JPS59219461A - Amorphous silicon film forming device - Google Patents

Amorphous silicon film forming device

Info

Publication number
JPS59219461A
JPS59219461A JP9102383A JP9102383A JPS59219461A JP S59219461 A JPS59219461 A JP S59219461A JP 9102383 A JP9102383 A JP 9102383A JP 9102383 A JP9102383 A JP 9102383A JP S59219461 A JPS59219461 A JP S59219461A
Authority
JP
Japan
Prior art keywords
magnetic field
cyclotron resonance
amorphous silicon
magnet
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9102383A
Other languages
Japanese (ja)
Inventor
Akira Miki
明 三城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9102383A priority Critical patent/JPS59219461A/en
Publication of JPS59219461A publication Critical patent/JPS59219461A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titled film forming device which supplies stably an electromagnetic wave of specified electric power during film formation by providing a magnet for electronic cyclotron resonance which supplies an external magnetic field and a magnet for sweeping magnetic field which controls the intensity of the electromagnetic wave in an electric discharge chamber. CONSTITUTION:An electromagnet 8 for electronic cyclotron resonance and an electromagnet 9 for sweeping magnetic field are disposed in an electric discharge chamber 6. Gas for excitation is introduced into the chamber 6 and is excited by the microwave passing through a waveguide 4 then plasma is generated by electronic cyclotron resonance. The magnet 8 supplies the external magnetic field by which a resonance condition is satisfied. The plasma decomposes and excites the gaseous raw material introduced into a reaction chamber 10, and the generated radical sticks on a base body 13. The magnetic field is swept by the magnet 9 during the film formation and the absorbing intensity of the electromagnetic wave is detected. The microwave is adjusted by a control device to control the intensity of the electromagnetic wave. The amorphous silicon having a good film characteristic is formed by such device.

Description

【発明の詳細な説明】 〔発明の拶術分野〕 本発明はたとえば電子写真に用いられる感光体光電変換
部材等ケ製造するためのアモルファスシリコン成膜装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an amorphous silicon film forming apparatus for manufacturing a photoreceptor photoelectric conversion member used, for example, in electrophotography.

〔発明の技術的背景とその間順点〕[Technical background of the invention and ranking points]

従来、アモルファスシリコン成膜方法としては、高周波
(RF)グロー放電分解法やスノやツタリング法等が主
に用いられている。
Conventionally, as a method for forming an amorphous silicon film, a radio frequency (RF) glow discharge decomposition method, a snobbing method, a tsuttering method, and the like have been mainly used.

たとえばグロー放電分解法は、真空に引いたチャンバー
内にシリコンを含むガスたとえばシラン(5iH4)を
導入するとともにチャンノ々−内の電極に高周波(13
,56MHz ) ’e印加してプラズマを発生させ、
プラズマ中に存在する電子分解生成物のイオン、ラジカ
ル等のうち、主にラジカルをチャンバ内に置いた導電性
基体上に付着して成膜を行なう。この高周波グロー放電
分解法は、ヌノやツタリング法に比べ膜特性が良好であ
るが、成膜時において発生したプラズマ中に導電性基体
がさらきれているため、成長したアモルファスシリコン
の膜表面には電子、分解生成物のイオン等が衝突し、こ
れらが膜特性に悪影響を及ぼすという問題がある。また
、均一で良好な成膜特性を有するアモルファスシリコン
を得るには、高周波によりプラズマを発生させる際、印
加する電力が効率よくプラズマに吸収され良好なマツチ
ング状態にあることが心太であり、しかも成膜中、安定
してノクワーのマツチングがとf’していることが必要
である。
For example, in the glow discharge decomposition method, a silicon-containing gas such as silane (5iH4) is introduced into a vacuum chamber, and a high frequency (13
, 56MHz) 'e is applied to generate plasma,
Among the ions, radicals, etc. of electrolytic decomposition products present in the plasma, the radicals are mainly attached to the conductive substrate placed in the chamber to form a film. This high-frequency glow discharge decomposition method has better film properties than the Nuno and Tsuttering methods, but because the conductive substrate is exposed in the plasma generated during film formation, the surface of the grown amorphous silicon film is There is a problem in that electrons, ions of decomposition products, etc. collide with each other, and these adversely affect membrane properties. In addition, in order to obtain amorphous silicon with uniform and good film formation characteristics, it is essential that when plasma is generated by high frequency, the applied power is efficiently absorbed by the plasma and a good matching state is achieved. It is necessary that the nokwa matching f' is stable in the film.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情にもとづいてなされたもので、その目
的とするところは、電子、イオン等が成膜中のアモルフ
ァスシリコン表面に衝突するのを可及的に避け、しかも
成形5中安定して一定電力の電磁波を供給し得るように
し、以て均一で良好な膜特性を有するアモノトファヌシ
リコンの成膜が図れるようにしたアモルファスシリコン
成膜装置を提供するごとにある。
The present invention has been made based on the above circumstances, and its purpose is to prevent electrons, ions, etc. from colliding with the amorphous silicon surface during film formation as much as possible, and to maintain stability during forming 5. An object of the present invention is to provide an amorphous silicon film forming apparatus that can supply electromagnetic waves of constant power and thereby form a film of Amonotofanu silicon having uniform and good film characteristics.

