JPS59215631A - Manufacture of electrode for display device - Google Patents

Manufacture of electrode for display device

Info

Publication number
JPS59215631A
JPS59215631A JP9110483A JP9110483A JPS59215631A JP S59215631 A JPS59215631 A JP S59215631A JP 9110483 A JP9110483 A JP 9110483A JP 9110483 A JP9110483 A JP 9110483A JP S59215631 A JPS59215631 A JP S59215631A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
electrode block
reverse direction
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9110483A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saeki
佐伯 清
Sadao Watanabe
渡辺 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9110483A priority Critical patent/JPS59215631A/en
Publication of JPS59215631A publication Critical patent/JPS59215631A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To flex an electrode block after burning joint with accuracy better than 30mum by flexing a weight and baseboard in reverse direction and applying initial stress in reverse direction onto the electrode block. CONSTITUTION:The thermal expansion factor and rigidity of electrodes 5, 6 and a coupling spacer 3 will influence substantially onto the flexure of an electrode block after burning. Direction and amount of flexure to be produced in the electrode block when manufactured by conventional method are measured then a weight 15 and a baseboard 16 flexed by same amount in reverse direction are employed to provide an angle to a positioning pin. When flexing the weight 15 and baseboard 16 in reverse direction and applying initial stress in reverse direction onto the electrode block upon setting of the electrode block to balance with the thermal stress to be produced after burning thus to eliminate the residual stress, highly accurate sintering process can be achieved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、平面型表示装置を電極相互の位置決め精度を
良くして製造する製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing method for manufacturing a flat panel display device with improved positioning accuracy between electrodes.

従来例の構成とその問題点 まず1本発明の製造方法により製造する平面型表示装置
の構成について簡単に説明する。平面型表示装置の構成
の概略を第1図〜第6図に示す。
Configuration of Conventional Example and its Problems First, the configuration of a flat display device manufactured by the manufacturing method of the present invention will be briefly described. The structure of the flat display device is schematically shown in FIGS. 1 to 6.

第1図において1は螢光体面、2はカソード、3は結合
スペーサ、4は電極である。カソード2を発した電子ビ
ームは種々の電極4により水平・垂直偏向されおよび輝
度変調されて、螢光体面1に至ってこれを発光させる。
In FIG. 1, 1 is a phosphor surface, 2 is a cathode, 3 is a coupling spacer, and 4 is an electrode. The electron beam emitted from the cathode 2 is horizontally and vertically deflected and intensity-modulated by various electrodes 4, and reaches the phosphor surface 1, causing it to emit light.

電極4には第2図、第3図に示すように穴1’16゜1
6′が設けられており、電子ビームはこれら穴16゜1
6′を通過する。電極4の剛性は穴16 、16’の形
状および数によって変わる。第2図、第3図に示す電極
6.電極6を例にとれば1図の水平方向の引張および圧
縮に対する剛性は電極6の方が電極6より大きい。これ
は電極6ではその剛性が桟19の単純引張および圧縮に
対する剛性となるのに対して、電極6では桟20の曲げ
剛性となるからである。桟20のように細く長い形状の
ものは容易に曲がり、その曲げ剛性は極めて小さい。
The electrode 4 has a hole 1'16°1 as shown in Figures 2 and 3.
6' are provided, and the electron beam is directed through these holes 16°1
Pass through 6'. The stiffness of the electrode 4 depends on the shape and number of holes 16, 16'. Electrode 6 shown in FIGS. 2 and 3. Taking the electrode 6 as an example, the rigidity against tension and compression in the horizontal direction shown in FIG. 1 is greater for the electrode 6 than for the electrode 6. This is because the rigidity of the electrode 6 corresponds to the rigidity of the crosspiece 19 against simple tension and compression, whereas the rigidity of the electrode 6 corresponds to the bending rigidity of the crosspiece 20. A thin and long shape like the crosspiece 20 bends easily, and its bending rigidity is extremely low.

