JPS59216918A - Twisted polyester fiber and its manufacture - Google Patents

Twisted polyester fiber and its manufacture

Info

Publication number
JPS59216918A
JPS59216918A JP9285983A JP9285983A JPS59216918A JP S59216918 A JPS59216918 A JP S59216918A JP 9285983 A JP9285983 A JP 9285983A JP 9285983 A JP9285983 A JP 9285983A JP S59216918 A JPS59216918 A JP S59216918A
Authority
JP
Japan
Prior art keywords
fiber
polyester
twist
fibers
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9285983A
Other languages
Japanese (ja)
Other versions
JPH0260763B2 (en
Inventor
Hideo Isoda
英夫 磯田
Shosuke Nanri
南利 昇佑
Hideaki Ishihara
石原 英昭
Hiroshi Yasuda
浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9285983A priority Critical patent/JPS59216918A/en
Publication of JPS59216918A publication Critical patent/JPS59216918A/en
Publication of JPH0260763B2 publication Critical patent/JPH0260763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To manufacture a polyester fiber twisted around the fiber axis, by carrying out the orienting crystallization spinning of a polyester, subjecting the obtained polyester fiber having latent crimping property to the relaxed heat- treatment to temporarily actualize the latent crimp, and then carrying out the heat-treatment under tension. CONSTITUTION:A polyester fiber having latent crimping property and obtained by the orienting crystallization spinning is subjected to the single stage or multi- stage drawing and then to the relaxed heat-treatment to temporarily actualize the latent crimp. After the relaxed heat-treatment, the fiber is heat-treated under tension e.g. at 180-250 deg.C and a stretch ratio of 1-1.05 to extend the crimp developed by the above relaxed heat-treatment and convert the crimp to the twist of the fiber. The objective polyester fiber twisted around the fiber axis and having an apparent crystal size of >=50Angstrom at the 010 plane of the fiber, and the ratio of the apparent crystal size at the 010 plane to the one at the 100 plane of >=1.10, is manufactued by this process.

Description

【発明の詳細な説明】 本発明は、新規な捩れを有するポリエステル繊細および
その製造方法に関するものであり、さらに詳しくは抗ビ
ル性が綿(コツトン)よりも優れ実質的にピルの生成が
ない編織物用ポリエステル繊維およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel twisted polyester fiber and a method for producing the same. This invention relates to polyester fibers for textiles and methods for producing the same.

従来より天然繊維を用いたm織物はピル(毛玉)の発生
が少ないが、これに比較して合成繊維を用いた編織物は
ピルの発生が著しいといった欠点を有することが知られ
ている。この問題を解決するため、ポリエステル繊維に
抗ピル性を付与する方法として強度を低下せしめて抗ビ
ル性を付与するとの観点から低粘度化ポリマーを用いる
方法が特公昭35−8562号公報以降多数提案されて
いるが、これらの方法は低粘度化により、低強力となる
ため、製糸段階及び後加工段階での操業性が著しく低下
し、コスト高かつ抗ピル性を得るために他の品質を低下
させるなどの問題がありだ。このため後加工段階で薬剤
処理等により抗ピル性を付与する方法が特公昭32−5
844号公報以降多数提案されてきたが後加工による方
法は生産性の低さ、使用薬剤の後処理(廃液処理)問題
等によりコスト高となる。このため、結節強度を低くし
て、強康を高くする方法が特開昭49−26516号公
報、特公昭51−43089号公報等に提案されている
が、これらの方法も前記方法と同様に低粘度ポリマー使
用による紡糸延伸段階での操業性の問題は充分には解決
されておらず結節強度が低いため紡績段階でのカード通
過性の改良にとどまっており、製糸段階全ての生産性を
高めるまでには到っていない。この原因が低粘度化に由
来するため、高粘度ポリマーを用いた抗ビル性繊維の製
造法が特公昭47−9854号公報、特開昭52−14
8221号公報等で提案されているが、これら高粘度ポ
リマーを用いた方法においても綿より優れた充分な抗ピ
ル性付与はなされていないのが現状である。
Conventionally, M-woven fabrics using natural fibers have less pilling (pilling), but knitted fabrics using synthetic fibers are known to have the disadvantage of significantly pilling compared to this. In order to solve this problem, many proposals have been made since Japanese Patent Publication No. 35-8562 to use a low-viscosity polymer from the viewpoint of reducing the strength and imparting anti-pilling properties to polyester fibers. However, these methods result in lower tenacity due to lower viscosity, which significantly reduces operability in the spinning and post-processing stages, increases costs, and lowers other qualities in order to obtain pill resistance. There are problems such as how to For this reason, a method of imparting anti-pilling properties through drug treatment etc. in the post-processing stage was developed.
Although many methods have been proposed since Publication No. 844, post-processing methods result in high costs due to low productivity, problems with post-processing of used chemicals (waste liquid treatment), etc. For this reason, methods of lowering the nodule strength and increasing the strength have been proposed in JP-A-49-26516 and JP-B-51-43089, but these methods are similar to the above-mentioned method. The problem of operability in the spinning and drawing stage due to the use of low-viscosity polymers has not been fully resolved, and because the knot strength is low, the only improvement is the card passability in the spinning stage, and the productivity of all the spinning stages can be improved. We haven't reached that point yet. Since the cause of this is low viscosity, methods for producing anti-build fibers using high viscosity polymers have been published in Japanese Patent Publication No. 47-9854 and Japanese Patent Application Laid-open No. 52-14.
Although it has been proposed in Japanese Patent Application No. 8221, etc., at present, even methods using these high viscosity polymers have not provided sufficient anti-pilling properties superior to cotton.

本発明者らは、上記問題点を解決し、安価かつ後加工性
の良好な抗ピル性ポリエステル繊維を得るべく鋭意研究
を重ねた結果、繊維を形成する分子配列構造と繊維のマ
クロ的形態を結合することによって抗ピル性を著しく向
上せしめることを知見し、本発明に到達した。
The inventors of the present invention have conducted intensive research to solve the above problems and obtain anti-pill polyester fibers that are inexpensive and have good post-processability. The present invention was achieved based on the discovery that the anti-pilling properties can be significantly improved by binding to these compounds.

すなわち本発明の繊維は、繊維の010面の見かけの結
晶サイズ(A Csu。)がsoX以上・010面の見
かけの結晶サイズ(AC8,、。)と100面の見かけ
の結晶サイズ(A CE3nm )の比(A CBar
e / A CS +□)が1.10以上であり、且つ
繊維軸に捩れを有することを特徴とするポリエステル繊
維である。
That is, the fiber of the present invention has an apparent crystal size of the 010 plane (A Csu.) of at least so Ratio (A CBar
The polyester fiber is characterized in that e/A CS +□) is 1.10 or more and has a twist in the fiber axis.

