JPS6350445B2 - - Google Patents

Info

Publication number
JPS6350445B2
JPS6350445B2 JP58120053A JP12005383A JPS6350445B2 JP S6350445 B2 JPS6350445 B2 JP S6350445B2 JP 58120053 A JP58120053 A JP 58120053A JP 12005383 A JP12005383 A JP 12005383A JP S6350445 B2 JPS6350445 B2 JP S6350445B2
Authority
JP
Japan
Prior art keywords
stretching
yarn
temperature
pilling
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58120053A
Other languages
Japanese (ja)
Other versions
JPS6017114A (en
Inventor
Hideo Isoda
Shosuke Nanri
Hideaki Ishihara
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP12005383A priority Critical patent/JPS6017114A/en
Publication of JPS6017114A publication Critical patent/JPS6017114A/en
Publication of JPS6350445B2 publication Critical patent/JPS6350445B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な抗ピル性ポリエステル繊維に関
するものであり、さらに詳しくは、綿(コツト
ン)と同等の優れた抗ピル性を有する低伸度のポ
リエステル繊維に関する。 従来より天然繊維を用いた編織物はピル(毛
玉)の発生が少ないが、これに比較して合成繊維
を用いた編織物はピルの発生が著しいといつた欠
点を有することが知られている。この問題を解決
するため、ポリエステル繊維に抗ピル性を付与す
る方法として強度を低下せしめて抗ピル性を付与
するとの観点から低粘度化ポリマーを用いる方法
が特公昭35−8562号公報以降多数提案されている
が、これらの方法は低粘度化により、低強力とな
るため、製糸段階及び後加工段階での操業性が著
しく低下し、コスト高となりかつ抗ピル性を得る
ために他の品質を犠牲にせざるを得ないなどの問
題があつた。このため後加工段階で薬剤処理等に
より抗ピル性を付与する方法が特公昭32−5844号
公報以降多数提案されてきたが後加工による方法
は生産性の低さ、使用薬剤の後処理(廃液処理)
問題等によりコスト高となる欠点があつた。又こ
れらの欠点を解消する方法として結節強度を低く
して強度を高くする方法が特開昭49−26516号公
報、特公昭51−43089号公報等に提案されている
がこれらの方法も前記方法と同様に低粘度ポリマ
ー使用による紡糸延伸段階での操業性の問題は充
分には解決されておらず結節強度が低いため紡績
段階でのカード通過性の改良にとどまつており、
製糸段階全ての生産性を高めるまでには到つてい
ない。この原因が低粘度化に由来するため、高粘
度ポリマーを用いた抗ピル性繊維の製造法が特公
昭47−9854号公報、特開昭52−148221号公報等で
提案されているが、これら高粘度ポリマーを用い
た方法においても綿と同等な優れた抗ピル性は得
られていない、又低粘度ポリマーを用いて1600〜
3500m/分の紡糸引取速度で紡糸した△nが10×
10-3〜80×10-3の未延伸糸を2段延伸して抗ピル
性繊維を得ることが特開昭49−71214号公報で、
更に、2500〜4500m/分の紡糸引取速度で得られ
る複屈折率が0.04〜0.08の未延伸ポリエステル繊
維を50〜90℃で1.3〜2.5倍に延伸して抗ピル繊維
を得ることが知られているが、これらの方法で
は、前記した従来技術と同様に綿(コツトン)と
同等なレベル迄の抗ピル性が得られていないのが
現状である。 本発明者らは、上記問題点を解決し、綿と同等
な優れた抗ピル性を有し、製造コストが安価でか
つ後加工性の良好な抗ピル性ポリエステル繊維を
得るべく鋭意研究を重ねた結果、ついに所期の目
的を達成する本発明に到達した。 固有粘度(フエノール/テトラクロルエタン:
6/4の混合溶媒中30℃で測定)が0.5〜0.8、繰
り返し単位の85モル%以上がエチレンテレフタレ
ートよりなる線状ポリエステルを溶融紡糸するに
あたり、紡糸口金として異形断面糸を製造するこ
とが可能な紡糸孔を有するものを使用し、引取速
度4000m/分以上で引取つて紡出糸条に配向結晶
化を発現させ、160℃乾熱下の収縮率が10%以下
の未延伸糸を得て、次いで該未延伸糸を1段目延
伸条件が温度70〜130℃、延伸張力0.4〜0.8g/
d、2段目延伸条件が温度130〜200℃、延伸張力
0.6〜0.8g/dで延伸後、リラツクス熱処理し、
次いで3段目延伸条件が温度200℃〜溶断温度の
範囲、延伸倍率1.2〜1.3倍で延伸して得られる繊
維であつて、下記の特性を同時に備えていること
を特徴とする低伸度抗ピル性ポリエステル繊維。 (イ) 初期引張抵抗度(IS);40≦IS(g/d)≦100 (ロ) 010面の見かけの結晶サイズ(ACS010)≧50
Å (ハ) 引張伸度(DE)<10% 本発明のポリエステル繊維を形成するポリエス
テル成分は、エチレンテレフタレート単位を主構
成単位とするものであつて、通常エチレンテレフ
タレート単位を85モル%以上含むコポリエステル
もしくはホモポリエステルまたはそれらのポリエ
ステル混合物である。テレフタール酸、エチレン
グリコール以外の共重合成分としては、イソフタ
ール酸、アジピン酸、セバシン酸、アゼライン
酸、ナフタール酸、p−オキシ安息香酸、2,5
−ジメチルテレフタル酸、ビス(p−カルボキシ
フエノキシ)エタン、2,6−ナフタレンジカル
ボン酸、ヘキサヒドロイソフタル酸、3,5−ジ
(カルボメトキシ)ベンゼンスルホン酸金属塩、
ジエチレングリコール、プロピレングリコール、
1,4−ブタンジオール、1,4−ヒドロキシメ
チルシクロヘキサン、あるいはこれらの誘導体な
どが挙げられる。ポリエステルに混合する第3成
分としては、例えば、ポリアミド系(ナイロン
6、ナイロン66、ナイロン6、10、芳香族ポリア
ミド等)、ポリエチレン系、ポリプロピレン系、
ポリスチレン系等で代表されるポリエステル系重
合体と混合して溶融紡糸が可能な重合体、酸化防
止剤、制電剤、難燃剤、染色改良剤、染料、顔
料、艶消剤、透明性向上剤、蛍光増白剤、結晶化
促進核剤等が挙げられる。尚これらの第3成分
は、ポリエステル系重合体と化学的に結合された
ものでも勿論よい。 本発明にいう初期引張抵抗度(以下ISと略称す
る)はJISL−1013-1981に定義される測定法によ
つて測定したものである。 本発明におけるISは40(g/d)以上、100
(g/d)以下が必要であり、ISが40(g/d)未
満の場合には、抗ピル性に必要とする適度な脆さ
がなく、良好な抗ピル性が得られない。一方、IS
が100(g/d)を超える場合には、繊維の耐衝撃
性が低下し過ぎて、その結果抗ピル性は付与され
るが、布帛にした時、引裂強力が低下するため好
ましくない。 本発明にいう繊維の010面の見かけの結晶サイ
ズ(ACS010)とは、広角X線の赤道回折曲線の
010面の強度の半価巾より次に示すsherrerの式を
用いて算出した結晶サイズである。詳細は丸善株
式会社発行「X線結晶学」仁田勇監修を参照。 ACS=(nλ)/{(√22)×cosθ} (式中nは補正係数、λはX線の波長(Å)、B
