the gear housing 26. The gear housing 26 and the motor housing 14 are axially connected to each other.
 外歯歯車22は、可撓性のカップ状に形成され、開口面が軸方向下側に配置される。出力部材24は、外歯歯車22の上部に固定される。 The external tooth gear 22 is formed in a flexible cup shape, and the opening surface is arranged on the lower side in the axial direction. The output member 24 is fixed to the upper part of the external gear 22.
 可撓性軸受25は、カム21と外歯歯車22との間に配置される。可撓性軸受25は、内輪をカム21に固定され、可撓性の外輪を外歯歯車22に接して配される。外歯歯車22は、カム21が回転するに従って長軸の位置を周方向に変位させながら楕円状に撓み変形する。 The flexible bearing 25 is arranged between the cam 21 and the external gear 22. In the flexible bearing 25, the inner ring is fixed to the cam 21, and the flexible outer ring is arranged in contact with the outer gear 22. The external gear 22 bends and deforms in an elliptical shape while shifting the position of the long axis in the circumferential direction as the cam 21 rotates.
 外歯歯車22の外歯と内歯歯車23の内歯とは歯数が異なるため、噛み合い位置が1周するごとに、内歯歯車23に対して外歯歯車33が、歯数差の分だけ相対回転する。これにより、外歯歯車22にカム21の回転動力が減速して伝達する。減速装置20で増大された回転動力は、出力部材24を介して出力される。 Since the external teeth of the external gear 22 and the internal teeth of the internal gear 23 have different numbers of teeth, the external gear 33 has a difference in the number of teeth with respect to the internal gear 23 each time the meshing position makes one revolution. Only relative rotation. As a result, the rotational power of the cam 21 is decelerated and transmitted to the external gear 22. The rotational power increased by the speed reducer 20 is output via the output member 24.
 また、外歯歯車22及び内歯歯車23を含む歯車機構には潤滑材が添加されており、歯車機構が円滑に回転する。潤滑材としては、オイル又はグリス等が用いられる。すなわち、減速装置20は、潤滑材が添加された歯車機構を有し、モータ10から出力される回転動力を減速比に応じて増大可能である。 Further, a lubricant is added to the gear mechanism including the external gear 22 and the internal gear 23, so that the gear mechanism rotates smoothly. As the lubricating material, oil, grease or the like is used. That is, the reduction gear 20 has a gear mechanism to which a lubricant is added, and the rotational power output from the motor 10 can be increased according to the reduction ratio.
<4.フィードバック制御>
 図2は、駆動制御システム1を示すブロック図である。駆動制御システム1は、モータ10と、減速装置20と、モータ10の駆動をPID制御する制御部100と、を有する。制御部100は、CPU、ROM及びRAMを備え、温度検知部123a及び位置検出センサ123bに接続される。例えば、制御部100は、駆動装置30を含む装置に設けられたコンピュータにより構成され、駆動装置30を含む装置全体が、駆動制御システム1として機能する。
<4. Feedback control>
FIG. 2 is a block diagram showing the drive control system 1. The drive control system 1 includes a motor 10, a speed reducer 20, and a control unit 100 that PID controls the drive of the motor 10. The control unit 100 includes a CPU, a ROM, and a RAM, and is connected to the temperature detection unit 123a and the position detection sensor 123b. For example, the control unit 100 is composed of a computer provided in the device including the drive device 30, and the entire device including the drive device 30 functions as the drive control system 1.
 制御部100は、回転速度検出部110と、目標速度設定部120と、減算部125と、PID制御部130と、潤滑材温度検出部140と、ゲイン可変部150と、駆動回路部160と、を含む。 The control unit 100 includes a rotation speed detection unit 110, a target speed setting unit 120, a subtraction unit 125, a PID control unit 130, a lubricant temperature detection unit 140, a gain variable unit 150, and a drive circuit unit 160. including.