〔発明の概要〕[Summary of the invention]

不発、明は−、シリコンを含む原料がスを電磁波で分解
し、て導電性基体上にアモルファ7シリコンを成膜する
アモルファスシリコン成膜装置において、」二記鵠、磁
波の磁場と相互に作用して電子サイクロトロン共鳴全生
起する外部磁場を供給するためのtj、子サイクロトロ
ン共鳴用磁石と、電子サイクロトロン共鳴による上記電
磁波の吸収強度を栓用し、その結果にもとづいて上記電
磁波の強度を制御すべく設けられた磁場掃引用磁石とを
具備したことを特徴とするものである。
In an amorphous silicon film deposition system that uses electromagnetic waves to decompose silicon-containing raw materials and deposit amorphous silicon on a conductive substrate, the second article states that the magnetic waves interact with the magnetic field. tj for supplying an external magnetic field to generate electron cyclotron resonance, a magnet for child cyclotron resonance, and the absorption intensity of the electromagnetic wave due to electron cyclotron resonance, and control the intensity of the electromagnetic wave based on the result. The present invention is characterized in that it is equipped with a magnetic field sweeping magnet provided for the purpose.

実施例 以下、本発明の一実施例を図面全参照しながら説明する
。第1図および第2図において、1はマイクロ波発振器
であシ、これより発生したマイクロ波はマジック2によ
シ分割され、チューナー3と導波管4とに進むようにな
っている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to all the drawings. In FIGS. 1 and 2, reference numeral 1 is a microwave oscillator, and the microwaves generated by this are split by the magic 2 and then proceed to a tuner 3 and a waveguide 4.

上記導波管4の先端はアルミナ窓5を介して放電室6に
臨んでいる。との放電室6には励磁用ガス導入管7が接
続されているとともに電子サイクロトロン共鳴用電磁石
8および磁場掃引用電磁石9が1設されている。また、
放電室6の下方には反応室10が設けられ、これらは開
口1ノを介して連通している。上記反応室10には接地
された支持体12が設けられ、その支持体12上には導
電性基体13が載置されている。
The tip of the waveguide 4 faces the discharge chamber 6 through the alumina window 5. An excitation gas introduction pipe 7 is connected to the discharge chamber 6, and an electromagnet 8 for electron cyclotron resonance and an electromagnet 9 for sweeping the magnetic field are installed. Also,
A reaction chamber 10 is provided below the discharge chamber 6, and these chambers communicate through an opening 1. A grounded support 12 is provided in the reaction chamber 10, and a conductive substrate 13 is placed on the support 12.

また、反応室10には原料ガス導入管14および排気管
15が接続され、排気管15にはパルプ16が配設され
ている。
Further, a raw material gas introduction pipe 14 and an exhaust pipe 15 are connected to the reaction chamber 10, and a pulp 16 is disposed in the exhaust pipe 15.