本発明にいう繊維の100面の見かけの結晶サイ及びo
io面の強度の半価中より次に示す5herrsrの式
を用いて算出した結晶サイズである・詳細は丸善株式会
社発行rxs結晶学」仁田勇監修を参照0 AC8=(nλ)/ ((f「ツOX e O#θF本
発明の繊維は010面の見かけの結晶サイズがsoX以
上、好ましくはssX以上、さらにACL re / 
A C81mが1.10以上、好ましくは1.20以上
でかつa離軸には捩れを有している。繊維軸に捩れを有
する繊維でAC8,、。が50X以上であってもA C
S el。/ A C8re。が1.10未満のものは
充分な抗ビ)し性を示さない。m#a軸に捩れを有する
繊維で・AC8,、。/A C8,、。が工・10以上
であってもACC10が50A未満であるものは充分な
抗ビル性を示さない。又前記する結晶サイズのすべてが
本発明の繊維の要件を満たすものであつてもalimに
捩れを有しないものは充分な抗ビル性を示さない。なお
100 面の見かけの結晶サイズが35X以上、好まし
くは40X以上の繊維はさらに優れた抗ビル性を示す。
The apparent crystal size of 100 planes of the fiber according to the present invention and o
This is the crystal size calculated using the following 5herrsr formula from the half value of the intensity of the io plane. For details, see ``RXS Crystallography'' published by Maruzen Co., Ltd., supervised by Isamu Nita0 AC8 = (nλ) / ((f The fiber of the present invention has an apparent crystal size in the 010 plane of at least soX, preferably at least ssX, and further has ACL re /
A C81m is 1.10 or more, preferably 1.20 or more, and the a-off axis has twist. AC8 is a fiber with twist in the fiber axis. Even if is 50X or more, A C
Sel. / A C8re. If it is less than 1.10, it does not exhibit sufficient vinyl resistance. m#A fiber with twist in the a axis AC8,. /A C8,,. Even if the ACC10 is less than 50 A, even if the ACC10 is less than 50 A, sufficient anti-building properties are not exhibited. Further, even if all of the above-mentioned crystal sizes meet the requirements for the fiber of the present invention, a fiber without twist in the alim will not exhibit sufficient anti-build properties. Note that fibers with an apparent crystal size of 100 planes of 35X or more, preferably 40X or more exhibit even better anti-build properties.

本発明の繊維は従来公知の抗ピル性ポリエステル繊維と
比較すれば、著しく抗ピル性の改良された繊維であって
その改良点は、抗ピル性が綿よりも優れており、後述す
るピリング試験において最高級の優れた抗ピル性能を示
すもので、実質的にピルの生成がないものとト価される
点にある。この理由は、いまだ明らかではないが、本発
明者らの推測によれば、本発明の繊維は、結晶構造学上
の観点より、従来の衣料用ポリエステル繊維に比較して
、繊維の結晶サイズが大きく、かつb軸方向に生長した
結晶構造となっているためにC軸方向の引張りには強い
が、捩れを伴う引張りには弱くなり、従って発生したピ
ルの脱落を促進させると共に単繊維が捩れを有している
のでその繊維を紡績糸にすると、単繊維が有する捩れに
起因する摩擦抵抗が大きくなり、単繊維が抜けにくくな
ってピルの生長を抑制するといった特別な効果があり、
これらの効果によって実質的にピルの生成がない優れた
抗ビル性を示すものと考えられる。
The fiber of the present invention has significantly improved anti-pilling properties when compared with conventionally known anti-pilling polyester fibers, and the improvement is that the anti-pilling properties are superior to cotton, and the pilling test described below It exhibits the highest level of excellent anti-pilling performance in the industry, and is rated as having virtually no pill formation. The reason for this is not yet clear, but according to the inventors' speculation, the fibers of the present invention have a crystalline size that is smaller than that of conventional polyester fibers for clothing from the viewpoint of crystal structure. Because it is large and has a crystal structure that grows in the b-axis direction, it is strong against tension in the c-axis direction, but it is weak against tension that is accompanied by twisting, thus promoting the falling off of the generated pill and twisting the single fibers. Therefore, when the fibers are spun into yarn, the frictional resistance due to the twist of the single fibers increases, making it difficult for the single fibers to fall out, which has the special effect of suppressing the growth of pills.
It is thought that these effects result in excellent antiviral properties with virtually no pill formation.

本発明にいう捩れとは、単繊維1に1デニール当り17
309の荷重をかけた状態で繊維軸が60度以上回転し
た捩れを言うもので、捩れ方向は、右ねじの方向および
左ねじの方向のいずれでも良く、また両者が混在したも
のでもよい□本発明にいう捩れピッチとは、第1図にお
いて単繊維lに1デニール当り1730 tの荷重をか
けた状態で繊維軸が60夏以上回転した前記する捩れの
捩れ部分1a相互の距離りの平均であり、カセトメータ
妃使用し、20本の単繊維につき、それぞれ繊維長1c
m当りの上記捩れ部分3. aの個数Nを測定し、下記
の式 によって求められる。上記の捩れピッチは小さいほど単
繊維が抜けにくくなるのでいくら小さくしても良いが、
好ましくは5鱈以下、更に好ましくは2鮎以下とするの
が良い。捩れピッチがIOnを超えると単繊維の抜は防
止効果は小さくなる。
The twist in the present invention is 17 per denier per single fiber.
This refers to torsion in which the fiber axis rotates 60 degrees or more under a load of 309, and the twist direction may be either a right-handed thread direction, a left-handed thread direction, or a mixture of both. The twist pitch referred to in the invention is the average distance between the twisted portions 1a of the twist described above when the fiber axis rotates for more than 60 summers with a load of 1730 t per denier applied to the single fiber 1 in Fig. 1. Yes, using a casetometer, fiber length 1c for each 20 single fibers.
The above twisted portion per m3. The number N of a is measured and determined by the following formula. The smaller the twist pitch mentioned above, the harder it is for single fibers to come off, so you can make it as small as you like, but
Preferably, the number of cods is 5 or less, and more preferably 2 or less. When the twist pitch exceeds IOn, the effect of preventing single fibers from being pulled out becomes smaller.

第1図は本発明のポリエステル繊維の拡大側面図、第2
図は実施例1で得られた本発明の繊維で捩れピッチが約
0.6調のポリエステル#!1i維を示す。
Figure 1 is an enlarged side view of the polyester fiber of the present invention, Figure 2 is an enlarged side view of the polyester fiber of the present invention;
The figure shows the fiber of the present invention obtained in Example 1, polyester #! with a twist pitch of about 0.6! 1i fiber is shown.

本発明のポリエステル繊維を形成するポリエステル成分
は、エチレンテレフタレート単位を主構成単位とするも
のであって、通常エチレンテレフタレート単位を85モ
ル%以上含むコポリエステ・ルもしくはホモポリエステ
ルまたはそれらのポリエステル混合物である。テレフタ
ール酸、エチレングリコール以外の共重合成分としては
、イソフタール酸、2,6−ナフタリンジカルボン酸、
アジピン酸、セバシン酸、シェラ酸、ジエチレングリコ
ール、プロピレングリコール、シクロヘキサンジメタツ
ール、p−オキシ安息香酸、3,5−ジ(カルボメトキ
シ)ベンゼンスルホン酸金属塩、あるいはこれらの誘導
体などが挙げられるが以上の具体例に限定されるもので
けない。
The polyester component forming the polyester fiber of the present invention has ethylene terephthalate units as its main constituent unit, and is usually a copolyester or homopolyester containing 85 mol% or more of ethylene terephthalate units, or a polyester mixture thereof. Copolymerization components other than terephthalic acid and ethylene glycol include isophthalic acid, 2,6-naphthalene dicarboxylic acid,
Examples include adipic acid, sebacic acid, chelic acid, diethylene glycol, propylene glycol, cyclohexane dimetatool, p-oxybenzoic acid, 3,5-di(carbomethoxy)benzenesulfonic acid metal salts, and derivatives thereof. It is not limited to the specific examples.