 回転速度検出部110は、位置検出センサ123bから出力されたパルス信号を順次検出し、その検出周期からモータ10の回転速度を算出する。 The rotation speed detection unit 110 sequentially detects the pulse signals output from the position detection sensor 123b, and calculates the rotation speed of the motor 10 from the detection cycle.
 目標速度設定部120は、出力部材24に所定の回転動力を出力する指令を受信すると、所定の回転動力を出力するための目標速度を減算部125に出力する。 When the target speed setting unit 120 receives a command to output a predetermined rotational power to the output member 24, the target speed setting unit 120 outputs the target speed for outputting the predetermined rotational power to the subtraction unit 125.
 減算部125は、目標速度設定部120から出力される目標速度と、回転速度検出部110から出力される検出速度と、の差分を算出し、この差分をPID制御部130に出力する。 The subtraction unit 125 calculates the difference between the target speed output from the target speed setting unit 120 and the detection speed output from the rotation speed detection unit 110, and outputs this difference to the PID control unit 130.
 PID制御部130は、比例部131と、微分部132と、積分部133と、加算部134と、を有する。比例部131は、検出速度と目標速度との差分に比例ゲインKpを乗算した信号を加算部134に出力する。微分部132は、検出速度と目標速度との差分を微分して微分ゲインKdを乗算した信号を加算部134に出力する。積分部133は、検出速度と目標速度との差分を積分して積分ゲインKiを乗算した信号を加算部134に出力する。 The PID control unit 130 includes a proportional unit 131, a differential unit 132, an integral unit 133, and an addition unit 134. The proportional unit 131 outputs a signal obtained by multiplying the difference between the detection speed and the target speed by the proportional gain Kp to the addition unit 134. The differentiation unit 132 outputs a signal obtained by differentiating the difference between the detection speed and the target speed and multiplying by the differential gain Kd to the addition unit 134. The integrating unit 133 integrates the difference between the detection speed and the target speed, multiplies the integration gain Ki, and outputs a signal to the adding unit 134.
 加算部134は、比例部131、微分部132、及び積分部133から出力された信号を加算する。加算部134で加算された信号は、回転速度検出部110で検出した実際のモータ10の回転速度を、目標速度に一致させるための信号であり、駆動回路部160に出力される。なお、本実施形態において、微分動作がなくてもモータ10の回転速度を、目標速度に一致させることが可能である。このため、微分ゲインKdを常時ゼロに設定することができる。これにより、PID制御部130は、モータ10の回転速度を、目標速度に一致させるための信号を簡易に作成できる。 The addition unit 134 adds the signals output from the proportional unit 131, the differentiation unit 132, and the integration unit 133. The signal added by the addition unit 134 is a signal for matching the actual rotation speed of the motor 10 detected by the rotation speed detection unit 110 with the target speed, and is output to the drive circuit unit 160. In this embodiment, it is possible to match the rotation speed of the motor 10 with the target speed even if there is no differential operation. Therefore, the differential gain Kd can always be set to zero. As a result, the PID control unit 130 can easily create a signal for matching the rotation speed of the motor 10 with the target speed.
 駆動回路部160は、PID制御部130から入力された信号に基づいてモータ10の3相の励磁コイルへの正逆方向への通電、遮断を行う。これにより、ステータ12とロータ11との電磁的作用によりロータ11が、回転駆動される。また、フィードバック制御により、モータ10の回転速度が目標速度に一致するように常時制御される。シャフト111の回転により、回転動力が減速装置20に出力され、波動歯車機構の減速比によって減速された回転動力が、出力部材24を介して出力される。 The drive circuit unit 160 energizes and shuts off the three-phase exciting coils of the motor 10 in the forward and reverse directions based on the signal input from the PID control unit 130. As a result, the rotor 11 is rotationally driven by the electromagnetic action between the stator 12 and the rotor 11. Further, by feedback control, the rotation speed of the motor 10 is constantly controlled so as to match the target speed. The rotational power is output to the reduction gear 20 by the rotation of the shaft 111, and the rotational power decelerated by the reduction ratio of the wave gear mechanism is output via the output member 24.