一方、上記マジック2の出方はクリスタル検波器17お
よび増幅器18を順次介して記録計19に供給され、こ
の記録計19にはまた上記磁場掃引用磁石9からの掃引
磁場信号が供給されるようになっている。甘た、記録計
19からの信号1d:霜、圧比較器2oを介して駆動回
路21VC供給され、この駆動回路2ノはステッピング
モータによりマッチングハ?ツクヌ22内のヌリーヌタ
ブチューナーを駆動するものである。
On the other hand, the output of the magic 2 is supplied to a recorder 19 via a crystal detector 17 and an amplifier 18 sequentially, and this recorder 19 is also supplied with a sweeping magnetic field signal from the magnetic field sweeping magnet 9. It has become. The signal 1d from the recorder 19 is supplied to the drive circuit 21VC via the pressure comparator 2o, and this drive circuit 2 is matched by a stepping motor. This drives the Nurine tab tuner inside the Tsukunu 22.

なお、23はパワーメータである。Note that 23 is a power meter.

しかして、励起用ガス導入管7がらたとえばH2r N
2 t 02 r希ガヌ等の励起用ガスが放電室6内に
導入さ、f]7、導波管4金通過してきたマイクロ汲置
よりアルミナ窓5全通して励起すれ、Ri子ヤイクロト
ロン共鳴によりプラズマが発生−1’−る。このとき、
電子サイクロトロン共鳴用磁石8は後述する(1)式の
電子ザイクロトロン共鳴の条件が満さiするような外部
磁場を供給している。
Therefore, the excitation gas introduction pipe 7 contains, for example, H2rN
2 t 02 r An excitation gas such as rare gas is introduced into the discharge chamber 6, and is excited through the entire alumina window 5 from the micro pump that has passed through the waveguide 4 gold, causing Ri-electrotron resonance. Plasma is generated by -1'-. At this time,
The electron cyclotron resonance magnet 8 supplies an external magnetic field that satisfies the electron cyclotron resonance condition of equation (1), which will be described later.

ここで、電子サイクロトロン共鳴(gcm )は、電磁
場、主にマイクロ波磁場の電気的成分が、これと平行な
外部磁場と相互作用することによって生じ、この場合、
運動する電子の角速度ωけ外部磁場の強さH,に比例踵
電子の質量mに逆比例するすしたがって、電子サイクロ
トロン共鳴周波数ωと外部磁場Hoとの関係は+e+ ω−H6・四相(1)となる。なお、eけC 電荷、Cは光速度である。これにより、共鳴に適した周
波数をもった放射が軌道運動している電子に供給される
と、電子は光子エネルギーを吸収し、同時にそのサイク
ロトロン軌道全拡張するようになる。
Here, electron cyclotron resonance (gcm) is caused by the interaction of the electrical component of an electromagnetic field, mainly a microwave magnetic field, with an external magnetic field parallel to it; in this case,
The angular velocity ω of the moving electron is proportional to the strength H of the external magnetic field, and is inversely proportional to the mass m of the heel electron. Therefore, the relationship between the electron cyclotron resonance frequency ω and the external magnetic field Ho is +e+ω−H6・four-phase (1 ). Note that e is the electric charge and C is the speed of light. As a result, when an orbiting electron is supplied with radiation at a frequency suitable for resonance, the electron absorbs the photon energy and at the same time expands its cyclotron orbit.

このようにして発生したプラズマは、原料ガス導入管1
4よシ反応室ノ。に導入されるシリコンを含む原料ガス
たとえばSiH4を開口1ノ金介して分解、励起する。
The plasma generated in this way is transferred to the raw material gas introduction pipe 1
4. Reaction chamber. A raw material gas containing silicon, such as SiH4, introduced into the chamber is decomposed and excited through the opening.

そして、これにょシ生じたラジカルが導電性基体13上
に付着し成膜が行なわれる。したがって、プラズマ中の
電子、イオンが成膜されたアモルファスシリコンの表面
に直接衝突するのを可及的に防止することができるので
、均一で良好な膜特性を有するアモルファスシリコンの
成膜が行なえる。
The radicals thus generated adhere to the conductive substrate 13 to form a film. Therefore, it is possible to prevent electrons and ions in the plasma from directly colliding with the surface of the amorphous silicon on which the film has been formed, so that it is possible to form an amorphous silicon film with uniform and good film properties. .

このようにして行なわれる成膜時において、チューナー
3は導波管4側より反射してきたマイクロ波を相殺する
ように調節して反射させる。
During film formation performed in this manner, the tuner 3 adjusts and reflects the microwaves reflected from the waveguide 4 side so as to cancel them.