本発明の繊維の断面形状は特に限定されるものではない
が、とりわけU字形、■字形またはこれらに突起を付加
した形状のものは、その断面輪郭に開口部を有するため
に特定方向に捩れやすくなり、又紡糸段階での配向結晶
化が、円形断面糸に比較して低い紡速で進行するといっ
たことより、これらの形状を有するものが特に好ましい
。さらにまた扁平な断面形状のものも捩れを付与して紡
績糸とした場合、単繊維が抜けにくくなり好ましい@ 本発明の繊維の特徴は綿同様乃至綿より優れた抗ビル性
を示す点であるが、さらに従来公知の抗ビル性繊維に比
較して、引張り強度、結節強度が優れているといつた特
徴を有している。
The cross-sectional shape of the fiber of the present invention is not particularly limited, but in particular, those having a U-shape, ■-shape, or a shape in which projections are added thereto are likely to be twisted in a specific direction because they have openings in their cross-sectional outline. Also, yarns having these shapes are particularly preferred because oriented crystallization in the spinning step proceeds at a lower spinning speed than yarns with a circular cross section. Furthermore, if a yarn with a flat cross-section is twisted and made into a spun yarn, the single fibers will not easily come off, which is preferable. The characteristic of the fiber of the present invention is that it exhibits anti-build properties similar to or better than cotton. However, it also has characteristics such as superior tensile strength and knot strength compared to conventionally known anti-build fibers.

本発明の繊維の結節強度は特に限定されるものではない
が、好ましい範囲は3〜4f/dである。
Although the knot strength of the fibers of the present invention is not particularly limited, the preferred range is 3 to 4 f/d.

本発明の繊維は、超高速紡糸技術と高温低伸度化延伸技
術を組合せて繊維の分子配列を制御することによって製
造される。
The fibers of the present invention are produced by controlling the molecular arrangement of the fibers by combining ultrahigh-speed spinning technology and high-temperature, low-elongation drawing technology.

以下本発明の繊維の製造方法について説明する。The method for manufacturing the fiber of the present invention will be explained below.

本発明の繊維の製造方法は、配向結晶化紡糸し、且つ潜
在捲縮能を付与したポリエステル繊維に、弛緩熱処理を
施すことにより一旦潜在捲縮を顕在化させ、しかる後該
繊維に緊張熱処理を施すことにより顕在化した捲縮をひ
き伸ばして捩れに変換することを特徴とする繊維軸に捩
れを有するホモエステル繊維の製造方法であり、かがる
繊維の製造に際して、紡糸段階では、溶融紡糸機にて押
出、0好ましくは、0.5〜0.8のポリエチレンテレ
7タLz−トを超高速紡糸することにより配向結晶化糸
を得る。配向結晶化糸が得られたか否かの判(ロ)糸条
の密度を測定して密度が急激に増大したか否かにより判
定する方法、(ハ)糸条の160℃乾熱下の収縮率(以
下SHDと略記する)を測定し、SHDが10%以下で
あるか否かにより判定する方法等があるが、最も簡単な
方法が前記(ハ)のSHDによる方法であり、これが1
0%以下であれば配向結晶化糸が得られていると判定し
てよい。又この紡糸段階においては捩れ付与のために繊
維に潜在捲縮能を与えることが好ましい。潜在捲縮能を
与える方法としては、非対称冷却法、複合紡糸法および
片面加熱法のうち何れかを用いるが、このうち非対称冷
却法を用いるときは、ノズル直下で紡出糸条の片側から
冷却気流を吹き当てて非対称冷却し繊維の断面方向に断
面異方性を付与しつつ引取るが、この場合の紡速は得ら
れる糸条の5)IDが5〜lO%となるように設定する
のが好ましい。あまりにも紡速か高過ぎると断面異方性
が消失する場合があ°るので注意を要する。一方、粘度
差を利用した複合紡糸法(例えばサイド・パイ・サイド
型又は偏心シース・コア型等)によるときは、SHDが
4〜10%となるように紡速を設定するのが好ましい。
In the method for producing fibers of the present invention, polyester fibers that have been subjected to oriented crystallization spinning and have been given latent crimp ability are subjected to a relaxing heat treatment to make the latent crimp manifest, and then the fibers are subjected to a tension heat treatment. This is a method for producing homoester fibers having a twist in the fiber axis, which is characterized by converting crimps that become apparent by stretching and converting them into twists. Oriented crystallized yarn is obtained by extrusion in a machine and by ultra-high speed spinning of polyethylene terephthalate of 0.0 to 0.8, preferably 0.5 to 0.8. How to determine whether oriented crystallized yarn has been obtained (b) A method of determining whether the density of the yarn has increased rapidly by measuring the density of the yarn; (c) Shrinkage of the yarn under dry heat at 160°C There are methods such as measuring the SHD rate (hereinafter abbreviated as SHD) and determining whether the SHD is 10% or less, but the simplest method is the method using SHD (c) above, which is
If it is 0% or less, it may be determined that oriented crystallized threads have been obtained. Also, in this spinning step, it is preferable to impart latent crimp ability to the fibers in order to impart twist. As a method for imparting latent crimp ability, any one of the asymmetric cooling method, composite spinning method, and single-sided heating method is used. When using the asymmetric cooling method, cooling is performed from one side of the spun yarn directly under the nozzle. The fibers are asymmetrically cooled by blowing an air current to impart cross-sectional anisotropy in the cross-sectional direction of the fibers while being taken off. In this case, the spinning speed is set so that the resulting yarn has a 5) ID of 5 to 10%. is preferable. If the spinning speed is too high, cross-sectional anisotropy may disappear, so care must be taken. On the other hand, when using a composite spinning method that utilizes a viscosity difference (for example, side-pie-side type or eccentric sheath-core type), it is preferable to set the spinning speed so that the SHD is 4 to 10%.

他方、紡糸段階で潜在捲縮能が付与されない場合は、延
伸前又は延伸後の糸に片面加熱処理を施して潜在捲縮能
を付与する。この場合は、紡糸時の紡速は、未延伸糸の
SHDを10%以下となる条件以外、限定されるもので
はないので10000m/分以上の紡速が採用でき、生
産性を高めることができる。片面加熱は熱板、加熱ロー
ラー、光エネルギー照射等公知の方法で良い。
On the other hand, if latent crimp ability is not imparted at the spinning stage, latent crimp ability is imparted by subjecting the yarn before or after drawing to one-sided heat treatment. In this case, the spinning speed during spinning is not limited except for the condition that the SHD of the undrawn yarn is 10% or less, so a spinning speed of 10,000 m/min or more can be adopted and productivity can be increased. . Single-sided heating may be performed using a known method such as a hot plate, a heating roller, or light energy irradiation.

本発明の繊維の製造に於て超高速紡糸の主たる目的は、
紡糸、引取り段階で配向結晶化を発現させ、次いで行な
う延伸熱処理時点で結晶化を促通させるための結晶核を
形成することである。この観点から紡速と配向結晶化の
関係は重要であり・例えばポリエチレンテレフタレート
(・固有粘度0゜61)の場合、丸断面糸では配向結晶
化到達紡速は4soom/分以上であるが、異形断面糸
(例えば断面苧型)では4000m/分以上で配向結晶
化することが判明している。
The main purpose of ultra-high speed spinning in producing the fibers of the present invention is to
The purpose is to develop oriented crystallization during the spinning and drawing steps, and to form crystal nuclei for promoting crystallization during the subsequent drawing heat treatment. From this point of view, the relationship between spinning speed and oriented crystallization is important. For example, in the case of polyethylene terephthalate (intrinsic viscosity 0°61), the spinning speed at which oriented crystallization is achieved with round cross-section yarn is 4 soom/min or more, but with irregular It has been found that oriented crystallization occurs at a speed of 4000 m/min or more in the case of yarns having a cross-section (for example, a ramie-shaped cross-section).