は半価巾(rad)、αは補正角(rad)、θは回折
角(度)である。) 先に本発明者らは、綿と同等の抗ピル性を示す
ポリエステル繊維として、繰り返し単位の85モル
%以上がエチレンテレフタレートよりなる線状ポ
リエステルからなる繊維であつて、010面の見か
けの結晶サイズ(ACS010)が50Å以上、010面の
見かけの結晶サイズ(ACS010)と100面の見かけ
の結晶サイズ(ACS100)の比(ACS010
ACS100)が1.25以上であり、且つ引張り強度
(DT)が6g/d以下で、結節強度(KT)が3
g/dを超えることを要旨とする発明を完成した
が、さらに研究を重ねた結果、(ACS010
ACS100)が1.25未満の領域においても、ISを40
g/d以上、好ましくは50g/d以上、更に好ま
しくは65g/d以上、100g/d以下、且つ引張
伸度(DE)を10%未満とすることによつて前記
発明と同等な効果、すなわち綿(コツトン)と同
等な優れた抗ピル性が得られることを見出し本発
明に到達した。 本発明の繊維はACS010が50Å以上、好ましく
は60Å以上であり、50Å未満のものにあつては綿
と同等級の優れた抗ピル性を示さない。 本発明にいう引張伸度(以下DEと略称する)
はJISL−1013-1981に定義される測定法によつて
測定したものである。 本発明におけるDEは10%未満であることが必
要であり、DEが10%以上の場合には綿と同等級
の抗ピル性付与に必要な適度な脆さが得られな
い。 本発明の繊維は前記するIS、ACS010及びDEを
同時に満足することによつて綿(コツトン)と同
等級の優れた抗ピル性を示すものである。 本発明のポリエステル繊維は、従来の衣料用ポ
リエステル繊維と比較すると、結晶サイズ及び伸
度が著しく相異し、かつ初期引張抵抗が40g/d
以上、好ましくは50g/d以上、更に好ましくは
65g/d以上で100g/d以下の範囲にあるとい
つた特徴を有するものである。 即ち、ACS010が50Å以上、好ましくは60Å以
上でDEが10(%)未満であり、かつISが40g/d
以上、好ましくは50g/d以上、更に好ましくは
65g/d以上、100g/d以下であつて、これら
のすべての要件を満足することによつて後述のピ
リング試験において綿(コツトン)と同等級の優
れた抗ピル性を示すものである。 この理由は、いまだ明らかではないが、本発明
者らの推測によれば、次のことが言える。本発明
の繊維は、従来の衣料用ポリエステル繊維に比較
して、繊維の結晶サイズが大きく、かつb軸方向
に生長した結晶構造となつているためにc軸方向
の引張りには強いが捩れを伴なう引張りには弱く
なつている。さらに低伸度化により、アモルフア
ス領域の緊張度が高められているので耐衝撃性が
低下し、適度な脆さを示す。従つて該繊維を編織
物とした場合においては、発生したピルの脱落を
極めて促進させるといつた特別な効果があり、こ
れらの理由によつて、本発明のポリエステル繊維
が綿(コツトン)同等の優れた抗ピル性を示すも
のと考えられる。 本発明の繊維の断面形状は特に限定されるもの
ではないが、とりわけU字形、V字形またはこれ
らに突起を付加した形状のものは、紡績糸とした
場合単繊維が抜けにくくなり良好な抗ピル性が得
られる。 以下本発明の繊維の製造方法について説明す
る。 本発明の繊維は超高速紡糸技術と高温低伸度化
延伸技術を組合せて繊維の分子配列を制御するこ
とによつて製造される。殊に、製造に関し、最も
特徴とするところは、超高速紡糸することによ
り、紡糸、引取り段階で配向結晶化を発現させて
配向結晶化糸を得る点、この配向結晶化糸を、
特に3段以上の多段で、後段側が前段側に比べて
高温条件となるようにし、且つ、高度な緊張延伸
を行う点にある。かかる繊維の製造に際して、紡
糸段階では、溶融紡糸機にて押出し可能な固有粘
度(フエノール/テトラクロルエタン=6/4の
混合溶媒中30℃で測定)が0.3〜1.0、好ましくは
0.5〜0.8のエチレンテレフタレート系ポリエステ
ルを超高速紡糸することにより配向結晶化糸を得
る。配向結晶化糸が得られたか否かの判定方法と
しては、例えば(イ)結晶の存在の有無を糸条の広角
又は小角X線解析により確認する方法、(ロ)糸条の
密度を測定して密度が急激に増大したか否かによ
り判定する方法、(ハ)糸条の160℃乾熱下の収縮率
(以下SHDと略記する)を測定し、SHDが10%
以下であるか否かにより判定する方法等がある
が、最も簡便な方法が前記(ハ)のSHDによる方法
であり、これが10%以下であれば配向結晶化糸が
得られていると判定してよい。ここにおける超高
速紡糸の主たる目的は、紡糸、引取り段階で配向
結晶化を発現させ、次いで行なう延伸熱処理時点
で結晶化を促進させるための結晶核を形成するこ
とである。この観点から紡速と配向結晶化の関係
は重要であり、例えばポリエチレンテレフタレー
ト(固有粘度0.61)の場合丸断面糸では、配向結
晶化到達紡速は4500m/分以上であるが、異形断
面糸(例へば断面〓型)では4000m/分以上で配
向結晶化することが判明している。 次いで配向結晶化糸は3段以上の多段延伸で延
伸する。例えば、3段延伸法による延伸条件とし
ては、1段目延伸の延伸温度は、70〜130℃、好
ましくは85〜125℃とし、延伸倍率は、延伸張力
が0.4〜0.8(g/デニール)となるように適宜選
定するのが好ましい。ここで延伸張力が0.4(g/
デニール)より低くすると延伸斑を生じやすく、
又0.8(g/デニール)より高くすると単糸切れを
生じやすい。2段目延伸の延伸温度は1段目より
高くして130〜200℃とし、延伸倍率は、延伸張力
が0.6〜0.8(g/デニール)となるように適宜選
定するのが好ましい。次いでリラツクス熱処理を
施し、結晶サイズをある程度生長させる。3段目
延伸は高温高張力延伸を行うのが好ましく、延伸
温度は、200℃以上で溶断温度以下とし、延伸倍
率は1.2〜1.3倍とするのが好ましい。 前記する方法により、(イ)40≦IS(g/d)≦100
(ロ)ACS010≧50Å及び(ハ)DE<10%を同時に満たす
ポリエステル繊維を得ることができる。このよう
にして得られた繊維は、ステーブルとして用いる
ときは、押込み式クリンパー等を用いて機械捲縮
を付与し、所望の長さに切断してステーブルとす
る。機械捲縮の付与に際して、室温での付与の場
合は充分な捲縮が得られず、紡績時の絡合性が低
下するといつた欠点を生ずるので120℃以上に予
熱してホツトクリンプとするのが好ましい。 前述の方法により、ステーブルとした繊維は、
紡績性、製織性、製編性共良好であり、その編織
物は、従来知られている低粘度化ポリマーを用い
た抗ピル性ポリエステル繊維と比較して抗ピル性
が優れ、そのレベルは綿と同等級を示す。 本発明繊維のデニールは特に限定されないが、
用途により、綿混タイプは1〜1.5デニール、毛
混タイプは2〜5デニール等、目的用途に応じて
適宜選定するのがよい。 本発明の繊維は単一素材織編物としてはもちろ
ん、本発明の繊維以外の異種繊維との組合せによ
る混紡糸、加工糸、さらに異種繊維または異種繊
維より成る糸との混織物、混編物、不織布、重
布、多重構造織編物等にも優れた抗ピル性効果を
発揮する。 本発明の繊維の用途としては、ドレスシヤツ、
カジユアルシヤツ、婦人ブラウス、婦人スカー
ト、肌着、スラツクス、メンズフオーマルウエ
ア、レデイスフオーマルウエア、ニツトウエア、
スポーツウエア、コート、アウトウエア一般、ベ
ビーウエア、子供服全般、紳士スーツ、ジヤケツ
ト、ブルゾン、ユニホーム一般、着物、家庭用品
(エプロン、テーブルクロス、手袋、帽子等)、寝
具または寝衣(布団、シーツ、布団カバー、パジ
ヤマ等)、インテリヤ用品、カーペツト他産業用
資材等がある。 以下本発明の繊維を実施例により説明するが、
本発明はもとよりこれらの実施例に限定されるも