したがって、放電室6にて電子サイクロトロン共鳴が全
く起らず、マイクロ波電力が全く放電室6に供給されな
い場合は、マイクロ波はすべて反射し導波管4を通って
戻り、チューナー3により反射したマイクロ波と相殺し
てしまい、その結果クリスタル検波器17への入力はゼ
ロとなる。
Therefore, if no electron cyclotron resonance occurs in the discharge chamber 6 and no microwave power is supplied to the discharge chamber 6, all the microwaves will be reflected back through the waveguide 4 and reflected by the tuner 3. This cancels out the microwave, and as a result, the input to the crystal detector 17 becomes zero.

一方、放電室6内で電子サイクロトロン共鳴によるマイ
クロ波の吸収が起れば、導波管4を通って反射してくる
マイクロ波とチューナー3から反射したマイクロ波との
強度差に応じたマイクロ波出力すなわち電子サイクロト
ロン共鳴による吸収信号がマジック2よりクリ7タル検
波器17に供給される。このとき、電子サイクロトロン
共鳴用電磁石8の内側に配置された磁場掃引用電磁石9
により電子サイクロトロン共鳴の条件を満たすような、
電子サイクロトロン共鳴用電磁石8からの外部磁場の強
さに比べ狭い範囲で磁場の掃引を行なう。これにより、
電子サイクロトロン共鳴が起こればクリスタル検波器1
7に電流が流れ増幅器18を経て記録計19に電子サイ
クロトロン共鳴の吸収スペクトル24が得られる。ただ
し、マイクロ波の増幅は磁場変調をかけて行う必要があ
る。以上より、放電室6内での電子サイクロトロン共鳴
の状態をモニターすることができ、マイクロ波のパワー
を観測することができる。
On the other hand, if absorption of microwaves occurs in the discharge chamber 6 due to electron cyclotron resonance, the microwaves will be generated depending on the intensity difference between the microwaves reflected through the waveguide 4 and the microwaves reflected from the tuner 3. The output, that is, the absorption signal due to electron cyclotron resonance, is supplied from the magic 2 to the crystal detector 17. At this time, a magnetic field sweeping electromagnet 9 placed inside the electron cyclotron resonance electromagnet 8
which satisfies the conditions for electron cyclotron resonance by
The magnetic field is swept in a narrow range compared to the strength of the external magnetic field from the electron cyclotron resonance electromagnet 8. This results in
If electron cyclotron resonance occurs, crystal detector 1
A current flows through the amplifier 18 and the recorder 19 obtains an absorption spectrum 24 of electron cyclotron resonance. However, microwave amplification requires magnetic field modulation. As described above, the state of electron cyclotron resonance within the discharge chamber 6 can be monitored, and the power of the microwave can be observed.

ついで、上記のようにして得られる電子サイクロトロン
共鳴の共鳴線の半値幅あるいは任意の磁場での共鳴線の
強度は電圧比較器20によって読みとられる。したがっ
て、マイクロ波の損失が大きくなり電子サイクロトロン
共鳴の吸収が弱くなってしまった場合、電圧比較器20
により、吸収強度を増大させる制御信号金駆動回路21
に送る。すると、この駆動回路21はヌテッピングモー
タによりマツチングがツクヌ22内の2リースタブチユ
ーナーを駆動し、マイクロ波の反射’fCETA節する
。したがって、放電室6内に供給されるマイクロ波のパ
ワーナラヒにプラズマの状態を常に一定に維持させるこ
とができるので、さらに均一で良好な膜特性を有するア
モルファスシリコンの成膜が行なえる。
Next, the half width of the resonance line of the electron cyclotron resonance obtained as described above or the intensity of the resonance line in an arbitrary magnetic field is read by the voltage comparator 20. Therefore, if the microwave loss becomes large and the absorption of electron cyclotron resonance becomes weak, the voltage comparator 20
The control signal gold drive circuit 21 increases the absorption intensity by
send to Then, this driving circuit 21 drives the two-lead stab tuner in the matching gear 22 by the stepping motor, and the microwave is reflected at the 'fCETA' node. Therefore, the plasma state can be maintained constant by the microwave power supplied into the discharge chamber 6, so that an amorphous silicon film having more uniform and better film characteristics can be formed.