次いで配向結晶化糸は1段又は多段延伸(好ましくは2
段延伸)によって延伸される。延伸条件は、潜在捲縮能
が消失しない温度で延伸糸のSHDが10%以下かつ、
伸度(以下DEと略記する)が10%以下となる条件と
するのが好ましい。
The oriented crystallized yarn is then drawn in one or multiple stages (preferably in two stages).
Stretched by step stretching). The drawing conditions are such that the SHD of the drawn yarn is 10% or less at a temperature at which the latent crimp ability is not lost, and
It is preferable to set the conditions such that the degree of elongation (hereinafter abbreviated as DE) is 10% or less.

例えば1段延伸の場合、延伸温度は60〜160℃、好
ましくは70〜130℃とし、延伸倍率は1.3〜1.
4とすることが好ましい。又2段延伸の場合は、第1段
目の延伸は前記1段延伸の延伸条件と同一(ただし、延
伸倍率は1.2〜1.3倍とするのがよしうとし、2段
目の延伸温度を1段目の延伸温度より10℃以上高温に
して全延伸倍率が1゜3〜1.5倍となる条件下で行う
のが好ましい。
For example, in the case of one-stage stretching, the stretching temperature is 60 to 160°C, preferably 70 to 130°C, and the stretching ratio is 1.3 to 1.
It is preferable to set it to 4. In the case of two-stage stretching, the stretching conditions for the first stage are the same as those for the first stage stretching (however, it is recommended that the stretching ratio be 1.2 to 1.3 times, and the stretching conditions for the second stage It is preferable to carry out the stretching at a temperature 10 DEG C. or more higher than the first-stage stretching temperature so that the total stretching ratio is 1.3 to 1.5 times.

次いで延伸後リラックス熱処理により潜在捲縮を顕在化
させる。リラックス率は10%以上、好ましくは15%
以上とする。リラックス熱処理系のSHDが2%以下、
DEが20%以下となるような条件とするのが好ましい
。リラックス熱処理温度は、150℃以上200℃以下
、好ましくは180℃以上200℃以下とする。リラッ
クス熱処理温度が高過ぎると100面〜晶サイズが大き
く生長し、AC8ue/AC8,。。が小さくなるので
好ましくない。
Then, latent crimp is brought to light by relaxing heat treatment after stretching. Relaxation rate is 10% or more, preferably 15%
The above shall apply. SHD of relaxing heat treatment system is less than 2%,
It is preferable to set the conditions such that DE is 20% or less. The relaxation heat treatment temperature is 150°C or higher and 200°C or lower, preferably 180°C or higher and 200°C or lower. If the relaxation heat treatment temperature is too high, the crystal size will grow from 100 faces to AC8ue/AC8. . is not preferable because it becomes small.

次いでリラッタス熱処理後緊張熱処理することにより、
リラックス熱処理により発現した前記巻縮を引き伸ばし
くデクリンプ化)、該巻縮を捩れに変換すると共に本発
明の繊維の結晶構造を完成させる。このため緊張熱処理
条件の設定は重要である。熱処理温度は、180℃以上
250℃以下、好*L、1f220’c以上240’C
以下、緊張率は、リラックス熱処理時に形成した構造を
破壊しないで本発明の繊維の結晶構造を完成する倍率、
好ましくは1〜1.05倍とする。該緊張I率が高過ぎ
ると、構造が破壊され緊張熱処理後再び弾性巻縮を発現
し、立体巻縮糸となるので好ましくない。又低過ぎて実
質的にリラックス熱処理となるとA CSe+。/Ac
S、。。が小さくなるので好ましくない。
Next, by performing a tension heat treatment after a lyratus heat treatment,
Decrimping, which stretches out the crimps developed by the relaxing heat treatment, converts the crimps into twists and completes the crystal structure of the fiber of the present invention. For this reason, setting the tension heat treatment conditions is important. Heat treatment temperature is 180°C or higher and 250°C or lower, good*L, 1f220'c or higher and 240'C
Hereinafter, the tension ratio is the magnification that completes the crystal structure of the fiber of the present invention without destroying the structure formed during relaxing heat treatment.
Preferably it is 1 to 1.05 times. If the tension I ratio is too high, the structure is destroyed and elastic crimp occurs again after the tension heat treatment, resulting in a three-dimensional crimp yarn, which is not preferable. Also, if the temperature is too low and the heat treatment is essentially relaxing, ACSe+. /Ac
S. . is not preferable because it becomes small.

このようにして得られた繊維は第2図に示す如く、捩れ
を有し、結晶サイズは大きく、Acs、1゜/AC8,
。。も1.10以上と大きい特性を有している。
As shown in Figure 2, the fibers obtained in this way have a twist, a large crystal size, and Acs, 1°/AC8,
. . It also has a large characteristic of 1.10 or more.

本発明の実施に際して、捩れの付与は延伸後連続しても
よく、不連続で行なっても良い。なお、捩れ付与は、紡
糸段階で潜在巻縮能が付与されていない場合は、紡糸後
延、伸前または延伸後の糸に片面加熱処理をして潜在巻
縮能を付与する。この場合捩れ付与は紡糸段階で潜在巻
縮能を付与した場合と同様に、一旦潜在巻縮を顕在化せ
しめた後−デクリンプ化して捩れを付与する。
In carrying out the present invention, twisting may be applied continuously or discontinuously after stretching. In order to impart twist, if latent crimp ability is not imparted at the spinning stage, latent crimp ability is imparted to the yarn by heating treatment on one side of the yarn after spinning, before stretching, or after stretching. In this case, torsion is imparted in the same way as in the case where latent crimp ability is imparted at the spinning stage, and after the latent crimp is made manifest, twist is imparted by decrimping.

以上の方法によって得られた繊維は、ステープルとして
用いる場合押込式クリンパ−にて機械巻は低くなるため
紡績時、絡合性が低下するので120℃以上に予熱する
のが好ましい。
When using the fiber obtained by the above method as a staple, it is preferable to preheat the fiber to 120 DEG C. or higher, since mechanical winding with a push-in crimper will be low and entanglement will be reduced during spinning.

前述の方法により、ステープルとした繊維は、紡績性、
製織性、!1IIl性共良好であり、その織編物は、従
来知られている低粘度化ポリマーを用いた抗ピル性ポリ
エステル繊維と比較して抗ピル性に優れていることはも
ちろん、優れた染色性を示し、繊維が異形断面を有する
場合は、コツトンライクな風合も兼備している。
The stapled fibers obtained by the above method have spinnability,
Weavability! The woven and knitted fabric has excellent anti-pilling properties as well as excellent dyeability compared to conventionally known anti-pilling polyester fibers using low viscosity polymers. When the fiber has an irregular cross section, it also has a cotton-like texture.