 潤滑材温度検出部140は、温度検知部123aで検知された励磁コイル近傍の温度から減速装置20の潤滑材の温度を導出する。励磁コイルの温度および潤滑材の温度は、ロータ11の回転数の上昇に連動して上昇する。このため、励磁コイルの温度を検知することにより、潤滑材の温度を導出できる。すなわち、制御部100は、温度検知部123aが検知した温度に基づいて潤滑材の温度を導出する。これにより、簡易な構成で潤滑材の温度を精度よく導出できる。 The lubricant temperature detection unit 140 derives the temperature of the lubricant of the speed reducer 20 from the temperature in the vicinity of the exciting coil detected by the temperature detection unit 123a. The temperature of the exciting coil and the temperature of the lubricant increase in conjunction with the increase in the rotation speed of the rotor 11. Therefore, the temperature of the lubricant can be derived by detecting the temperature of the exciting coil. That is, the control unit 100 derives the temperature of the lubricant based on the temperature detected by the temperature detection unit 123a. As a result, the temperature of the lubricant can be derived accurately with a simple configuration.
 ゲイン可変部150は、潤滑材温度検出部140が導出した潤滑材の温度に応じて積分ゲインKiを可変する。減速装置20に接続されるモータ10の応答性は、歯車機構に添加された潤滑材の粘性により変動する。また、潤滑材の粘性は、潤滑材の温度に連動する。このため、減速装置20の潤滑材の温度に対して最適な積分ゲインKiを設定することにより、モータ10の応答性を安定化できる。なお、潤滑材の温度に対する最適な積分ゲインKiは、予め記憶されている。最適な積分ゲインKiは、潤滑材の温度に対する一次関数、高次関数、又は離散化したテーブルで表すことができる。 The gain variable unit 150 changes the integrated gain Ki according to the temperature of the lubricating material derived from the lubricating material temperature detecting unit 140. The responsiveness of the motor 10 connected to the speed reducer 20 varies depending on the viscosity of the lubricant added to the gear mechanism. Further, the viscosity of the lubricant is linked to the temperature of the lubricant. Therefore, the responsiveness of the motor 10 can be stabilized by setting the optimum integrated gain Ki with respect to the temperature of the lubricant of the speed reducer 20. The optimum integrated gain Ki with respect to the temperature of the lubricant is stored in advance. The optimum integrated gain Ki can be expressed as a linear function, a higher order function, or a discretized table with respect to the temperature of the lubricant.
 フィードバック制御において、ゲイン可変部150は、潤滑材の温度が上昇するに従って積分ゲインKiを小さく設定する。これにより、潤滑材の粘性が下がってモータ10の応答性が過敏になることを回避できる。一方、ゲイン可変部150は、潤滑材の温度が低下するに従って積分ゲインKiを大きく設定する。これにより、潤滑材の粘性が上がってモータ10の応答性が鈍化することを回避できる。従って、潤滑材の温度の高低により粘性が変化し、モータ10の応答性が過敏となったり、鈍感となったりすることを防止できる。すなわち、制御部100が、潤滑材の温度に応じて積分ゲインKiを可変してモータ10の駆動をPID制御する。これにより、フィードバック制御の安定性を向上できる駆動制御システム1を提供できる。 In the feedback control, the gain variable unit 150 sets the integrated gain Ki smaller as the temperature of the lubricant rises. As a result, it is possible to prevent the viscosity of the lubricant from decreasing and the responsiveness of the motor 10 from becoming hypersensitive. On the other hand, the gain variable unit 150 sets the integrated gain Ki larger as the temperature of the lubricant decreases. As a result, it is possible to prevent the viscosity of the lubricant from increasing and the responsiveness of the motor 10 from becoming dull. Therefore, it is possible to prevent the viscosity of the lubricant from changing depending on the temperature of the lubricant, which makes the responsiveness of the motor 10 irritable or insensitive. That is, the control unit 100 PID controls the drive of the motor 10 by varying the integrated gain Ki according to the temperature of the lubricant. Thereby, the drive control system 1 capable of improving the stability of the feedback control can be provided.