なお、励起用ガスとしては、H2* N2 + 02+
O3,希がヌ(主に’Te r Ne +Δr)等のガ
スが用いらtする。サル、原料がヌとしては、Stを含
むが7 fr、とえば5IH4* J2H6+ 515
HB tSl 4H+ o等の水素化ケイ素、SiF4
 + Si2F6*5xct4. SiBr4 等のハ
ロゲン化ケイ累、51(CH3)4等のケイ化アルキル
、5Ice(CH5)、 等ノハログン檻換したケイ化
アルキル、5IHF2゜5IH2C42等のハロゲン僧
゛換水緊化ケイ素、または上記Slを含むガスと、周期
律表第111A族の元1あるいけ周期律表第VA族の元
素を含むガスの混合ガス等が目的に応じて用いられる。
In addition, as the excitation gas, H2* N2 + 02+
Gases such as O3 and rare gas (mainly 'Te r Ne +Δr) are used. Monkey, raw materials include St but 7 fr, for example 5IH4* J2H6+ 515
Silicon hydride such as HB tSl 4H+ o, SiF4
+ Si2F6*5xct4. Silicon halides such as SiBr4, alkyl silicides such as 51(CH3)4, halogen-converted alkyl silicides such as 5Ice(CH5), halogen-converted silicones such as 5IHF2゜5IH2C42, or the above-mentioned Sl. A mixed gas of a gas containing an element 1 of group 111A of the periodic table or an element of group VA of the periodic table is used depending on the purpose.

次に実験例を訣明する。先ず、放電室6および反応室1
0を排気用パルプ16下部のロータリーポンプおよび拡
散ポンプにょf) 10−6Torr程度にまで真空に
引く。ついで、外部磁場をがけるための電磁石8に30
00 Gaussの磁sをかけ、一方礎場掃引用の電磁
石9にo−1oo。
Next, an experimental example will be explained. First, the discharge chamber 6 and the reaction chamber 1
0 is evacuated to about 10-6 Torr using a rotary pump and a diffusion pump at the bottom of the exhaust pulp 16. Next, the electromagnet 8 for applying an external magnetic field is
00 Gaussian magnet s is applied, while o-1oo is applied to electromagnet 9 for foundation sweep.

Gauss程度の磁場をかけられる状態にしておく。A magnetic field of the Gaussian level is applied.

この状態で励起用ガス導入g7より水素がヌを導入し、
その後マイクロ波発振器1よ!78 GHzのマイクロ
波’1loOWのパワーで発生させ放!¥、室6に導入
するとともにチー−す一3vi−調節し導波管4よシマ
イクロ波の反射が最小になるようにする。一応のマツチ
ングがとれた状態で電磁石9によシ±100 Gaus
sの磁場掃引を行い記録計19により第3図に示すよう
に電子サイクロトロン共鳴の吸収波形を得た。なお、第
4図に上記条件での電子サイクロトロン共鳴吸収波形お
よび水素がスの圧力を変えた場合の吸収波形の半値幅の
変化を示す。
In this state, hydrogen is introduced from excitation gas introduction g7,
After that, microwave oscillator 1! Generate and release 78 GHz microwave '1loOW power! The microwave is introduced into the chamber 6 and adjusted so that the reflection of the microwave from the waveguide 4 is minimized. Once the matching is achieved, apply the electromagnet 9 to ±100 Gauss.
A magnetic field sweep of s was carried out, and an absorption waveform of electron cyclotron resonance was obtained using the recorder 19 as shown in FIG. FIG. 4 shows the electron cyclotron resonance absorption waveform under the above conditions and the change in half-width of the absorption waveform when the hydrogen gas pressure is changed.