本発明の繊維はフィラメント用途にする場合、そのまま
切断せずに巻取って供する。フィラメント状でニットに
したものけ、抗スナツグ性が良好であることも判明して
いる。
When the fiber of the present invention is used as a filament, it is used by winding it up without cutting it. It has also been found that filament-like knitted fabrics have good anti-snag properties.

本発明繊維の単糸デニールは、特に限定されないが、ス
ェード用には0.1デニ一ル程度のもの、綿紡タイプの
ものは、0.5デニールから2デニール、毛混用には2
デニールから4デニール、カーペット用には、3デニー
ルから30デニールとその用途に応じ適宜選択するのが
好ましい。
The single yarn denier of the fiber of the present invention is not particularly limited, but it is about 0.1 denier for suede, 0.5 to 2 denier for cotton-spun type, and 2 denier for wool blend.
It is preferable to appropriately select from denier to 4 denier, and for carpets from 3 denier to 30 denier depending on the use.

本発明の繊維は単一素材織編物としてはもちろん1本発
明の!IaI11以外の異種繊維との組合せによる混紡
糸、加工糸、さらに異種繊維または14種繊維より成る
糸との混繊物、混編物、不織布、重布、多重構造m編物
等にも優れた抗ピル性効果を発揮する。
The fiber of the present invention can of course be used as a single material woven or knitted fabric! Excellent pill resistance for blended yarns and processed yarns in combination with different types of fibers other than IaI11, as well as mixed fibers, mixed knitted fabrics, non-woven fabrics, heavy fabrics, multi-layer m-knitted fabrics, etc. with yarns made of different types of fibers or 14 types of fibers. Demonstrates sexual effects.

本発明の繊維の用途としては、ドレスシャツ、カジュア
ルシャツ、婦人ブラウス、婦人スカート、肌着、スラッ
クス、メンズフi−マルウエア、レゾイスフォーマルウ
ェア、ニットウェア、スポーツウェア、コート、アウト
ウェア一般、ベビーウェア、子供服全般、紳士スーツ、
ジャケット、ブルゾン、二二ホーム一般、着物、家庭用
品(ニブ四ン、テーブルクロス、手袋−帽子等)・寝具
マたは寝衣(布団、シーツ、布団カバー、パジャマ等)
、インチリヤ用品、カーペット他産業用資材等がある。
The fibers of the present invention can be used for dress shirts, casual shirts, women's blouses, women's skirts, underwear, slacks, men's formal wear, formal wear, knitwear, sportswear, coats, general outwear, babywear, General children's clothing, men's suits,
Jackets, blouson, 22 home general items, kimono, household items (nibs, table cloths, gloves, hats, etc.), bedding mats or night clothes (futons, sheets, duvet covers, pajamas, etc.)
, inch rear goods, carpets and other industrial materials.

以下本発明の繊維を実施例により説明するが、本発明は
もとよりこれらの実施例に限定されるも繊維の結晶サイ
ズの測定には・X線発生器(理学電機製四−タリーフレ
ックス)を用いた0この測定にはX11i1Cu−にα
線(λ−1,5418X)を用い、補正係数nは0.9
、補正角αは6.98X10  (rad)を用いた。
The fibers of the present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. For the measurement of the crystal size of the fibers, In this measurement, α was added to X11i1Cu−.
Using the line (λ-1, 5418X), the correction coefficient n is 0.9
, the correction angle α was 6.98×10 (rad).

実施例! 常法によりテレフタル酸とエチレングリコールとから重
縮合して得た固有粘度0.63のポリエチレンテレフタ
レートを、紡糸温度29G’CにてvMススリット孔ス
リット巾0.05■、単孔の断面積は0.3w+jil
丸型孔に相当)を有するノズル孔′t&24ホールの紡
糸口金より、単孔当り、0.96f1分の吐出量で紡出
し一紡ffl糸条を風速0.9m/秒の室温の冷却風を
糸条の片側から吹き当てて非対称冷却しつつ4ooom
/分の速度です]取った。該糸条の81(Dは、6%で
あった□次いでこの糸条を加熱ローラ一温度80℃、加
熱プレート温度120’Cにて1.3倍の延伸倍率で1
段延伸し、次いで加熱プレート温度15(lにて1.0
5倍の延伸倍率で2段目の延伸を行ない、引き続いて、
160’Cの乾熱熱風ゾーン中を20%のリラックス率
で熱処理してスパイラル状の巻縮を発現させ、次いで2
30℃の加熱プレートを用いて1.05倍に延伸するこ
とにより該スパイラル状巻縮を引き伸ばして捩れに変え
た。このフィラメントの単糸デニールは、!、7デであ
りな。
Example! Polyethylene terephthalate with an intrinsic viscosity of 0.63 obtained by polycondensation from terephthalic acid and ethylene glycol by a conventional method was spun at a spinning temperature of 29 G'C, with a vM slit hole slit width of 0.05 cm, and a cross-sectional area of a single hole of 0. .3w+jil
From a spinneret with a nozzle hole 't & 24 holes (equivalent to a round hole), each spun ffl yarn was spun at a discharge rate of 0.96 f1 per single hole using cooling air at room temperature at a wind speed of 0.9 m/sec. Spray from one side of the yarn to cool it asymmetrically for 4oooom.
/ minute] took it. 81 (D was 6%) of the yarn was then stretched to 1 at a stretching ratio of 1.3 times at a heating roller temperature of 80°C and a heating plate temperature of 120'C.
Stage stretching, then heating plate temperature 15 (1.0 at l)
A second stage of stretching was performed at a stretching ratio of 5 times, and subsequently,
Heat treatment was performed in a dry heat hot air zone at 160'C at a relaxation rate of 20% to develop spiral curling, and then 2
The spiral crimp was stretched and turned into a twist by stretching by a factor of 1.05 using a heating plate at 30°C. The single yarn denier of this filament is! , 7 de.

次にこのフィラメントを5ooooデニールに引揃え予
熱温度180℃で押込み式クリンパ−にて巻網¥12%
、巻縮数15コ/ 25 +mの機械巻縮を付与した後
、38鴎に切断した。得られたステープルは常法により
英弐番手308撚係数3.2の紡績糸とした。次いでこ
の紡績糸より目付け200f/ lIs”のインター四
ツク綱地を作成し、177棟(ノイゲンHC2f/L 
 NalCo、0.5f/l水溶液中で70℃で20分
間処理後、50 ’Cで10分間水洗)した編地でIC
Iピリングテスターを用いて抗ビル性を評価した。繊維
の特性及び抗ピル性評価の結果を第1表に示す。
Next, this filament is drawn to 5oooo denier using a push-in crimper at a preheating temperature of 180°C to wrap the net at ¥12%.
After mechanical crimping with a number of crimping of 15/25+m, the material was cut into 38 pieces. The obtained staple was made into a spun yarn having a count of 308 and a twist coefficient of 3.2 by a conventional method. Next, from this spun yarn, an inter-four-way rope with a basis weight of 200f/lIs was created, and 177 buildings (Neugen HC2f/L) were made.
IC was applied to a knitted fabric treated in a 0.5 f/l aqueous solution of NalCo at 70°C for 20 minutes and then washed at 50'C for 10 minutes.
Anti-building properties were evaluated using an I pilling tester. Table 1 shows the properties of the fibers and the results of anti-pilling evaluation.