のではない。 なお、実施例における繊維特性の測定方法は次
のとおりである。 (イ) 抗ピル性 JIS−L1076-1976 A法による。 (ロ) 初期引張抵抗度、引張強度、引張伸度及び結
節強度 JIS−L1013-1981による。 ただし荷重−伸長曲線は次の条件で測定して
得られたものである。 サンプルは20℃、65%相対湿度の恒温恒室下
に24時間放置後、テンシロンUTM−型引張
試験機(東洋ボールドウイン社製)を用いて、
試料長2cm、引張速度2cm/分で測定した。 (ハ) 結晶サイズ 前記した方法による。なお繊維の結晶サイズ
の測定には、X線発生器(理学電機製ロータリ
ーフレツクス)を用いた。この測定にはX線
Cu−Kα線(λ=1.5418Å)を用い、補正係数
nは0.9、補正角αは6.98×10-3(rad)を用い
た。 実施例 1 常法によりテレフタル酸とエチレングリコール
とから重縮合して得た固有粘度0.63(フエノー
ル/テトラクロルエタン=6/4の混合溶媒中30
℃で測定)のポリエチレンテレフタレートを、紡
糸温度290℃にて〓型スリツト孔(スリツト巾
0.05mm、単孔の断面積は0.3mmO/丸型孔に相当)
を有するノズル数24ホールの紡糸口金より、単孔
当り0.95g/分の吐出量で紡出し、紡出糸条に風
速0.9m/秒の室温の冷却風を糸条の片側から吹
き当てて非対称冷却しつつ4000m/分の速度で引
取つた。該糸条の複屈折率は0.08、SHDは6%
であつた。次いでこの糸条を加熱ローラ温度80
℃、加熱プレート温度120℃にて1.3倍の延伸倍率
で1段延伸し、次いで加熱プレート温度150℃に
て1.05倍の延伸倍率で2段目の延伸をし、引続い
て160℃の乾熱熱風ゾーンで、20%のリラツクス
率にて熱処理し、ひき続いて、加熱プレート温度
230℃にて1.3倍の延伸倍率で3段目の延伸をし
た。得られた延伸糸のデニールは1.58(d)で強
度3.7(g/d)、DE6(%)、IS90(g/d)であつ
た。該延伸糸を50000デニールに引揃えて、予熱
温度180℃で予熱しつつ押込式クリンパーで捲縮
数15(山/2.5cm)、捲縮度13(%)の機械捲縮を付
与し38mmに切断した。得られたステーブルは常法
により英式番手30S、撚係数3.2の紡績糸とした。
該紡績糸を特にピルの発生が起こり易い編地を採
択し編地として、精練後ピリング試験に供した。
即ち目付200g/m2のインターロツク編地を作成
し、精練{ノイゲンHC2(g/)、Na2CO30.5
(g/)水溶液中、70℃で20分間処理後、50℃
で10分間水洗}した編地でICIピリングテスター
を用いて抗ピル性を評価した。繊維の特性及び抗
ピル性評価の結果を第1表に示す。ここで対比例
として綿100%の上記実施例と同一番手、同一撚
係数の紡績糸を用いて同一目付のインターロツク
編地とし、精練{H2O24(ml/)、NaOH1(g/
)、アートリンAP80を1(g/)、ハイパー
N0.35(g/)水溶液中で沸騰30分処理後、50
℃で10分間水洗}した後、上記実施例と同様に抗
ピル性を評価した。結果を第1表に示す。前記す
る綿との対比の結果、本発明の繊維は綿繊維と同
等級の優れた抗ピル性を示した。 実施例 2 実施例1と同一条件で配向結晶化紡糸したポリ
エステル糸条を、加熱ローラ温度80℃、加熱プレ
ート温度120℃にて1.3倍の延伸倍率で1段延伸
し、次いで加熱プレート温度220℃にて1.10倍の
延伸倍率で2段目の延伸をし、引き続いて160℃
の乾熱熱風ゾーンで、20%のリラツクス率にて熱
処理し、ひき続いて、加熱プレート温度230℃に
て1.0倍の延伸倍率で3段目の延伸をした。得ら
れた延伸糸を実施例1と同様な方法でステープル
とした。得られたステープルは実施例1と同様に
編地としてピリング試験に供し、抗ピル性を評価
した。ステープルの特性及び抗ピル性の評価結果
を第1表に示す。本例の繊維は、綿と同等級の優
れた抗ピル性を示した。 実施例 3 実施例1と同一条件で配向結晶化紡糸したポリ
エステル糸条を、3段目延伸倍率を1.25倍とした
以外は実施例1と同様にして延伸した。該延伸糸
を実施例1と同様な方法でステープルとした。得
られたステープルは実施例1と同様に抗ピル性を
評価した。ステープルの特性及び抗ピル性の評価
結果を第1表に示す。本発明の要件を満たす本例
の繊維は綿と同等級の優れた抗ピル性を示した。 比較例 1 実施例1と同様にして紡糸したポリエステル糸
条を、加熱ローラ温度80℃、加熱プレート温度
120℃で1.36倍の延伸倍率で延伸し、次いで155℃
で3分間弛緩熱処理した後実施例1と同様に機械
捲縮を付与し38mmに切断した。得られたステープ
ルを、実施例1と同様にして抗ピル性の評価をし
た。ステープルの特性及び抗ピル性の評価結果を
第1表に示す。本例は本発明の繊維と比較すれば
抗ピル性が劣るもので、紡績性もよくなかつた。 比較例 2 実施例1と同様にして紡糸したポリエステル糸
条を、比較例1と同一延伸条件にて延伸した。該
延伸糸を弛緩熱処理をやらない他は比較例1と同
様にしてポリエステルステープルを得て、実施例
1と同様に、抗ピル性の評価をした。ステープル
の特性及び抗ピル性の評価結果を第1表に示す。
本例の繊維はACS010が45(Å)より小さく、本発
明の繊維と比較すれば抗ピル性は極めて劣る。 比較例 3 実施例1と同様にして紡糸したポリエステル糸
条を比較例1と同一延伸条件で延伸し、得られた
延伸糸を155℃で3分間弛緩熱処理した後、再び
温度180℃、延伸倍率1.1倍にて延伸し、再度155
℃で3分間弛緩熱処理をして、実施例1と同様に
機械捲縮を付与し38mmに切断した。得られたステ
ープルを実施例1と同様にして抗ピル性の評価を
した。ステープルの特性及び抗ピル性の評価結果
を第1表に示す。本例ではISの値が40(g/d)
より低くなり、強度も2.8(g/d)と低下してお
り、本発明の繊維に比べて抗ピル性は悪く、紡績
性も劣る。 比較例 4 単孔当り吐出量0.5g/分、冷却風風速2.0m/
秒、引取速度1300m/分とした以外は実施例1と
同一紡糸条件で得た未延伸糸を延伸倍率2.2倍、
ローラ温度80℃、加熱プレート130℃にて1段延
伸した。該延伸糸を25%のリラツクス率で、135
℃10分間弛緩熱処理して、実施例1と同様に機械
捲縮を付与後38mmに切断した。得られたステープ
ルの特性及び実施例1と同様に評価した抗ピル性
の評価結果を第1表に示す。本比較例の場合、
ACS010が小さく、さらに、DEが10%より大き
く、本発明の繊維に比べて抗ピル性が劣る。 比較例 5 冷却風々速0.2m/秒、引取速度3500m/分と
した以外は実施例1と同一条件でSHD43%のポ
リエステル未延伸糸を得た。この未延伸糸を1段
目、2段目共ローラー温度80℃、加熱プレート温
度130℃にて全延伸倍率1.35倍で延伸後、155℃乾
熱中5分間弛緩熱処理し、次いで180℃で予熱し
機械巻縮付与し、38mmに切断した。得られたステ
ープルの特性及び実施例1と同様に評価した抗ピ
ル性の結果を第1表に示す。充分な熱処理で結晶
サイズも大きいが、DEが27%と大きく、本発明
の繊維に比べて抗ピル性は劣る。 比較例 6 ポリエチレンテレフタレートを孔数300の紡糸
口金から、紡糸温度270℃、紡糸引取り速度2500
m/分で溶融紡糸して固有粘度IVf0.38、複屈折
率△nが25×10-3の未延伸糸トウを得た。2つの
周速の異なるローラー間に上下2枚の加熱プレー
トを設けた装置を2台設置し、この装置を用い
て、前記して得た未延伸トウの紡糸後7日以上経
つたものを2段延伸した。延伸条件は第1段目が
180℃で3.0倍、第2段目が180℃で1.2倍とした。
この延伸トウをスタツフアーボツクス式クリンパ
ーにかけ巻縮付与した後160℃で1分間乾熱処理
を施し、38mmにカツトし紡績糸用ステープルを作
成した。ステープルの糸物性を第1表に示した。