−)だ、マイクロ波の周波数、パワー外部磁場の強シ全
上記と同一の条件でアモルファスシリコンの成膜を行な
った。すなわち、反応vlO内の導電性基体ノ3の基体
湯度を250℃とし、寸た励起用がス導入管7より水素
がスをガス圧I Torrで放電室6に導入しプラズマ
を発生させた。このとき、検出系、制御系はマツチング
が行なλるように稼動させておき、成膜時には1分間隔
で吸収線の半値幅程度に磁場掃引全行い、吸収波形のモ
ニター、制御ヲ行なうようにする。
-) The amorphous silicon film was formed under the same conditions as above, including the microwave frequency, power, and strong external magnetic field. That is, the temperature of the conductive substrate No. 3 in the reaction VLO was set to 250° C., and hydrogen gas was introduced into the discharge chamber 6 from the small excitation gas introduction tube 7 at a gas pressure of I Torr to generate plasma. . At this time, the detection system and control system are operated so that matching is performed, and during film formation, the magnetic field is fully swept to about the half width of the absorption line at 1 minute intervals, and the absorption waveform is monitored and controlled. Make it.

ついで、原料がヌ勇入管14よりSiH4を流量50 
SCCM 、圧力0. I Torr K調節して反応
室10内に導入し、上記プラズマと反応させ、導電性基
体13−ヒにアモルファスシリコンヲ堆積させた。旬上
のようにして作成きれたアモルファスシリコンについて
その特性を調べたところ、成膜速度2.0μm/1(r
1光学的バンドギャップ1、71 eV、暗抵抗ρ、=
2xlOΩ”ffi、波長650門、入射フォトン数5
 X 、1014an””の光源音用いた場合の明抵抗
ρ −6×10Ω・mが得られた。一方、通常のグロー
放電分解法で得られたアモルファスシリコンの特性は上
記同一の成膜条件で成膜速度1.6μm/Hr 、光学
的パンドギ” ッ7’ 1.72 eV、暗抵抗p、 
−8X 1.0  Ω’(771%明抵抗ρ =4X1
0Ω・mであった。
Next, the raw material is supplied with SiH4 from the inlet pipe 14 at a flow rate of 50.
SCCM, pressure 0. It was introduced into the reaction chamber 10 with the I Torr K adjusted and reacted with the plasma, thereby depositing amorphous silicon on the conductive substrate 13-1. When we investigated the properties of the amorphous silicon that was created as described above, we found that the film formation rate was 2.0 μm/1 (r
1 optical band gap 1, 71 eV, dark resistance ρ, =
2xlOΩ”ffi, wavelength 650, number of incident photons 5
A bright resistance ρ −6×10 Ω·m was obtained when a light source sound of 1014 an″ was used. On the other hand, the characteristics of amorphous silicon obtained by the usual glow discharge decomposition method are as follows: under the same film forming conditions as above, the film forming rate is 1.6 μm/Hr, the optical resistance is 1.72 eV, the dark resistance is p,
-8X 1.0 Ω' (771% bright resistance ρ = 4X1
It was 0Ω·m.