なお本実施例1で得られた本発明のポリエステル繊維の
側表面を示す200倍の顕微鏡竿真を第2図に示した。
Note that FIG. 2 shows a 200x magnification microscope lens showing the side surface of the polyester fiber of the present invention obtained in Example 1.

ここで対比例として綿100%の上記実施例と同一番手
、同一撚係数の紡績糸を用いて同一目付のインタ−0ツ
タ編地とし、精練(H* Ot4 ml/ L 1Na
OH1t / L sアートリンA P 80 p 1
 f / Z % ハイノぐ−NO,35f/を水溶液
中で沸騰30分処理後、50℃で10分間水洗)した後
、上記実施例と同様に抗ビル性を評価した。結果は第1
表に示す。
Here, as a comparative example, an inter-0 ivy knitted fabric with the same basis weight was made using the same yarn of 100% cotton and the same twist coefficient as in the above example, and scouring (H* Ot4 ml/L 1Na
OH1t/Ls Artrin A P 80 p 1
After boiling f/Z% Hinogu-NO, 35f/ in an aqueous solution for 30 minutes and washing with water at 50°C for 10 minutes, anti-building properties were evaluated in the same manner as in the above examples. The result is the first
Shown in the table.

比較の結果より、本発明の繊維は、綿繊維と比べてより
優れた抗ピル性を示し、実質的にピルの発生がなく風合
も綿に類似したソフト感、シャリ感を有することが判っ
た。
From the comparison results, it was found that the fibers of the present invention exhibit superior anti-pilling properties compared to cotton fibers, have virtually no pilling, and have a soft and crisp texture similar to that of cotton. Ta.

実施例2 常法によりテレフタル酸とエチレングリコールとから重
縮合して得た固有粘度(フェノール/テトラクロルエタ
ン=6/4の混合溶媒中30℃で4定)o、6sと0.
57のポリエチレンテレフタレートを、それぞれ紡糸温
度290℃と284℃でスリブ) 中0.02111K
、スリット長さ0.08簡のスリット孔分有する紡糸口
金より、両成分がスリットの長手方向にサイドバイサイ
ドとなり、それぞれの成分が単孔当り0−5f/分の吐
出量となる様に吐出し、0.3m/秒の室温の冷却風で
冷却しつつ5000m/分の速度で引き取った。該糸条
のSHDは6%であった。次いでこの糸条を1段目加熱
ルーラ一温度80℃、加熱プレート温度180℃にて1
.4倍の延伸倍率で1段延伸し、次いで加熱ローラ一温
度120℃、加熱プレー)200’Cにて1.1倍の延
伸倍率で2段目の延伸を行ない、引き続いて185℃の
乾熱熱風ゾーン中を25%のリラックス率で熱処理し、
次いで250t:の加熱プレートを用いて1.05倍に
延伸しデクリンプ化した以外は実施例1と同様にしてス
テープルを得て、紡績糸及び編地として1抗ピル性の評
価をした。結果は第1表に示す。
Example 2 Intrinsic viscosities obtained by polycondensation of terephthalic acid and ethylene glycol by a conventional method (4 constant at 30°C in a mixed solvent of phenol/tetrachloroethane = 6/4) o, 6s and 0.
57 polyethylene terephthalate at spinning temperatures of 290°C and 284°C, respectively) (medium 0.02111K)
From a spinneret having a slit hole with a slit length of 0.08 mm, both components are discharged side by side in the longitudinal direction of the slit, and each component is discharged at a discharge rate of 0 to 5 f/min per single hole. It was taken out at a speed of 5000 m/min while being cooled with room temperature cooling air at a rate of 0.3 m/sec. The SHD of the yarn was 6%. Next, this yarn is heated at a temperature of 80°C on the first stage heating ruler and 180°C on the heating plate.
.. One stage of stretching was carried out at a stretching ratio of 4 times, then a second stage of stretching was carried out at a stretching ratio of 1.1 times at a heating roller temperature of 120°C and a heating roller temperature of 200'C, followed by dry heat at 185°C. Heat treatment is performed in the hot air zone at a relaxation rate of 25%,
Next, a staple was obtained in the same manner as in Example 1, except that it was stretched 1.05 times using a 250 t heating plate and decrimped, and the anti-pilling property was evaluated as a spun yarn and a knitted fabric. The results are shown in Table 1.

本発明の繊維は実施例1同様優れた抗ビル性を示した。The fiber of the present invention showed excellent anti-build properties as in Example 1.

実施例3 1段目延伸の加熱プレート温度180℃、延伸倍率1.
35倍、2段目延伸の加熱プレート温度200℃延伸倍
率1.06倍とした以外は実施例1と同一条件で製造し
て得たポリエステルステープルの抗ビル性を実施例1と
同様にして評価した。結果を第1表に示す。延伸条件が
潜在巻縮能を若干消失せしめる条件であったため捩れピ
ッチは実施例1で示す繊維に比較して大きくなり、抗ピ
ル性も実施例1の繊維に比較して級数はやや低いが線替
の抗ピル性を示した。
Example 3 First-stage stretching heating plate temperature 180°C, stretching ratio 1.
The anti-build properties of polyester staples produced under the same conditions as in Example 1 were evaluated in the same manner as in Example 1, except that the heating plate temperature in the second stage of stretching was 35 times and the heating plate temperature was 200 degrees Celsius, and the stretching ratio was 1.06 times. did. The results are shown in Table 1. Since the stretching conditions were such that the latent crimp ability was slightly lost, the torsion pitch was larger than that of the fiber shown in Example 1, and the anti-pilling property was also higher than that of the fiber of Example 1, although the series was slightly lower than that of the fiber shown in Example 1. It showed alternative anti-pilling properties.

比較例1 リラックス熱セツト後の延伸倍率を1.3とした以外は
実施例1と同様にしてステープルを得て、その抗ビル性
を評価した。ステープルの特性及び抗ビル性の評価結果
を第1表に示す。この比較例の場合はリラックス熱セツ
ト後の延伸倍率を高くしたため構造が破壊され、延伸後
弾性巻縮を発現し捩れは消失したため、抗ピル性は本発
明繊維より劣る0又、延伸時、糸切れを生じ、立体巻縮
が残るため紡績性はわるくなり、立体巻縮系特有の糸ヅ
ラがボケたものしか得られなかった。
Comparative Example 1 A staple was obtained in the same manner as in Example 1 except that the stretching ratio after relaxing heat setting was 1.3, and its anti-build property was evaluated. Table 1 shows the evaluation results of staple properties and anti-build properties. In the case of this comparative example, the structure was destroyed because the stretching ratio after relaxing heat setting was increased, and after stretching, elastic crimp occurred and the twist disappeared. Since breakage occurs and three-dimensional crimping remains, the spinnability deteriorates, and only a product with blurred threads, which is characteristic of three-dimensional crimping systems, is obtained.