このステープルを用いて英式番手30′sの紡績糸と
し、インターロツク編立てした、編地の抗ピル性
を評価した。この糸の紡糸性、延伸性、紡績性、
編立性、抗ピル性の評価結果を第1表に示す。 比較例 7 ポリエチレンテレフタレートを孔数300の紡糸
口金から紡糸温度270℃、巻取速度1000m/分で
溶融紡糸して未延伸糸トウを得た。この糸の極限
粘度IVfは0.38であつた。 この未延伸トウを90℃のピン3本に蛇行させ
て、2.6倍の延伸倍率で第1段延伸し、次いで180
℃のプレートで2倍に第2段延伸したものをスタ
ツフアーボツクス式クリンパーで巻縮を与え、
160℃で1分間乾熱処理をして38mmにカツトし、
単糸デニール1.2デニールの紡績用短繊維を得た。
この糸の物性を第1表に示した。この短繊維を用
いて英式番手30′Sの紡績糸とし、インターロツク
編立てした編地の抗ピル性について評価した。こ
の糸の紡糸性、延伸性、紡績性、編立性、抗ピル
性の評価結果を第1表に示す。 比較例 8 極限粘度0.61のポリエチレンテレフタレートを
孔数500、口金孔径0.4mmφの紡糸口金から紡糸温
度280℃、紡糸ドラフト444、紡糸引取り速度3500
m/分、紡糸筒における冷却風吹出長20cm、冷却
風温度25℃で溶融紡糸し、高配向未延伸ポリエス
テルトウを得た。この未延伸トウを用いて、温水
浴で、延伸速度100m/分で、第1温水浴温度70
℃、第2温水浴温度85℃で全延伸倍率が1.7にな
るように2段延伸を行つた。延伸後押込捲縮機で
捲縮を与え、120℃で熱処理後カツト長51mmに切
断処理し、ステープルフアイバーを得た。ステー
プルフアイバーの糸物性を第1表に示した。この
ステープルフアイバーを用いて英式番手30′Sの紡
績糸とし、インターロツク編立てした編地の抗ピ
ル性について評価した。この糸の紡糸性、延伸
性、紡績性、編立性、抗ピル性の評価結果を第1
表に示す。
The present invention relates to a novel anti-pilling polyester fiber, and more particularly to a low elongation polyester fiber having excellent anti-pilling properties equivalent to cotton. Conventionally, knitted fabrics using natural fibers have less pilling (pilling), but compared to this, knitted fabrics using synthetic fibers are known to have the disadvantage of more pilling. There is. In order to solve this problem, many proposals have been made since Japanese Patent Publication No. 35-8562, in which a method of imparting anti-pilling properties to polyester fibers uses a low-viscosity polymer from the perspective of reducing the strength and imparting anti-pilling properties. However, these methods result in lower tenacity due to lower viscosity, which significantly reduces operability in the spinning and post-processing stages, increases costs, and requires other qualities to be improved in order to obtain anti-pilling properties. There were problems such as having to make sacrifices. For this reason, a number of methods have been proposed since Japanese Patent Publication No. 32-5844 to impart anti-pilling properties through chemical treatment, etc. in the post-processing stage, but post-processing methods have low productivity, process)
It had the disadvantage of high costs due to problems and other issues. In addition, as a method to eliminate these drawbacks, a method of increasing the strength by lowering the nodule strength has been proposed in Japanese Patent Application Laid-open No. 49-26516, Japanese Patent Publication No. 51-43089, etc., but these methods are also different from the above-mentioned method. Similarly, the problem of operability in the spinning and drawing stage due to the use of low viscosity polymers has not been fully resolved, and because of the low knot strength, improvements have only been made to card passability in the spinning stage.
It has not yet been possible to increase productivity at all stages of spinning. Since the cause of this is low viscosity, methods for manufacturing anti-pilling fibers using high viscosity polymers have been proposed in Japanese Patent Publication No. 47-9854 and Japanese Patent Application Laid-open No. 52-148221, etc.; Even with the method using a high viscosity polymer, excellent pill resistance equivalent to that of cotton has not been obtained, and with the method using a low viscosity polymer
△n spun at a spinning take-off speed of 3500 m/min is 10×
JP-A-49-71214 discloses that an anti-pilling fiber is obtained by drawing an undrawn yarn of 10 -3 to 80 x 10 -3 in two stages.