1だ、結合スペーサ3は第4図に示すように下地金属9
に厚み調整用の絶縁物3を刺着させ、その」二に結合用
の7リノトガラス7が塗布された構成を持つ。剛性の大
きな電極6と、剛性の小さな電極6および結合スペーサ
3が組み合わされた状態を第6図に示す。電極6,6は
結合スペーサ3に塗布されたフリットカラス7によって
焼結固定される。このとき、各電極6,6は相互に正し
く位置決めされていなければならず、第5図中の寸法a
と寸法すが第しいこととおよび螢光体1の印刷パターン
ピッチ(図示せず)と対応されることか要求される。
1, the bonding spacer 3 is attached to the base metal 9 as shown in Figure 4.
It has a structure in which an insulating material 3 for thickness adjustment is stuck to the top, and a glass 7 for bonding is applied to the second part. FIG. 6 shows a state in which the electrode 6 with high rigidity, the electrode 6 with low rigidity, and the coupling spacer 3 are combined. The electrodes 6, 6 are sintered and fixed by a frit glass 7 applied to the bonding spacer 3. At this time, each electrode 6, 6 must be correctly positioned relative to each other, and the dimension a in FIG.
It is required that the dimensions be compact and correspond to the printing pattern pitch (not shown) of the phosphor 1.

電子ビームは窓W部を紙面に直角に進むが、電極精度の
電子ビームの方向に及ぼす影響はX方向の方が敏感であ
り、螢光体1の印刷パターンの関係から、X方向の電極
精度はY方向に比較して高くなければならない。
The electron beam travels through the window W at right angles to the plane of the paper, but the influence of electrode precision on the direction of the electron beam is more sensitive in the X direction. must be high compared to the Y direction.

各電極ら、6の位置決めは電極6,6に精度よく加工さ
れた位置決め用穴1oにピンを差し込むなどして行う。
The positioning of each electrode 6 is performed by inserting a pin into a positioning hole 1o that is precisely machined in the electrodes 6,6.

結合スペーサ3は各電極5,6間を絶縁し、かつ所定の
間隔を保持して固定するために用いる。第4図に示した
ような構成の結合スペーサ3を各電極5,6間にはさみ
、第1図に示すように荷重Pを加えた状態で加熱すれば
、ノリノドガラス7によって各電極を固定することがで
きる。なお、ノリノドガラス7は溶融後は完全につぶれ
、電極間隔には寄与しないため、絶縁物8の厚みhfが
対向する各電極6,6との間隔となる。
The coupling spacer 3 is used to insulate the electrodes 5 and 6 and to maintain and fix the electrodes at a predetermined distance. If the bonding spacer 3 having the structure shown in FIG. 4 is sandwiched between each electrode 5 and 6 and heated with a load P applied as shown in FIG. 1, each electrode can be fixed by the laminated glass 7. I can do it. Note that the glass 7 is completely crushed after melting and does not contribute to the electrode spacing, so the thickness hf of the insulator 8 becomes the spacing between the opposing electrodes 6, 6.

以上が平面型表示装置の概略の構成と製革法である。The above is the general structure and tanning method of the flat display device.

次に前記の構成と製造法において生ずる電極ブロックの
たわみ精度に関する問題点について説明する。
Next, problems related to the deflection accuracy of the electrode block that occur in the above configuration and manufacturing method will be explained.

室温で各々たわみのない各電極5,6および結合スペー
サ3を400〜6o○°Cて焼成後室温まで冷却すると
、上記各電極6,6および結合スペーサ3からなる電極
ブロックにたわみが発生ずる。
When the electrodes 5, 6 and the bonding spacer 3, each of which does not bend at room temperature, are fired at 400 to 60° C. and then cooled to room temperature, the electrode block consisting of the electrodes 6, 6 and the bonding spacer 3 becomes deflected.

この原因は各電極とフリットガラスの熱膨張率の差、剛
性の違い、および電極ブロックに加わる温度偏心による
ブロック内部温度の不均一などによる。実例をもってこ
れを説明する。
This is due to the difference in thermal expansion coefficient between each electrode and the frit glass, the difference in rigidity, and non-uniformity in the internal temperature of the block due to temperature eccentricity applied to the electrode block. This will be explained using an example.