以上のように、電子サイクロトロン共鳴を利用した成膜
手段とマイクロ波のパワーのマツチング金成膜中常に一
定に保つことを目的とした制御手段とを備えたため、反
応室中で導電性基体がプラズマにさらされるという従来
のクロー放電分解法に比べて良好な光学的・電気的特性
を有するアモルファスシリコンを成iすることができた
As described above, since we are equipped with a film forming means that utilizes electron cyclotron resonance and a control means that aims to keep the matching of microwave power constant during gold film forming, the conductive substrate is exposed to plasma in the reaction chamber. We were able to produce amorphous silicon that has better optical and electrical properties than the conventional claw discharge decomposition method in which it is exposed to water.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、シリコンを含む原
料ガスを電磁波で分解して導電性基体上にアモルファス
シリコンを成膜するアモルファスシリコン成膜装置にお
いて、上記電磁波の磁場と相互に作用して電子サイクロ
トロン共鳴を生起する外部磁場を供給するための電子サ
イクロトロン共鳴用磁石と、′電子サイクロトロン共鳴
による上記電磁波の吸収強度を検出し、その結果にもと
づいて上記電磁波の強度を制御すべく設けられた磁場掃
引用磁石とt具備したから、電子、イオン等が成膜中の
アモルファスシリコン表面に衝突するのを可及的に避け
、しかも成膜中安定して一定電力の電磁波を供給し得る
ようにすることができ、以て均一で良好な膜特性を有す
るアモルファスシリコンの成膜が図れる等優れた効果を
奏する。
As explained above, according to the present invention, in an amorphous silicon film forming apparatus that forms an amorphous silicon film on a conductive substrate by decomposing a silicon-containing raw material gas using electromagnetic waves, the electromagnetic waves interact with the magnetic field of the electromagnetic waves. an electron cyclotron resonance magnet for supplying an external magnetic field to generate electron cyclotron resonance; Since it is equipped with a magnetic field sweeping magnet, it is possible to avoid collisions of electrons, ions, etc. with the amorphous silicon surface during film formation as much as possible, and also to be able to stably supply electromagnetic waves with constant power during film formation. This provides excellent effects such as the ability to form an amorphous silicon film having uniform and good film properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は放電、
宰および反応室部分を示す断面図、第2図は検出系およ
び制御1系部分を示す構成図、第3図はマイクロ波の吸
収強度と磁場の強さとの関係を示す図、第4図は半値幅
とH2圧力とのjyl係を示す図である。 ノ・・・マイクロ波発振器、2・・・マジック、3・・
・チアーナー、4・・・導波管、6・・・放電室、8・
・・電子サイクロトロン共鳴用磁石、9・・・磁場掃引
用電磁石、13・・・導電性基体、17・・・クリスタ
ル検波器、18・・・増幅器、19・・・記録計、20
・・・電圧比較器、2ノ・・・駆動回路、22・・・マ
ツチングボックス。 出願人代理人  弁理士 鈴 江 武 彦「−N @                      鑑V
!べ0堅もゴメざゼ 号 を5v田 ε 牛、1許斤畏官  若 杉 和 夫   殿1.事件の
表示 特願昭58−91023号 −) 発明の名称 アモルファスシリコン成膜装置 3.1甫正をする菖 事件と。関係 *’i許出願出 願人307 )  東京芝浦+g気株式会社・11代1
411人 (i、補[1−の対象 明細書         ・1 7、補正の内容 (1)明細書、第4頁第9行目の「マジック2」を「マ
ジックT2Jと訂正する。 (2)明細書、第4頁第12行目の「励磁用」を「励起
用」と訂正する。 (3)明細書、第7頁第20行目の「マジック2」を「
マジックT2Jと訂正する。 (4)明細書、第13頁第18行目の「マ・ノック」を
「マ・シックT」と訂正する。
The drawings show one embodiment of the present invention, and FIG. 1 shows discharge,
Figure 2 is a configuration diagram showing the detection system and control 1 system part, Figure 3 is a diagram showing the relationship between microwave absorption strength and magnetic field strength, Figure 4 is a diagram showing the relationship between the microwave absorption strength and the magnetic field strength. FIG. 3 is a diagram showing the jyl relationship between the half width and the H2 pressure.ノ...Microwave oscillator, 2...Magic, 3...
・Chunner, 4... Waveguide, 6... Discharge chamber, 8.
... Magnet for electron cyclotron resonance, 9... Electromagnet for magnetic field sweeping, 13... Conductive substrate, 17... Crystal detector, 18... Amplifier, 19... Recorder, 20
...Voltage comparator, 2..Drive circuit, 22..Matching box. Applicant's agent Patent attorney Takehiko Suzue "-N @ KanV
! Be 0 Ken also Gomezaze Go 5 v Ta ε Ushi, 1 Kyo Kōkan Wakasugi Kazuo Tono 1. Indication of the incident Japanese Patent Application No. 58-91023-) Name of the invention Amorphous silicon film forming apparatus 3.1 Incident of fixing the irises. Related *'i license applicant 307) Tokyo Shibaura + gki Co., Ltd. 11th generation 1
411 people (i, Supplement [1- Target specification] ・1 7. Contents of amendment (1) Specification, "Magic 2" on page 4, line 9 is corrected to "Magic T2J." (2) Specification (3) "Magic 2" in page 7, line 20 of the specification is corrected as "for excitation" in line 12 of page 4.
Corrected to Magic T2J. (4) "Ma-nock" on page 13, line 18 of the specification is corrected to "ma-sic T."