Furthermore, it is known that anti-pilling fibers can be obtained by drawing undrawn polyester fibers with a birefringence of 0.04 to 0.08 obtained at a spinning take-off speed of 2500 to 4500 m/min to 1.3 to 2.5 times at 50 to 90°C. However, as with the prior art described above, the current situation is that these methods do not provide anti-pilling properties to the same level as cotton. The present inventors have conducted extensive research in order to solve the above problems and obtain a pill-resistant polyester fiber that has excellent pill-resistant properties equivalent to cotton, is inexpensive to produce, and has good post-processing properties. As a result, we finally arrived at the present invention which achieves the intended purpose. Intrinsic viscosity (phenol/tetrachloroethane:
When melt-spinning a linear polyester whose polyester has a polyester (measured at 30°C in a 6/4 mixed solvent) of 0.5 to 0.8 and 85 mol% or more of the repeating units are ethylene terephthalate, it is possible to use a spinneret to produce irregular cross-section yarn. The spun yarn is taken at a take-up speed of 4000 m/min or more to develop oriented crystallization in the spun yarn, and to obtain an undrawn yarn with a shrinkage rate of 10% or less under dry heat at 160°C. Then, the undrawn yarn was stretched in the first stage at a temperature of 70 to 130°C and a stretching tension of 0.4 to 0.8 g/
d. Second stage stretching conditions are temperature 130-200℃, stretching tension
After stretching at 0.6 to 0.8 g/d, relax heat treatment is performed,
Next, the third-stage drawing condition is a fiber obtained by drawing at a temperature in the range of 200°C to fusion temperature and a drawing ratio of 1.2 to 1.3 times, and which is characterized by having the following properties at the same time: Pillable polyester fiber. (a) Initial tensile resistance (IS); 40≦IS (g/d)≦100 (b) Apparent crystal size of 010 plane (ACS 010 )≧50
(c) Tensile elongation (DE)<10% The polyester component forming the polyester fiber of the present invention has ethylene terephthalate units as a main constituent unit, and usually contains 85 mol% or more of ethylene terephthalate units. Polyester or homopolyester or a polyester mixture thereof. Copolymerization components other than terephthalic acid and ethylene glycol include isophthalic acid, adipic acid, sebacic acid, azelaic acid, naphthalic acid, p-oxybenzoic acid, 2,5
-dimethylterephthalic acid, bis(p-carboxyphenoxy)ethane, 2,6-naphthalene dicarboxylic acid, hexahydroisophthalic acid, 3,5-di(carbomethoxy)benzenesulfonic acid metal salt,
diethylene glycol, propylene glycol,
Examples include 1,4-butanediol, 1,4-hydroxymethylcyclohexane, and derivatives thereof. Examples of the third component to be mixed with polyester include polyamide (nylon 6, nylon 66, nylon 6, 10, aromatic polyamide, etc.), polyethylene, polypropylene,
Polymers that can be melt-spun by mixing with polyester polymers such as polystyrene, antioxidants, antistatic agents, flame retardants, dye improvers, dyes, pigments, matting agents, transparency improvers. , a fluorescent whitening agent, a crystallization promoting nucleating agent, and the like. Of course, these third components may be chemically bonded to the polyester polymer. The initial tensile resistance (hereinafter abbreviated as IS) referred to in the present invention is measured by the measuring method defined in JISL- 1013-1981 . IS in the present invention is 40 (g/d) or more, 100
(g/d) or less, and if the IS is less than 40 (g/d), there is no appropriate brittleness required for anti-pilling properties, and good anti-pilling properties cannot be obtained. On the other hand, I.S.
If it exceeds 100 (g/d), the impact resistance of the fibers decreases too much, and as a result, anti-pilling properties are imparted, but when made into a fabric, the tear strength decreases, which is not preferable. The apparent crystal size (ACS 010 ) of the 010 plane of the fiber in the present invention is defined as the apparent crystal size of the 010 plane of the fiber (ACS 010).
This is the crystal size calculated from the half-value width of the intensity of the 010 plane using the Sherrer equation shown below. For details, see "X-ray Crystallography" published by Maruzen Co., Ltd., supervised by Isamu Nita. ACS=(nλ)/{(√ 22 )×cosθ} (In the formula, n is the correction coefficient, λ is the X-ray wavelength (Å), B
is the half width (rad), α is the correction angle (rad), and θ is the diffraction angle (degrees). ) Previously, the present inventors have proposed a polyester fiber that exhibits anti-pilling properties equivalent to cotton, which is a fiber made of linear polyester in which 85 mol% or more of the repeating units are ethylene terephthalate, and which has an apparent crystal of 010 plane. The size (ACS 010 ) is 50 Å or more, the ratio of the apparent crystal size of the 010 plane (ACS 010 ) to the apparent crystal size of the 100 plane (ACS 100 ) (ACS 010 /
ACS 100 ) is 1.25 or more, tensile strength (DT) is 6 g/d or less, and knot strength (KT) is 3
The invention was completed with the aim of exceeding g/d, but as a result of further research, (ACS 010 /
Even in areas where ACS 100 ) is less than 1.25, IS is 40
g/d or more, preferably 50 g/d or more, more preferably 65 g/d or more and 100 g/d or less, and the tensile elongation (DE) is less than 10% to obtain the same effect as the above invention, namely The present invention was achieved by discovering that excellent anti-pilling properties equivalent to that of cotton can be obtained. The fibers of the present invention have an ACS 010 of 50 Å or more, preferably 60 Å or more, and fibers with an ACS 010 of less than 50 Å do not exhibit excellent pill resistance equivalent to that of cotton. Tensile elongation according to the present invention (hereinafter abbreviated as DE)
was measured using the measurement method defined in JISL- 1013-1981 . In the present invention, the DE must be less than 10%, and if the DE is 10% or more, the appropriate brittleness required to impart pill resistance equivalent to that of cotton cannot be obtained. The fiber of the present invention exhibits excellent pill resistance equivalent to that of cotton by simultaneously satisfying the IS, ACS 010 , and DE requirements described above. Compared to conventional polyester fibers for clothing, the polyester fiber of the present invention has significantly different crystal size and elongation, and has an initial tensile resistance of 40 g/d.
or more, preferably 50 g/d or more, more preferably
It has the characteristics of being in the range of 65 g/d or more and 100 g/d or less. That is, ACS 010 is 50 Å or more, preferably 60 Å or more, DE is less than 10 (%), and IS is 40 g/d.
or more, preferably 50 g/d or more, more preferably
By satisfying all these requirements of 65 g/d or more and 100 g/d or less, it exhibits excellent pill resistance equivalent to that of cotton in the pilling test described below. The reason for this is not yet clear, but according to the inventors' speculation, the following can be said. The fibers of the present invention have a larger crystal size and a crystal structure grown in the b-axis direction compared to conventional polyester fibers for clothing, so they are strong against tension in the c-axis direction but are resistant to twisting. It is becoming weaker against the accompanying tension. Furthermore, by lowering the elongation, the degree of tension in the amorphous region is increased, resulting in a decrease in impact resistance and moderate brittleness. Therefore, when the fiber is made into a knitted fabric, it has a special effect of extremely promoting the shedding of the generated pills.For these reasons, the polyester fiber of the present invention has the same effect as cotton. It is thought to exhibit excellent anti-pilling properties. The cross-sectional shape of the fibers of the present invention is not particularly limited, but in particular, U-shaped, V-shaped, or shapes with protrusions added thereto, when made into a spun yarn, single fibers are difficult to come off and have good pill resistance. You can get sex. The method for manufacturing the fiber of the present invention will be explained below. The fibers of the present invention are produced by controlling the molecular arrangement of the fibers by combining ultrahigh-speed spinning technology and high-temperature, low-elongation drawing technology. In particular, the most distinctive feature regarding manufacturing is that oriented crystallized yarn is obtained by performing ultrahigh-speed spinning to develop oriented crystallization at the spinning and take-off stages, and this oriented crystallized yarn is
In particular, in multi-stages of three or more stages, the latter stage side is made to have a higher temperature condition than the earlier stage side, and a high degree of tension stretching is performed. In the production of such fibers, in the spinning step, the intrinsic viscosity (measured at 30°C in a mixed solvent of phenol/tetrachloroethane = 6/4) that can be extruded with a melt spinning machine is 0.3 to 1.0, preferably
Oriented crystallized yarn is obtained by ultra-high speed spinning of 0.5 to 0.8 ethylene terephthalate polyester. Examples of methods for determining whether or not oriented crystallized threads have been obtained include (a) confirming the presence or absence of crystals by wide-angle or small-angle X-ray analysis of the threads, and (b) measuring the density of the threads. (3) Measuring the shrinkage rate (hereinafter abbreviated as SHD) of the yarn under dry heat at 160°C, and determining whether the density has increased rapidly or not.