電極の焼成固定は一括して行うのではなく、ブロックに
分けてそれぞれを焼成固定し、その後ブロック同志を合
体焼成する方が精度よく製作できる。そこで5ここでは
ブロックを焼成後生ずるたわみについて考える。第6図
に電極6と6を結合スペーサ3によって焼成固定する場
合の従来の方法を示す。ととて、11は重り、12は基
盤、13゜13′は重り11と基盤12に溶融したフリ
ットガラスが付着するのを防ぐだめのシート、14は位
置決めピンである。電極6,6は第2図、第3図に示す
ような伸びに対する剛性が大きいものと小さいものであ
る。
Rather than firing and fixing the electrodes all at once, it is more accurate to manufacture the electrodes by dividing them into blocks and firing and fixing each one separately, and then firing the blocks together. Therefore, here we will consider the deflection that occurs after firing the block. FIG. 6 shows a conventional method for fixing electrodes 6 and 6 by firing with a bonding spacer 3. 11 is a weight, 12 is a base, 13.degree. and 13' is a sheet for preventing molten frit glass from adhering to the weight 11 and the base 12, and 14 is a positioning pin. The electrodes 6, 6 have one type with high rigidity against elongation and one with low rigidity as shown in FIGS. 2 and 3.

この場合、フリットガラスが400〜600’Cで硬化
するまでは、電極6,6およびノリノドガラス7を塗布
された結合スペーサ3は各々の熱膨張率に従って伸びる
が、フリットガラスが硬化して上記電極ブロックが多層
複合物となった後、400〜soo’cから常温に戻す
という温度履歴をかけると各々の熱収縮率(熱膨張率と
等しい)の違いから熱応力が発生する。そして、この熱
応力を解消しようとして電極ブロックがたわむのである
。たわみ精度としては30μ〃zが要求されるが、上記
現象のために4〜5M(曲率半径=1600餌)程度の
精度しか得られないことが多かった。
In this case, until the frit glass is hardened at 400 to 600'C, the electrodes 6, 6 and the bonding spacer 3 coated with nolinod glass 7 will expand according to their respective coefficients of thermal expansion, but the frit glass will harden and the electrode block After becoming a multilayer composite, if a temperature history of returning from 400 to soo'c to room temperature is applied, thermal stress is generated due to the difference in the coefficient of thermal contraction (equal to the coefficient of thermal expansion) of each. The electrode block then bends in an attempt to relieve this thermal stress. Deflection accuracy of 30 μz is required, but due to the above phenomenon, accuracy of only about 4 to 5 M (radius of curvature = 1600 baits) can often be obtained.

しかしながら、この組立技術が電子ビームを用いた画像
表示装置の一部構成要素である多層電極板の組立に応用
される際、この多層電極板の組立精度が正確にでていな
いと、電子ビームを呵面垂直および水平方向に偏向させ
た場合1画像の色むらの原因になることが確認された。
However, when this assembly technology is applied to the assembly of multilayer electrode plates, which are part of the components of image display devices using electron beams, if the assembly accuracy of the multilayer electrode plates is not accurate, the electron beam It was confirmed that deflection in the vertical and horizontal directions causes color unevenness in one image.

そこで、多層電極板の組立精度を正確にだすためにミク
ロン単位の組立精度が必要でその組立方法を考案する必
要が生じた。
Therefore, in order to accurately assemble the multilayer electrode plate, assembly precision on the micron level was required, and it became necessary to devise an assembly method.

発明の目的 そこで1本発明は前述の問題を解決すべくなされたもの
であり、焼成接合後の電極ブロックのたわみを30μm
以下の精度にするものである。
Purpose of the Invention The present invention has been made to solve the above-mentioned problems, and is designed to reduce the deflection of the electrode block by 30 μm after firing and bonding.
The accuracy is as follows.

発明の構成 本発明は、焼成接合後、複数個の電極と結合スペーサか
ら成る電極ブロック内部に発生する熱応力を逆方向の初
期曲げ応力を与えて打ち消すようにそり加工された基盤
と重なりを構成要素とする焼成接合用治具を用いた電極
の製造方法についてであり、電極ブロック内部に発生す
る熱応力と逆方向の初期曲げ応力を釣り合わせることに
よって電極ブロック内部の残留応力をなくシ、″i!た
。この残留応力が原因で発生する電極ブロックのたわみ
をなくすことができ、電極の組立精度キきわめて有利で
ある。
Structure of the Invention The present invention comprises a substrate overlapped with a curved base so as to apply an initial bending stress in the opposite direction to cancel out the thermal stress generated inside an electrode block consisting of a plurality of electrodes and a bonding spacer after firing and bonding. This is about an electrode manufacturing method using a baking bonding jig as an element, and it eliminates residual stress inside the electrode block by balancing the thermal stress generated inside the electrode block with the initial bending stress in the opposite direction. It is possible to eliminate the deflection of the electrode block caused by this residual stress, which is extremely advantageous in terms of electrode assembly accuracy.