Claims (1)

【特許請求の範囲】[Claims] シリコンを含む原料ガスを電磁波で分解して導電性基体
上にアモルファスシリコンを成膜するものにおいて、上
記1D磁波の磁場と相互に作用して’fJ5.子サイク
ロトロン共鳴を生起する外部磁場を供給するだめの電子
サイクロトロン共鳴用磁石と、重子ザイクロトロン共鳴
による上記電磁波の吸115? 弾kを枦出し、その結
果πもとづいて上記電磁波の強度を制御すべく設けられ
た$揚掃引用P石とを具備したことを各機とするアモル
ファスシリコン成a装置。
In a method for forming an amorphous silicon film on a conductive substrate by decomposing a raw material gas containing silicon using electromagnetic waves, 'fJ5. A magnet for electron cyclotron resonance that supplies an external magnetic field that generates child cyclotron resonance, and absorption of the electromagnetic waves by child cyclotron resonance 115? An amorphous silicon forming apparatus each comprising a lifting and sweeping stone provided to eject a bullet and control the intensity of the electromagnetic waves based on the result π.
JP9102383A 1983-05-24 1983-05-24 Amorphous silicon film forming device Pending JPS59219461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9102383A JPS59219461A (en) 1983-05-24 1983-05-24 Amorphous silicon film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9102383A JPS59219461A (en) 1983-05-24 1983-05-24 Amorphous silicon film forming device

Publications (1)

Publication Number Publication Date
JPS59219461A true JPS59219461A (en) 1984-12-10

Family

ID=14014937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9102383A Pending JPS59219461A (en) 1983-05-24 1983-05-24 Amorphous silicon film forming device

Country Status (1)

Country Link
JP (1) JPS59219461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467823A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Formation of oxide superconducting film
JPS6467824A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Forming device for oxide superconducting material
JPS6476903A (en) * 1987-09-16 1989-03-23 Semiconductor Energy Lab Apparatus for producing oxide superconducting material
JPH01254245A (en) * 1988-03-31 1989-10-11 Anelva Corp Microwave plasma treating device
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467823A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Formation of oxide superconducting film
JPS6467824A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Forming device for oxide superconducting material
JPH0556281B2 (en) * 1987-09-07 1993-08-19 Handotai Energy Kenkyusho
JPH0556282B2 (en) * 1987-09-07 1993-08-19 Handotai Energy Kenkyusho
JPS6476903A (en) * 1987-09-16 1989-03-23 Semiconductor Energy Lab Apparatus for producing oxide superconducting material
JPH0556283B2 (en) * 1987-09-16 1993-08-19 Handotai Energy Kenkyusho
JPH01254245A (en) * 1988-03-31 1989-10-11 Anelva Corp Microwave plasma treating device
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system

Similar Documents

Publication Publication Date Title
JP3377773B2 (en) Power supply method to discharge electrode, high-frequency plasma generation method, and semiconductor manufacturing method
US4818560A (en) Method for preparation of multi-layer structure film
JPH0676664B2 (en) Apparatus for forming functional deposited film by microwave plasma CVD method
JPS59219461A (en) Amorphous silicon film forming device
JP3161788B2 (en) Diamond film synthesis equipment
JPH02277775A (en) Formation of fine crystalline silicon carbide film and device
Ueno et al. Highly efficient generation of high-energy photons and low-temperature oxidation of a crystal silicon surface with O1D radicals
JP3938424B2 (en) Diamond thin film production equipment
JPS5833830A (en) Plasma deposition apparatus
JPS6350479A (en) Device for forming functional deposited film by microwave plasma cvd method
JPH05117866A (en) Microwave plasma cvd device
JPS59131515A (en) Formation of film of amorphous silicon
JPH0411626B2 (en)
JPS6028225A (en) Optical vapor growth method
Kawabe et al. Low Temperature Growth of Polycrystalline Silicon Films by Plasma Chemical Vapor Deposition under Higher Pressure than Atmospheric Pressure
JPS6396282A (en) Microwave plasma producing device
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPH09283449A (en) Plasma chemical vapor deposition system
JPS62295411A (en) Forming method for silicon amorphous film
JP3193178B2 (en) Thin film formation method
JPH03247771A (en) Microwave plasma cvd system
JPS59131517A (en) Formation of amorphous silicon film
JPS63248119A (en) Formation of silicon carbide film
JPS63297564A (en) Thin film manufacturing equipment