There are methods to judge based on whether or not it is below, but the simplest method is the method using SHD (c) above, and if it is below 10%, it is judged that oriented crystallized thread has been obtained. It's fine. The main purpose of ultrahigh-speed spinning here is to develop oriented crystallization during the spinning and drawing steps, and to form crystal nuclei for promoting crystallization during the subsequent drawing heat treatment. From this point of view, the relationship between spinning speed and oriented crystallization is important. For example, in the case of polyethylene terephthalate (intrinsic viscosity 0.61), the spinning speed at which oriented crystallization is achieved is 4500 m/min or more for round cross-section yarn, but for irregular cross-section yarn ( For example, it has been found that oriented crystallization occurs at a speed of 4000 m/min or more in the case of a cross-section (type 〓). The oriented crystallized yarn is then drawn in three or more stages of drawing. For example, as for the stretching conditions in the three-stage stretching method, the stretching temperature in the first stage stretching is 70 to 130°C, preferably 85 to 125°C, and the stretching ratio is such that the stretching tension is 0.4 to 0.8 (g/denier). It is preferable to select as appropriate so that Here, the stretching tension is 0.4 (g/
denier), stretching spots are likely to occur.
Moreover, if it is higher than 0.8 (g/denier), single thread breakage is likely to occur. It is preferable that the stretching temperature in the second stage stretching is higher than that in the first stage, 130 to 200°C, and the stretching ratio is appropriately selected so that the stretching tension is 0.6 to 0.8 (g/denier). Next, a relaxing heat treatment is performed to grow the crystal size to some extent. The third stage of stretching is preferably carried out at high temperature and high tension, and the stretching temperature is preferably 200° C. or higher and the melting temperature or lower, and the stretching ratio is preferably 1.2 to 1.3 times. By the method described above, (a) 40≦IS (g/d)≦100
It is possible to obtain polyester fibers that simultaneously satisfy (b) ACS 010 ≧50Å and (c) DE<10%. When the fiber thus obtained is used as a stable, it is mechanically crimped using a push-type crimper or the like, and cut into a desired length to form a stable. When mechanically crimp is applied, if it is applied at room temperature, sufficient crimp will not be obtained and the entanglement during spinning will be reduced, resulting in disadvantages such as preheating to 120℃ or higher to hot crimp. preferable. The fibers made stable by the method described above are
It has excellent spinnability, weavability, and knitting properties, and the knitted fabric has superior pill resistance compared to conventionally known anti-pilling polyester fibers using low-viscosity polymers, and its level is comparable to that of cotton. indicates the equivalent grade. The denier of the fiber of the present invention is not particularly limited, but
Depending on the intended use, it is preferable to select an appropriate material according to the intended use, such as 1 to 1.5 denier for the cotton blend type and 2 to 5 denier for the wool blend type. The fibers of the present invention can be used as single-material woven or knitted fabrics, as well as blended yarns and processed yarns in combination with different types of fibers other than the fibers of the present invention, as well as mixed fabrics, knitted fabrics, and non-woven fabrics with different types of fibers or yarns made of different types of fibers. It also exhibits excellent anti-pilling properties on heavy fabrics, multi-layered woven and knitted fabrics, etc. Applications of the fiber of the present invention include dress shirts,
Casual shirts, women's blouses, women's skirts, underwear, slacks, men's formal wear, women's formal wear, knitwear,
Sportswear, coats, outwear in general, babywear, children's clothing in general, men's suits, jackets, blousons, uniforms in general, kimonos, household items (aprons, tablecloths, gloves, hats, etc.), bedding or sleeping clothes (futons, sheets, etc.) , futon covers, pajamas, etc.), interior goods, carpets, and other industrial materials. The fibers of the present invention will be explained below using examples.
The present invention is not limited to these Examples. The method for measuring fiber properties in Examples is as follows. (a) Anti-pillar properties According to JIS- L1076-1976 method A. (b) Initial tensile resistance, tensile strength, tensile elongation and knot strength According to JIS- L1013-1981 . However, the load-elongation curve was obtained by measuring under the following conditions. After leaving the sample in a constant temperature room at 20℃ and 65% relative humidity for 24 hours, it was tested using a Tensilon UTM-type tensile tester (manufactured by Toyo Baldwin).
Measurement was performed with a sample length of 2 cm and a tensile rate of 2 cm/min. (c) Crystal size According to the method described above. Note that an X-ray generator (Rotary Flex, manufactured by Rigaku Denki) was used to measure the crystal size of the fibers. This measurement requires X-ray
A Cu-Kα ray (λ=1.5418 Å) was used, a correction coefficient n of 0.9, and a correction angle α of 6.98×10 −3 (rad). Example 1 Intrinsic viscosity 0.63 obtained by polycondensation of terephthalic acid and ethylene glycol in a mixed solvent of phenol/tetrachloroethane = 6/4 by a conventional method.
Polyethylene terephthalate (measured at °C) was spun at a spinning temperature of 290 °C,
0.05mm, the cross-sectional area of a single hole is 0.3mmO/equivalent to a round hole)
The spun yarn is spun from a spinneret with 24 nozzles at a discharge rate of 0.95 g/min per single hole, and the spun yarn is asymmetrically spun by blowing cooling air at room temperature at a speed of 0.9 m/sec from one side of the yarn. It was taken over at a speed of 4000 m/min while being cooled. The birefringence of the yarn is 0.08, and the SHD is 6%.
It was hot. Next, this yarn is heated to a roller temperature of 80
℃, one step of stretching at a heating plate temperature of 120℃ and a draw ratio of 1.3 times, then a second step of stretching at a heating plate temperature of 150℃ and a draw ratio of 1.05 times, followed by dry heat at 160℃. Heat treatment in a hot air zone with a relaxation rate of 20%, followed by heating plate temperature
The third stage of stretching was performed at 230° C. and a stretching ratio of 1.3 times. The resulting drawn yarn had a denier of 1.58 (d), a strength of 3.7 (g/d), a DE6 (%), and an IS90 (g/d). The drawn yarn was aligned to 50,000 denier, and while preheating at a preheating temperature of 180°C, mechanical crimping was applied using a push-in crimper with a number of crimps of 15 (crests/2.5 cm) and a crimp degree of 13 (%) to a length of 38 mm. Amputated. The obtained stable was made into a spun yarn with an English thread count of 30 S and a twist coefficient of 3.2 using a conventional method.