比較例2 実施例1と同様にして紡糸したポリエステル糸条を加熱
ローラ一温度80℃、加熱プレート温度120℃で1.
36倍の延伸倍率で延伸し、次いで155℃で3分間の
条件で弛緩熱処理した後38−に切断した◇得られたス
テープルを実施例1と同様ニシテ抗ヒル性の評価をした
。ステープルノ特性及び抗くル性の評価結果を第1表に
示す。この比較例は本発明の繊維と対比すれば、捩れが
なく、立体巻網を有し、AC8,、、/AC8,。。が
1.10より小さく、その結果として紡績性が悪く、抗
ピル性も劣っていることを示す。
Comparative Example 2 A polyester yarn spun in the same manner as in Example 1 was spun at a heating roller temperature of 80°C and a heating plate temperature of 120°C.
The staple was stretched at a stretching ratio of 36 times, then subjected to relaxation heat treatment at 155° C. for 3 minutes, and then cut into 38-mm pieces. The resulting staple was evaluated for leech resistance in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and curl resistance. In comparison with the fiber of the present invention, this comparative example has no twist, has a three-dimensional winding, and has an AC8,... /AC8,. . is smaller than 1.10, which indicates poor spinnability and poor pill resistance.

比較例3 固有粘度0.46のポリエチレンテレフタレート下げた
。)にて、400 Q m Z分にて引き取った糸条を
加熱シーラ一温度80℃、加熱プレート温度180℃に
て1.2倍の延伸倍率で1段延伸し、次いで加熱プレー
ト温度18.0℃にて1.03倍の延伸倍率で2段目の
延伸を行ない、この延伸糸を5ooo。
Comparative Example 3 Polyethylene terephthalate with an intrinsic viscosity of 0.46 was lowered. ), the yarn taken at 400 Q m Z minutes was drawn in one stage at a stretching ratio of 1.2 times with a heating sealer temperature of 80°C and a heating plate temperature of 180°C, and then a heating plate temperature of 18.0°C. A second stage of drawing was carried out at a drawing ratio of 1.03 times at ℃, and the drawn yarn was 500 mm.

デニールに引き揃え、予熱温度180℃で押込み式クリ
ンパ−で機械巻縮を付与した後、38m1に切断した。
It was drawn to a denier, mechanically crimped using a push-in crimper at a preheating temperature of 180°C, and then cut into 38 ml pieces.

得られたステープルを実施例1と同様にして抗ピル性の
評価をした。ステープルの特性及び抗ピル性の評価結果
を第1表に示す。この比較例において示す如く、低粘度
ポリマーを用いて抗ピル性を付与するといった従来方法
では製糸性が悪く、抗ピル性も良い結果が得られないこ
とが判る。
The anti-pilling properties of the obtained staples were evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and anti-pilling properties. As shown in this comparative example, it can be seen that the conventional method of imparting anti-pilling properties using a low viscosity polymer results in poor thread-spinning properties and does not provide good results in terms of anti-pilling properties.

比較例4 単孔当り吐出量0.5t/分子、冷却風々速2.Om延
伸温度は、ローラー80℃、加熱プレート130℃とし
た。該延伸糸を25%のリラックス率で135℃ 10
分間弛緩熱処理し、次いで2201111:で0゜98
倍にて乾熱処理デクリンプし、予熱温度200℃にて機
械巻縮を付与後38II1mに切断した。得られたステ
ープルの特性及び実施例1゜と同様に評価した抗ビル性
の結果を第1表に示す。A CS、、、が小さい本比較
例は、抗ビル性が劣るものであった。
Comparative Example 4 Discharge amount per single hole 0.5t/molecule, cooling air velocity 2. The Om stretching temperature was 80°C for the roller and 130°C for the heating plate. The drawn yarn was heated at 135°C with a relaxation rate of 25%.
Relaxation heat treatment for 2201111:0°98
It was dry heat treated and decrimped at twice the temperature, mechanically crimped at a preheating temperature of 200°C, and then cut into 38II 1m. Table 1 shows the properties of the obtained staple and the anti-build properties evaluated in the same manner as in Example 1. This comparative example, which had a small ACS, had poor anti-building properties.

なお結節強度が若干低めとなったため紡績性も患かった
。デクリンプ時延伸倍率を高くすると単糸切れを生じた
ためデクリンプ時の延伸倍率は0゜98倍とした。
Furthermore, since the knot strength was slightly lower, the spinnability was also affected. When the draw ratio during decrimping was increased, single filament breakage occurred, so the draw ratio during decrimping was set to 0°98 times.

比較例5 冷却風々速0.2 m /秒グf取速度35’00m/
分とリエステル未延伸糸を得た。この未延伸糸を1段目
、2段目共ローラ一温度80℃加熱プレート温度130
℃にて全地伸倍率1.35倍で延伸後、155℃乾熱中
5分間弛緩熱処理し、次いで、トウは、220℃で2分
間1.03倍で乾熱処理デクリンプされて、更に定長下
220℃で、予熱し機械巻縮付与後38 tmに切断さ
れた。得られたステープルの特性及び実施例1と同様に
評価した抗ビル性の結果を第1表に示す。充分な熱処理
で結晶サイズも大きく、捩れが付与されているにもかか
わらず、ACS−+a / A CS +n比が小さく
な9ていたためか、抗ピル性はよくなかった。又機械的
特性も好ましくなく、操業性もよくなかった。
Comparative Example 5 Cooling air velocity 0.2 m/sec f taking speed 35'00 m/sec
A polyester undrawn yarn was obtained. This undrawn yarn is heated at both the first and second stage rollers at a temperature of 80°C and a heating plate temperature of 130°C.
After stretching at a total stretch ratio of 1.35 times at a temperature of 1.35 times, the tow was subjected to a relaxation heat treatment for 5 minutes in a dry heat at 155 degrees Celsius, and then the tow was decrimped in a dry heat treatment at 1.03 times for 2 minutes at 220 degrees Celsius, and then further stretched to a fixed length. It was preheated at 220°C and cut to 38 tm after being mechanically crimped. Table 1 shows the properties of the obtained staple and the anti-build properties evaluated in the same manner as in Example 1. Although the crystal size was large due to sufficient heat treatment and twist was imparted, the pill resistance was not good, probably because the ACS-+a/ACS+n ratio was small. Furthermore, the mechanical properties were not favorable and the operability was also not good.

比較例6 比較例Sと同様にして得られた未延伸糸を延伸倍率をそ
れぞれ1段目1.35倍、2段目1.01倍とした以外
は実施例1と同様にしてポリエステルステープルを得た
。得られたステープルを実施例1と同様にして抗ビル性
の評価をした。ステープルの特性及び抗ビル性の評価結
果を第1表に示す。
Comparative Example 6 A polyester staple was produced in the same manner as in Example 1, except that the undrawn yarn obtained in the same manner as Comparative Example S was stretched at a stretching ratio of 1.35 times in the first stage and 1.01 times in the second stage. Obtained. The anti-build property of the obtained staple was evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and anti-build properties.