実施例の説明 以下本発明の実施例を第7図により詳細に説明する。電
極ブロックの焼結後のたわみに影響する因子としては、
各電極5,6と結合スペーサ3の下地金属9.および絶
縁物8とフリットガラス7゜シート13 、13’と重
911と基盤12のそれぞれの熱膨張率と剛性、および
各部の温度むら等が考えられるが本質的に影響するのは
電極6,6と結合スペーサ3の熱膨張率と剛−性である
。結合スペーサ3の熱膨張率と剛性である。結合スペー
サ3の下地金属9と絶縁物8を一つの多層複合物。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will now be described in detail with reference to FIG. The factors that affect the deflection of the electrode block after sintering are:
Underlying metal 9 for each electrode 5, 6 and coupling spacer 3. The coefficient of thermal expansion and rigidity of the insulator 8, the frit glass 7° sheet 13, 13', the weight 911, and the base 12, as well as the temperature unevenness of each part, etc. can be considered, but the essential factors are the electrodes 6, 6. and the thermal expansion coefficient and rigidity of the coupling spacer 3. These are the thermal expansion coefficient and rigidity of the bonding spacer 3. The base metal 9 and insulator 8 of the bonding spacer 3 are made into one multilayer composite.

また、7リツトガラス7を接着層と考え、電極5.−6
にいわゆる426合金を用いた場合についてみれば、フ
リットガラス7の熱膨張率は426合金に比較して小さ
いため、スペーサ全体の熱膨張量は電極6,6に比較し
て小さくなる。
In addition, considering the 7-lit glass 7 as an adhesive layer, the electrode 5. -6
In the case where a so-called 426 alloy is used, the coefficient of thermal expansion of the frit glass 7 is smaller than that of the 426 alloy, so the amount of thermal expansion of the entire spacer is smaller than that of the electrodes 6.

このことを考慮して加熱過程をみてみると、接着層であ
るフリットガラス7が400〜600°Cで硬化するま
では結合スペーサ3の下地金−′9と絶縁物8からなる
多層複合物、フリットガラス7および電極6,6は各々
自身の熱膨張率に従って伸びる。また、フリットガラス
が硬化後、温度保持過程に入る。従ってこの加熱過程に
おいては上記の各層内部での熱応力の発生はなく電極ブ
ロック全体としての曲げも生じないだめに電極ブロック
はたわまない。
Considering this and looking at the heating process, until the frit glass 7, which is the adhesive layer, is cured at 400 to 600°C, the multilayer composite consisting of the base metal 9 of the bonding spacer 3 and the insulator 8, The frit glass 7 and the electrodes 6,6 each expand according to their own coefficients of thermal expansion. Further, after the frit glass is cured, it enters a temperature holding process. Therefore, during this heating process, no thermal stress is generated inside each of the layers, and the electrode block as a whole does not bend, so the electrode block does not bend.

その後の冷却過程についてみれば、上記の各層は各々の
熱収縮率で収縮しようとするが既に加熱過程においてフ
リ、ットガラスによって接着されているために加熱過程
の全く逆のメカニズムで収縮するわけではない。つまり
、比較的剛性、熱収縮率が大きい電極6.6および結合
スペーサの下地金属9と絶縁物8からなる多層複合物は
フリットガラス7によってその収縮量が抑えられ、一方
Regarding the subsequent cooling process, each of the above layers tries to shrink at its own thermal shrinkage rate, but since it has already been bonded by fritted glass during the heating process, it does not shrink by the exact opposite mechanism of the heating process. . In other words, the amount of shrinkage of the electrode 6.6, which has relatively high rigidity and thermal shrinkage rate, and the multilayer composite consisting of the base metal 9 of the bonding spacer and the insulator 8 is suppressed by the frit glass 7;

ガラスフリット7はその収縮量より大きく収縮する。こ
の時、上記の各層内部には熱応力が発生し400〜SO
O″Cがら常温まで冷却すると電極ブロックには残留応
力として残り電極ブロック全体としての曲げにつながる
ため電極ブロックはたわむのである。
The glass frit 7 shrinks more than the amount of shrinkage. At this time, thermal stress is generated inside each of the above layers, and the
When the O''C is cooled to room temperature, residual stress remains in the electrode block and leads to bending of the entire electrode block, causing the electrode block to bend.