 なお、フィードバック制御において、ゲイン可変部150は、減速装置20の潤滑材の温度に対して常時可変してもよいし、所定温度間隔ごとに可変してもよい。また、モータ10を起動して潤滑材の温度が所定値を超えた後に、可変を開始してもよい。 In the feedback control, the gain variable unit 150 may be constantly variable with respect to the temperature of the lubricant of the speed reducer 20, or may be variable at predetermined temperature intervals. Further, the variable may be started after the motor 10 is started and the temperature of the lubricant exceeds a predetermined value.
 <第2実施形態>
 次に、本発明の第2実施形態について説明する。図3は、第2実施形態に係る駆動制御システム1を示すブロック図である。説明の便宜上、前述の図1、図2に示す第1実施形態と同様の部分には同一の符号を付す。第2実施形態では磁性部材の磁力に応じて積分ゲインKiを可変する点が第1実施形態とは異なる。その他の部分は第1実施形態と同様である。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram showing the drive control system 1 according to the second embodiment. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 and 2 described above are designated by the same reference numerals. The second embodiment is different from the first embodiment in that the integrated gain Ki is changed according to the magnetic force of the magnetic member. Other parts are the same as those in the first embodiment.
 磁力検出部170は、温度検知部123aで検知された励磁コイル近傍の温度から磁性部材113a、113bの磁力を導出する。磁性部材113a、113bの磁力は、磁性部材113a、113bの温度上昇に連動して低下する。このため、励磁コイル近傍の温度を検知することにより、磁性部材113a、113bの磁力を精度よく導出できる。 The magnetic force detection unit 170 derives the magnetic force of the magnetic members 113a and 113b from the temperature in the vicinity of the exciting coil detected by the temperature detection unit 123a. The magnetic force of the magnetic members 113a and 113b decreases in conjunction with the temperature rise of the magnetic members 113a and 113b. Therefore, by detecting the temperature in the vicinity of the exciting coil, the magnetic force of the magnetic members 113a and 113b can be derived with high accuracy.
 ゲイン可変部150は、潤滑材温度検出部140が導出した潤滑材の温度と、磁力検出部170が導出した磁性部材113a、113bの磁力に応じて積分ゲインKiを可変する。すなわち、制御部100は、温度検知部123aが検知した温度に基づいて磁性部材113a、113bの磁力を導出し、導出された磁性部材113a、113bの磁力と、温度検知部123aが検知した温度に基づいて導出された潤滑材の温度と、に応じて積分ゲインKiを可変してモータ10の駆動をPID制御する。これにより、フィードバック制御の安定性をより向上できる。 The gain variable unit 150 changes the integrated gain Ki according to the temperature of the lubricating material derived by the lubricating material temperature detecting unit 140 and the magnetic force of the magnetic members 113a and 113b derived by the magnetic force detecting unit 170. That is, the control unit 100 derives the magnetic force of the magnetic members 113a and 113b based on the temperature detected by the temperature detection unit 123a, and sets the derived magnetic force of the magnetic members 113a and 113b and the temperature detected by the temperature detection unit 123a. The drive of the motor 10 is PID-controlled by varying the integrated gain Ki according to the temperature of the lubricant derived based on the above. Thereby, the stability of the feedback control can be further improved.
<4.その他>
 上記実施形態は、本発明の例示にすぎない。実施形態の構成は、本発明の技術的思想を超えない範囲で適宜変更されてもよい。また、実施形態は、可能な範囲で組み合わせて実施されてよい。
<4. Others>
The above embodiment is merely an example of the present invention. The configuration of the embodiment may be appropriately changed without exceeding the technical idea of the present invention. Moreover, the embodiment may be carried out in combination to the extent possible.