この繊維は捩れを有するが、巣延伸糸が配向結晶化して
いなかったため結晶化が充分でなく、結晶サイズが小さ
いために抗ピル性は好ましくなかった。
Although this fiber had twist, the crystallization was insufficient because the nest-drawn yarn was not oriented and crystallized, and the crystal size was small, so the anti-pilling property was not favorable.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図線本発明の繊維の拡大側面図、第2図は本発明の
実施例1によシ得られたポリエステル繊維の200倍で
の側面顕微鏡写真である。 特許出願人  東洋紡績株式会社
FIG. 1 is an enlarged side view of the fiber of the present invention, and FIG. 2 is a side micrograph at 200 times magnification of the polyester fiber obtained in Example 1 of the present invention. Patent applicant: Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、繊維の010面の見かけの結晶サイズ(ACs−n
)が50X以上、oio面の見かけの結晶サイズ(AC
8,、、)と100面の見かけの結晶サイズ(AC8s
ee)の比(A Cs*+e /Ac 81゜、)が1
.10以上であり、且つ繊維軸に捩れを有することを特
徴とするポリエステル繊維。 2、繊維の10+0面の見かけの結晶サイズ(AC80
0,)が35′A以上である特許請求の範囲第1項記載
のポリエステル繊維。 3、繊維の捩れピッチが5sm以下である特許請求の範
囲第1項乃至第2項のいずれかに記載のポリエステル繊
維。 4、繊維の断面形状がU字形、V字ルまたけこれらに突
起を付加した形状である特許請求の範囲第1項乃至第3
項dいずれかに記載のポリエステル繊維。 5、配向結晶化紡糸し、且つ潜在捲縮能を付与したポリ
エステル繊維に、弛緩熱処理を施すことにより一旦潜在
捲縮を顕在化させ1しかる後該繊維に緊張熱処理を施す
ことにより顕在化した捲縮をひき伸ばして捩れに変換す
ることを特徴とする繊維軸に捩れを有するポリエステル
繊維の製造方法0 6、潜在捲縮能の付与が非対称冷却法による特許請求の
範囲第5項記載のポリエステル繊維の製造方法。 7、潜在捲縮能の付与が複合紡糸法による特許請求の範
囲第5項記載のポリエステル繊維の製造方法。 8、潜在捲縮能の付与が片面加熱処理による特許請求の
範囲第5項記載のポリエステル繊維の製造方法。
[Claims] 1. Apparent crystal size of 010 plane of fiber (ACs-n
) is 50X or more, the apparent crystal size of the oio plane (AC
8,,, ) and the apparent crystal size of 100 planes (AC8s
ee) ratio (A Cs*+e /Ac 81°,) is 1
.. 10 or more and having a twist in the fiber axis. 2. Apparent crystal size of 10+0 plane of fiber (AC80
0,) is 35'A or more, the polyester fiber according to claim 1. 3. The polyester fiber according to any one of claims 1 to 2, wherein the twist pitch of the fiber is 5 sm or less. 4.Claims 1 to 3, wherein the cross-sectional shape of the fiber is a U-shape or a V-shape with protrusions added thereto.
The polyester fiber according to any one of item d. 5. Polyester fibers that have been subjected to oriented crystallization spinning and have been given latent crimp ability are subjected to a relaxation heat treatment to once reveal the latent crimp; A method for producing a polyester fiber having a twist in the fiber axis, characterized by stretching the curl and converting it into twist 6. The polyester fiber according to claim 5, in which the latent crimp ability is imparted by an asymmetric cooling method. manufacturing method. 7. The method for producing polyester fibers according to claim 5, wherein the latent crimp ability is imparted by a composite spinning method. 8. The method for producing polyester fibers according to claim 5, in which the latent crimp ability is imparted by heat treatment on one side.
JP9285983A 1983-05-26 1983-05-26 Twisted polyester fiber and its manufacture Granted JPS59216918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9285983A JPS59216918A (en) 1983-05-26 1983-05-26 Twisted polyester fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9285983A JPS59216918A (en) 1983-05-26 1983-05-26 Twisted polyester fiber and its manufacture

Publications (2)

Publication Number Publication Date
JPS59216918A true JPS59216918A (en) 1984-12-07
JPH0260763B2 JPH0260763B2 (en) 1990-12-18

Family

ID=14066152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9285983A Granted JPS59216918A (en) 1983-05-26 1983-05-26 Twisted polyester fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS59216918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199817A (en) * 1986-02-27 1987-09-03 Nippon Ester Co Ltd Polyester conjugated yarn and production thereof
JPH01174611A (en) * 1987-11-18 1989-07-11 Toyobo Co Ltd Antipilling polyester fiber
WO1991008330A1 (en) * 1989-11-30 1991-06-13 Asahi Kasei Kogyo Kabushiki Kaisha Crimped multifilament and production thereof
JPH05504819A (en) * 1990-12-15 1993-07-22 バルマーク アクチエンゲゼルシヤフト hydraulic system
JP2010126828A (en) * 2008-11-26 2010-06-10 Daiwabo Holdings Co Ltd Fiber with side modified profile and hardened product using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828756A (en) * 1971-08-23 1973-04-16
JPS5327368A (en) * 1976-08-26 1978-03-14 Fujitsu Ltd Selective etching method
JPS56316A (en) * 1979-06-14 1981-01-06 Toyobo Co Ltd Crimped hollow polyester fiber for wadding
JPS5668108A (en) * 1979-11-01 1981-06-08 Toyobo Co Ltd Polyester fiber and its production
JPS5959920A (en) * 1982-09-29 1984-04-05 Kuraray Co Ltd Latently twisted polyester fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828756A (en) * 1971-08-23 1973-04-16
JPS5327368A (en) * 1976-08-26 1978-03-14 Fujitsu Ltd Selective etching method
JPS56316A (en) * 1979-06-14 1981-01-06 Toyobo Co Ltd Crimped hollow polyester fiber for wadding
JPS5668108A (en) * 1979-11-01 1981-06-08 Toyobo Co Ltd Polyester fiber and its production
JPS5959920A (en) * 1982-09-29 1984-04-05 Kuraray Co Ltd Latently twisted polyester fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199817A (en) * 1986-02-27 1987-09-03 Nippon Ester Co Ltd Polyester conjugated yarn and production thereof
JPH01174611A (en) * 1987-11-18 1989-07-11 Toyobo Co Ltd Antipilling polyester fiber
WO1991008330A1 (en) * 1989-11-30 1991-06-13 Asahi Kasei Kogyo Kabushiki Kaisha Crimped multifilament and production thereof
JPH05504819A (en) * 1990-12-15 1993-07-22 バルマーク アクチエンゲゼルシヤフト hydraulic system
JP2010126828A (en) * 2008-11-26 2010-06-10 Daiwabo Holdings Co Ltd Fiber with side modified profile and hardened product using the same

Also Published As

Publication number Publication date
JPH0260763B2 (en) 1990-12-18

Similar Documents

Publication Publication Date Title
TWI694185B (en) Cloth and fiber products
TWI413715B (en) Conjugate fiber-containing yarn
JPS59216918A (en) Twisted polyester fiber and its manufacture
JP3547842B2 (en) Method for producing anti-pilling irregular cross-section fiber
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JP2000314036A (en) Hollow false twist textured yarn and its production
JP4506130B2 (en) Dyed yarn and method for producing the same
JP3598027B2 (en) Special composite crimped yarn
JPH0813244A (en) Polyester flat cross-section yarn having turning part and its production
JPH02221415A (en) Conjugated fiber yarn
CN112352069B (en) Polyester fiber, pile fabric using same, and method for producing same
JP3318572B2 (en) Polyester multi-leaf cross-section multifilament yarn having a swirl and a method for producing the same
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JP3863051B2 (en) Polyester spotted yarn
JPS6350445B2 (en)
JPH0444014B2 (en)
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP4733879B2 (en) Polyester composite patchy yarn with latent crimp performance
JPS621015B2 (en)
Veit Polyester
JP2694719B2 (en) Method for producing fluffy polyester yarn
JPH0978383A (en) Polyester combined filament yarn and woven or knit fabric consisting of the same
JPH03167333A (en) False twisted conjugated yarn and production thereof
JP2002161443A (en) Crimped yarn
JP4085327B2 (en) Polyester multifilament composite yarn