A knitted fabric in which pilling is particularly likely to occur was selected from the spun yarn, and the knitted fabric was subjected to a pilling test after scouring.
That is, an interlock knitted fabric with a basis weight of 200 g/m 2 was created, and scouring {Neugen HC2 (g/), Na 2 CO 3 0.5
(g/) After treatment at 70℃ for 20 minutes in aqueous solution, 50℃
The anti-pilling properties of the knitted fabrics, which had been washed with water for 10 minutes, were evaluated using an ICI pilling tester. Table 1 shows the properties of the fibers and the results of anti-pilling evaluation. Here, as a comparative example, an interlock knitted fabric of the same basis weight was made using the same spun yarn of 100 % cotton and the same twist coefficient as in the above example.
), Arturin AP80 1 (g/), Hyper
After boiling for 30 minutes in N0.35 (g/) aqueous solution, 50
After washing with water at ℃ for 10 minutes, the pill resistance was evaluated in the same manner as in the above example. The results are shown in Table 1. As a result of the comparison with cotton mentioned above, the fiber of the present invention showed excellent pill resistance comparable to that of cotton fiber. Example 2 A polyester yarn that was oriented and crystallized and spun under the same conditions as in Example 1 was drawn in one step at a stretching ratio of 1.3 times at a heating roller temperature of 80°C and a heating plate temperature of 120°C, and then at a heating plate temperature of 220°C. The second stage of stretching was carried out at a stretching ratio of 1.10 times at 160°C.
Heat treatment was performed in a dry heat hot air zone at a relaxation rate of 20%, followed by a third stretching at a heating plate temperature of 230°C and a stretching ratio of 1.0 times. The obtained drawn yarn was made into staples in the same manner as in Example 1. The obtained staple was subjected to a pilling test as a knitted fabric in the same manner as in Example 1, and its anti-pilling properties were evaluated. Table 1 shows the evaluation results of staple properties and anti-pilling properties. The fiber of this example exhibited excellent pill resistance comparable to that of cotton. Example 3 A polyester yarn that had been oriented and crystallized and spun under the same conditions as in Example 1 was drawn in the same manner as in Example 1, except that the third stage drawing ratio was 1.25 times. The drawn yarn was made into staples in the same manner as in Example 1. The anti-pilling properties of the obtained staples were evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and anti-pilling properties. The fiber of this example, which met the requirements of the present invention, exhibited excellent pill resistance comparable to that of cotton. Comparative Example 1 A polyester yarn spun in the same manner as in Example 1 was heated at a heating roller temperature of 80°C and a heating plate temperature of
Stretched at 120℃ with a stretching ratio of 1.36 times, then 155℃
After being subjected to relaxation heat treatment for 3 minutes, it was mechanically crimped in the same manner as in Example 1 and cut into 38 mm pieces. The obtained staple was evaluated for pill resistance in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and anti-pilling properties. The anti-pilling property of this example was inferior to that of the fiber of the present invention, and the spinnability was also poor. Comparative Example 2 A polyester yarn spun in the same manner as in Example 1 was stretched under the same stretching conditions as in Comparative Example 1. A polyester staple was obtained in the same manner as in Comparative Example 1, except that the drawn yarn was not subjected to the relaxing heat treatment, and the anti-pilling property was evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and anti-pilling properties.
The fiber of this example has an ACS 010 of less than 45 (Å), and has extremely poor anti-pilling properties when compared to the fiber of the present invention. Comparative Example 3 A polyester yarn spun in the same manner as in Example 1 was drawn under the same stretching conditions as in Comparative Example 1, and the resulting drawn yarn was subjected to relaxation heat treatment at 155°C for 3 minutes, and then again at a temperature of 180°C and a stretching ratio. Stretched at 1.1x and again at 155
It was subjected to a relaxation heat treatment at ℃ for 3 minutes, mechanically crimped in the same manner as in Example 1, and cut into 38 mm pieces. The anti-pilling properties of the obtained staples were evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of staple properties and anti-pilling properties. In this example, the IS value is 40 (g/d)
The strength is also lower to 2.8 (g/d), and the anti-pilling properties are worse than the fibers of the present invention, and the spinnability is also inferior. Comparative example 4 Discharge amount per single hole 0.5g/min, cooling air speed 2.0m/
The undrawn yarn was obtained under the same spinning conditions as in Example 1 except that the take-up speed was 1300 m/min, and the drawing ratio was 2.2 times.
One stage of stretching was carried out at a roller temperature of 80°C and a heating plate of 130°C. The drawn yarn was heated to 135 at a relaxation rate of 25%.
It was subjected to a relaxation heat treatment for 10 minutes at °C, mechanically crimped in the same manner as in Example 1, and then cut into 38 mm pieces. Table 1 shows the characteristics of the obtained staple and the evaluation results of anti-pilling properties evaluated in the same manner as in Example 1. In the case of this comparative example,
The ACS 010 is small, and the DE is greater than 10%, resulting in inferior anti-pilling properties compared to the fibers of the present invention. Comparative Example 5 An undrawn polyester yarn with an SHD of 43% was obtained under the same conditions as in Example 1, except that the cooling air velocity was 0.2 m/sec and the take-up speed was 3500 m/min. This undrawn yarn was stretched at a total stretching ratio of 1.35 times at both the first and second stage roller temperatures of 80°C and heating plate temperature of 130°C, followed by relaxation heat treatment in dry heat at 155°C for 5 minutes, and then preheated at 180°C. Machine crimped and cut to 38mm. Table 1 shows the characteristics of the obtained staple and the anti-pilling properties evaluated in the same manner as in Example 1. Although the crystal size is large due to sufficient heat treatment, the DE is large at 27%, and the anti-pilling property is inferior to the fiber of the present invention. Comparative Example 6 Polyethylene terephthalate was spun from a spinneret with 300 holes at a spinning temperature of 270°C and a spinning take-off speed of 2500.
An undrawn yarn tow having an intrinsic viscosity of IVf0.38 and a birefringence Δn of 25×10 −3 was obtained by melt spinning at a speed of m/min. Two devices each having upper and lower heating plates installed between two rollers having different circumferential speeds were installed, and using this device, the undrawn tow obtained above, which had been spun for more than 7 days, was It was stretched in stages. The stretching conditions are as follows:
3.0 times at 180℃, and 1.2 times at 180℃ in the second stage.
This drawn tow was crimped using a staff box type crimper, then subjected to dry heat treatment at 160° C. for 1 minute, and cut to 38 mm to produce a staple for spun yarn. The yarn physical properties of the staple are shown in Table 1.
This staple was used to make a spun yarn with an English yarn count of 30 's , and the anti-pilling properties of the interlock knitted fabric were evaluated. The spinnability, stretchability, spinnability of this yarn,
Table 1 shows the evaluation results for knitting properties and pill resistance. Comparative Example 7 Polyethylene terephthalate was melt-spun from a spinneret with 300 holes at a spinning temperature of 270° C. and a winding speed of 1000 m/min to obtain an undrawn yarn tow. The intrinsic viscosity IV f of this yarn was 0.38. This unstretched tow was meandered through three pins at 90°C and was stretched in the first stage at a stretching ratio of 2.6 times, and then at a stretching ratio of 180°C.
℃ plate to double the second stage, then crimped with a staff box type crimper.