 本実施形態では、アキシャルギャップ型のモータ10と波動歯車構造を有する減速装置20の組み合わせを一例として説明したが、これらに限られるものではない。モータ10は、ラジアルギャップ型でもよい。また、減速装置20は、遊星歯車等その他の歯車機構で構成してもよい。 In the present embodiment, the combination of the axial gap type motor 10 and the speed reduction device 20 having a wave gear structure has been described as an example, but the present invention is not limited to these. The motor 10 may be of a radial gap type. Further, the reduction gear 20 may be composed of other gear mechanisms such as planetary gears.
 また、PID制御部130は、比例部131、微分部132、及び積分部133で構成されるが、比例部131及び積分部133のみで構成してもよい。 Further, although the PID control unit 130 is composed of the proportional unit 131, the differential unit 132, and the integrating unit 133, it may be composed of only the proportional unit 131 and the integrating unit 133.
 また、温度検知部123aは、モータハウジング14内部に配置されるが、モータハウジング14の外部に配置されてもよい。また、温度検知部123aをギアハウジング26の外部に配置して潤滑材の温度を検知してもよい。また、温度検知部123aをギアハウジング26の内部に配置して潤滑材の温度を直接検知してもよい。 Further, although the temperature detection unit 123a is arranged inside the motor housing 14, it may be arranged outside the motor housing 14. Further, the temperature detection unit 123a may be arranged outside the gear housing 26 to detect the temperature of the lubricant. Further, the temperature detection unit 123a may be arranged inside the gear housing 26 to directly detect the temperature of the lubricant.
 また、本実施形態においてフィードバック制御は、モータ10の回転速度に基づいて速度制御しているが、減速装置20の出力部材24側の回転速度に基づいて速度制御を行ってもよい。また、速度制御以外に位置制御及びトルク制御によりフィードバック制御を行ってもよい。 Further, in the present embodiment, the feedback control controls the speed based on the rotation speed of the motor 10, but the speed may be controlled based on the rotation speed on the output member 24 side of the speed reducer 20. In addition to speed control, feedback control may be performed by position control and torque control.
 また、本実施形態において、駆動装置30を含む装置全体が、駆動制御システム1として機能する。しかし、制御部100は、駆動装置30を含む装置と別に設けられてもよい。例えば、工場を統括的に制御するコンピュータ等により制御部100を構成し、駆動装置30を含む装置の外部から送信される信号に基づいて駆動装置30を制御してもよい。また、制御部100を駆動装置30と一体に設けて駆動装置30自体を駆動制御システム1として機能させてもよい。 Further, in the present embodiment, the entire device including the drive device 30 functions as the drive control system 1. However, the control unit 100 may be provided separately from the device including the drive device 30. For example, the control unit 100 may be configured by a computer or the like that collectively controls the factory, and the drive device 30 may be controlled based on a signal transmitted from the outside of the device including the drive device 30. Further, the control unit 100 may be provided integrally with the drive device 30 so that the drive device 30 itself functions as the drive control system 1.
 本発明は、例えば、駆動制御システムを備える駆動装置を動力源として関節などを駆動させるロボット、駆動制御システムを備える駆動装置を動力源とする電気自動車に利用できる。 The present invention can be used, for example, for a robot that drives a joint or the like using a drive device provided with a drive control system as a power source, and an electric vehicle that uses a drive device provided with a drive control system as a power source.
   1   駆動制御システム
  10   モータ
  11   ロータ
  12   ステータ
  13   軸受部
  14   モータハウジング
  20   減速装置
  21   カム
  22   外歯歯車
  23   内歯歯車
  24   出力部材
  25   可撓性軸受
  26   ギアハウジング
  30   駆動装置
 100   制御部
 110   回転速度検出部
 111   シャフト
 112a、112b 円板部
 113a、113b 磁性部材
 120   目標速度設定部
 121   積層鋼板部
 122   ベース部
 123   回路基板
 123a  温度検知部
 123b  位置検出センサ
 125   減算部
 130   PID制御部
 131   比例部
 132   微分部
 133   積分部
 134   加算部
 140   潤滑材温度検出部
 150   ゲイン可変部
 160   駆動回路部
 170   磁力検出部
   C   回転軸
1 Drive control system 10 Motor 11 Rotor 12 Stator 13 Bearing part 14 Motor housing 20 Deceleration device 21 Cam 22 External gear 23 Internal gear 24 Output member 25 Flexible bearing 26 Gear housing 30 Drive unit 100 Control unit 110 Rotation speed detection Part 111 Shaft 112a, 112b Disc part 113a, 113b Magnetic member 120 Target speed setting part 121 Laminated steel plate part 122 Base part 123 Circuit board 123a Temperature detection part 123b Position detection sensor 125 Subtraction part 130 PID control part 131 Proportional part 132 Differentiation part 133 Integrator 134 Adder 140 Lubricator temperature detector 150 Gain variable 160 Drive circuit 170 Magnetic force detector C Rotating shaft

Claims (7)

  1.  励磁コイルを有するステータと、前記ステータに対して回転軸を中心に回転する磁性部材を有するロータと、を備えるモータと、
     潤滑材が添加された歯車機構を有し、前記モータから出力される回転動力を減速比に応じて増大可能な減速装置と、
     前記潤滑材の温度に応じて積分ゲインを可変して前記モータの駆動をPID制御する制御部と、有する、駆動制御システム。
    A motor including a stator having an exciting coil and a rotor having a magnetic member that rotates about a rotation axis with respect to the stator.
    A speed reducer that has a gear mechanism to which a lubricant is added and can increase the rotational power output from the motor according to the reduction ratio.
    A drive control system including a control unit that PID controls the drive of the motor by varying the integrated gain according to the temperature of the lubricant.
  2.  前記PID制御は、微分ゲインが常時ゼロである、請求項1に記載の駆動制御システム。 The drive control system according to claim 1, wherein the PID control has a differential gain of always zero.
  3.  前記励磁コイルの温度を検知する温度検知部をさらに有し、
     前記制御部は、前記温度検知部が検知した温度に基づいて前記潤滑材の温度を導出する、請求項1または請求項2に記載の駆動制御システム。
    It further has a temperature detection unit that detects the temperature of the exciting coil.
    The drive control system according to claim 1 or 2, wherein the control unit derives the temperature of the lubricant based on the temperature detected by the temperature detection unit.
  4.  前記温度検知部が、前記励磁コイルに臨んで配置される、請求項3に記載の駆動制御システム。 The drive control system according to claim 3, wherein the temperature detection unit is arranged so as to face the exciting coil.
  5.  前記制御部は、前記温度検知部が検知した温度に基づいて前記磁性部材の磁力を導出し、導出された前記磁性部材の磁力と、前記温度検知部が検知した温度に基づいて導出された前記潤滑材の温度と、に応じて積分ゲインを可変して前記モータの駆動をPID制御する、請求項3または請求項4に記載の駆動制御システム。 The control unit derives the magnetic force of the magnetic member based on the temperature detected by the temperature detection unit, and is derived based on the derived magnetic force of the magnetic member and the temperature detected by the temperature detection unit. The drive control system according to claim 3 or 4, wherein the drive of the motor is PID controlled by varying the integrated gain according to the temperature of the lubricant.
  6.  前記歯車機構が、波動歯車で構成される、請求項1~請求項5のいずれかに記載の駆動制御システム。 The drive control system according to any one of claims 1 to 5, wherein the gear mechanism is composed of a wave gear.
  7.  前記モータは、励磁コイル及び前記磁性部材が軸方向に並ぶアキシャルギャップ型である、請求項1~請求項6のいずれかに記載の駆動制御システム。 The drive control system according to any one of claims 1 to 6, wherein the motor is an axial gap type in which an exciting coil and the magnetic member are arranged in the axial direction.