Dry heat treated at 160℃ for 1 minute and cut into 38mm pieces.
A short fiber for spinning with a single yarn denier of 1.2 denier was obtained.
The physical properties of this yarn are shown in Table 1. This short fiber was used to make a spun yarn with an English thread count of 30'S, and the pill resistance of the interlock knitted fabric was evaluated. Table 1 shows the evaluation results of spinnability, stretchability, spinnability, knitting ability, and pill resistance of this yarn. Comparative Example 8 Polyethylene terephthalate with an intrinsic viscosity of 0.61 was spun from a spinneret with 500 holes and a spindle diameter of 0.4 mmφ at a temperature of 280°C, a spinning draft of 444, and a spinning take-off speed of 3500.
Melt spinning was performed at m/min, cooling air blowing length in the spinning tube of 20 cm, and cooling air temperature of 25° C. to obtain a highly oriented undrawn polyester tow. Using this unstretched tow, stretch in a hot water bath at a stretching speed of 100 m/min and at a first hot water bath temperature of 70 m/min.
Two-step stretching was carried out at a second hot water bath temperature of 85°C so that the total stretching ratio was 1.7. After stretching, the fibers were crimped using a push crimper, heat treated at 120°C, and then cut to a length of 51 mm to obtain staple fibers. Table 1 shows the yarn physical properties of the staple fiber. This staple fiber was used to make a spun yarn with an English count of 30'S, and the pill resistance of the interlock knitted fabric was evaluated. The evaluation results of spinnability, stretchability, spinnability, knitting property, and anti-pilling properties of this yarn were evaluated in the first step.
Shown in the table.

【表】【table】

【表】 * ポリエチレンテレフタシート ** 未延
伸糸の固有粘度
[Table] * Polyethylene terephthalate sheet ** Intrinsic viscosity of undrawn yarn

Claims (1)

【特許請求の範囲】 1 固有粘度(フエノール/テトラクロルエタ
ン:6/4の混合溶媒中30℃で測定)が0.5〜
0.8、繰り返し単位の85モル%以上がエチレンテ
レフタレートよりなる線状ポリエステルを溶融紡
糸するにあたり、紡糸口金として異形断面糸を製
造することが可能な紡糸孔を有するものを使用
し、引取速度4000m/分以上で引取つて紡出糸条
に配向結晶化を発現させ、160℃乾熱下の収縮率
が10%以下の未延伸糸を得て、次いで該延伸糸を
1段目延伸条件が温度70〜130℃、延伸張力0.4〜
0.8g/d、2段目延伸条件が温度130〜200℃、
延伸張力0.6〜0.8g/dで延伸後、リラツクス熱
処理し、次いで3段目延伸条件が温度200℃〜溶
断温度の範囲、延伸倍率1.2〜1.3倍で延伸して得
られる繊維であつて、下記の特性を同時に備えて
いることを特徴とする低伸度抗ピル性ポリエステ
ル繊維。 (イ) 初期引張抵抗度(IS);40≦IS(g/d)≦100 (ロ) 010面の見かけの結晶サイズ(ACS010)≧50
Å (ハ) 引張伸度(DE)<10%
[Claims] 1. Intrinsic viscosity (measured at 30°C in a 6/4 mixed solvent of phenol/tetrachloroethane) is 0.5 to
0.8. When melt-spinning a linear polyester in which 85 mol% or more of the repeating units are ethylene terephthalate, use a spinneret with a spinning hole that can produce yarn with irregular cross-sections, and use a take-up speed of 4000 m/min. The spun yarn is taken in the above manner to develop oriented crystallization to obtain an undrawn yarn with a shrinkage rate of 10% or less under dry heat at 160°C, and then the drawn yarn is stretched at a temperature of 70 to 70°C. 130℃, stretching tension 0.4~
0.8g/d, second stage stretching condition is temperature 130~200℃,
A fiber obtained by stretching at a stretching tension of 0.6 to 0.8 g/d, followed by relaxation heat treatment, and then stretching at a stretching ratio of 1.2 to 1.3 times in the third stage stretching conditions of a temperature range of 200°C to a melting temperature, which is as follows. A low-elongation, anti-pilling polyester fiber characterized by having the following properties at the same time. (a) Initial tensile resistance (IS); 40≦IS (g/d)≦100 (b) Apparent crystal size of 010 plane (ACS 010 )≧50
Å (c) Tensile elongation (DE) <10%
JP12005383A 1983-06-30 1983-06-30 Polyester yarn having pilling resistance Granted JPS6017114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12005383A JPS6017114A (en) 1983-06-30 1983-06-30 Polyester yarn having pilling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12005383A JPS6017114A (en) 1983-06-30 1983-06-30 Polyester yarn having pilling resistance

Publications (2)

Publication Number Publication Date
JPS6017114A JPS6017114A (en) 1985-01-29
JPS6350445B2 true JPS6350445B2 (en) 1988-10-07

Family

ID=14776721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12005383A Granted JPS6017114A (en) 1983-06-30 1983-06-30 Polyester yarn having pilling resistance

Country Status (1)

Country Link
JP (1) JPS6017114A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233821A (en) * 1985-08-01 1987-02-13 Asahi Chem Ind Co Ltd Production of polyester filament yarn having low elongation
JPS6278211A (en) * 1985-09-30 1987-04-10 Toyobo Co Ltd Polyester yarn for pilling-resistant cloth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926516A (en) * 1972-07-06 1974-03-09
JPS4971214A (en) * 1972-11-14 1974-07-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926516A (en) * 1972-07-06 1974-03-09
JPS4971214A (en) * 1972-11-14 1974-07-10

Also Published As

Publication number Publication date
JPS6017114A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
JP6507156B2 (en) Method of producing fiber, and fiber and yarn produced from the fiber
JP3893995B2 (en) Resin composition and molded body
JP3966043B2 (en) Production method of polylactic acid fiber excellent in heat resistance
KR100854919B1 (en) PolyTrimethylene Terephthalate Tetrachannel Cross-Section Staple Fiber
JP2008106410A (en) Crimped yarn and fiber structure using the same
TW202001018A (en) Fabrics and spun yarns comprising polyester staple fiber
JP6689293B2 (en) Knitted fabrics and textile products
JP2012193476A (en) Polyester microfiber
JPS6350445B2 (en)
WO1992013120A1 (en) Improvements in polyester fibers
KR20030083577A (en) A air jet textured yarn with different shrinkage and excellent melange effect, and a process of preparing for the same
JPH0260763B2 (en)
JPH0665837A (en) Heat-retaining woven or knitted fabric
JP4729819B2 (en) Polylactic acid fiber with excellent high-temperature mechanical properties
JPS636648B2 (en)
KR20220104699A (en) Carpets made from self-bulking PTT-containing bicomponent fibers
JPH0154443B2 (en)
WO2001023650A1 (en) Poly(trimethylene terephthalate) multifilament yarn
JPH01174611A (en) Antipilling polyester fiber
JPH0819607B2 (en) Lightweight thin fabric excellent in heat retention, its manufacturing method, and innerwear products
JP3925275B2 (en) Polylactic acid crimped yarn excellent in heat resistance and method for producing the same
JP2023083772A (en) Fabric and textile product
JPS58169514A (en) Polyester conjugated and crimped yarn
JP4729832B2 (en) Polylactic acid crimped yarn with excellent high-temperature mechanical properties
Veit Polyester