PCT/JP2021/012804 2020-03-30 2021-03-26 Drive control system WO2021200631A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180025461.2A CN115349222A (en) 2020-03-30 2021-03-26 Drive control system
JP2022512107A JPWO2021200631A1 (en) 2020-03-30 2021-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061134 2020-03-30
JP2020-061134 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200631A1 true WO2021200631A1 (en) 2021-10-07

Family

ID=77928470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012804 WO2021200631A1 (en) 2020-03-30 2021-03-26 Drive control system

Country Status (3)

Country Link
JP (1) JPWO2021200631A1 (en)
CN (1) CN115349222A (en)
WO (1) WO2021200631A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009561A (en) * 1998-06-25 2000-01-14 Harmonic Drive Syst Ind Co Ltd Output torque detecting method of actuator
JP2003070280A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Motor controller
JP2008286357A (en) * 2007-05-21 2008-11-27 Sumitomo Heavy Ind Ltd Sealing mechanism and power transmission device provided with same
JP2010130830A (en) * 2008-11-28 2010-06-10 Mitsuba Corp Drive device
JP2014046881A (en) * 2012-09-03 2014-03-17 Jtekt Corp Electric power steering device
WO2016079875A1 (en) * 2014-11-21 2016-05-26 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing device
JP2017017889A (en) * 2015-07-02 2017-01-19 Ntn株式会社 Motor drive device
JP2017227315A (en) * 2016-06-24 2017-12-28 日本電産シンポ株式会社 Wave gear speed reducer unit
JP2018046742A (en) * 2017-10-19 2018-03-22 Ntn株式会社 In-wheel motor drive device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009561A (en) * 1998-06-25 2000-01-14 Harmonic Drive Syst Ind Co Ltd Output torque detecting method of actuator
JP2003070280A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Motor controller
JP2008286357A (en) * 2007-05-21 2008-11-27 Sumitomo Heavy Ind Ltd Sealing mechanism and power transmission device provided with same
JP2010130830A (en) * 2008-11-28 2010-06-10 Mitsuba Corp Drive device
JP2014046881A (en) * 2012-09-03 2014-03-17 Jtekt Corp Electric power steering device
WO2016079875A1 (en) * 2014-11-21 2016-05-26 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing device
JP2017017889A (en) * 2015-07-02 2017-01-19 Ntn株式会社 Motor drive device
JP2017227315A (en) * 2016-06-24 2017-12-28 日本電産シンポ株式会社 Wave gear speed reducer unit
JP2018046742A (en) * 2017-10-19 2018-03-22 Ntn株式会社 In-wheel motor drive device

Also Published As

Publication number Publication date
JPWO2021200631A1 (en) 2021-10-07
CN115349222A (en) 2022-11-15

Similar Documents

Publication Publication Date Title
JP7435335B2 (en) clutch device
US6258007B1 (en) Multi-sensor harmonic drive actuator arrangement assembly
EP3276209A1 (en) Servomotor and control method thereof
EP0231392A1 (en) Reduction gear provided with driving power source
JP5984898B2 (en) Range switching device
JP6448942B2 (en) Traction power transmission reduction device and motor with reduction device
EP1309071A2 (en) Rotating electric machine
US20240058949A1 (en) Robot, drive unit for a robot and positioning method
JP2007051683A (en) Rolling bearing device
WO2019022147A1 (en) Reduction gear
US6566777B2 (en) Elastic wave actuator
WO2021200631A1 (en) Drive control system
JP2011163556A (en) Transmission
JP2008022637A (en) Rotary electric machine, and electric motor or dynamoelectric machine using the same
JP2002078289A (en) Rotary drive device
KR20140095064A (en) Drive device
JP2006273295A (en) Steering device for vehicle
JP2015074036A (en) Actuator, and robot joint structure provided with the same
KR102288868B1 (en) Gear motor
WO2018074499A1 (en) Sheave driving device for stepless transmission
WO2022202654A1 (en) Magnetic modulation gear device, drive device, and robot
JP4185746B2 (en) Relative rotation state detection device
JPH07213013A (en) Power transmitter
WO2018052139A1 (en) Sheave driving device for continuously variable transmission
WO2020262387A1 (en) Motor assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779735

Country of ref document: EP

Kind code of ref document: A1