以上が電極5,6焼結後のたわみ発生のメカニズムであ
る。
The above is the mechanism of occurrence of deflection after the electrodes 5 and 6 are sintered.

次により詳細に説明する。本゛方法では、従来の方法で
製造した場合に電極ブロックに発生するたわみ方向、お
よびたわみ量を測定して、これとは逆のたわみ方向に同
じ大きさのたわみ量を重り11と基盤12に加工を施す
。また1位置決めピ/にも角度を持たせる。電極ブロッ
クの構成とシートは従来の場合と同様のものを使用する
ので説明は省略する。重!1111と基盤12に逆向き
のたわみをつけ、焼結前に電極ブロックをセツティング
したときに電極ブロックに逆方向の初期応力を与えて焼
結後に発生する熱応力と釣り合わせて残留応力として残
らないようにしたところは本製造方法の特徴がある。従
来の方法では剛性が最も大きい電極6が凹となるように
たわんでbだので重り11と基盤12にはセツティング
後電極5が凸になるように加工する。まだ、たわみ量に
ついては三次元測定器を用いて非接触状態で測定しだも
僅を用いた。
This will be explained in more detail below. In this method, the direction and amount of deflection that occurs in the electrode block when manufactured by the conventional method is measured, and the same amount of deflection is applied to the weight 11 and the base 12 in the opposite direction of deflection. Perform processing. Also, the 1st positioning pin has an angle. The structure and sheet of the electrode block are the same as in the conventional case, so their explanation will be omitted. Heavy! 1111 and the substrate 12, and when setting the electrode block before sintering, an initial stress in the opposite direction is applied to the electrode block to balance the thermal stress generated after sintering and to create a residual stress. The feature of this manufacturing method is that it is avoided. In the conventional method, the electrode 6, which has the highest rigidity, bends to become concave (b), so the weight 11 and base 12 are processed so that the electrode 5 becomes convex after setting. However, the amount of deflection was measured in a non-contact state using a three-dimensional measuring device, and only a small amount was used.

発明の効果 このように1本発明によれば1重りと基盤に逆方向のた
わみをっけ電極ブロックに逆向きの初期応力を与えて焼
結後に発生する熱応力と打ち消し合うようにして残留応
力が残らないようにしたことによシ、電極ブロックのた
わみは±30μm(+は電極6が凹、−は電極6が凸)
以内に行な1 うことか可能になった。
Effects of the Invention As described above, according to the present invention, the weight and the base are deflected in the opposite direction, and the initial stress in the opposite direction is applied to the electrode block to cancel out the thermal stress generated after sintering, thereby reducing the residual stress. The deflection of the electrode block is ±30 μm (+: electrode 6 is concave, -: electrode 6 is convex).
It is now possible to do one thing within the next 10 days.

さらに、本発明によれば、電極ブロックの構成が変わっ
てもその場合のたわみ量を重りと基盤に加工したものを
別に用意することによって高精度の焼結処理かげ能であ
る。
Further, according to the present invention, even if the configuration of the electrode block changes, a highly accurate sintering process can be achieved by separately preparing weights and bases that are processed to correspond to the amount of deflection in that case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平面型表示装置の側面図、第2図、第3図は同
装置に用いられるl1iIII性の大きい電極と小さい
電極の崖面図、第4図(a) 、 (b)は同装置に用
いられる結合スベ−“すの断面図、第5図(a) 、 
(b)は同装置における電1歩および結合スペーサの組
み合わさ117’の状態を2J<ず断面図お・よび側面
図、第6図は平面型表示装置の断面図、第7図は本発明
の一実施例における1F面型表示装置の断面図である。 1・・・螢光体、2 ・・・カソード、3・・・・・・
結合スペーサ、4 ・・・′電極、5・・・・剛性大な
る電極、6・・・・・剛惟小なる電極、T・・・・・・
フリ、トガラス、8・・絶縁物、9・・・・・下地金属
、1Q・・・位置決め用穴、11・・・・−重り、12
・・・・・基盤、13 、13’・・・・・・シート、
14・・・・・位置決めビン、15・・・・・たわみ利
き重り、16・・・・・たわみ付き基盤。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第 4 図 第5図 α 第6図 第7図 4
Figure 1 is a side view of a flat display device, Figures 2 and 3 are cliff views of large and small electrodes with l1iIII characteristics used in the same device, and Figures 4 (a) and (b) are the same. Cross-sectional view of the joint substrate used in the device, FIG. 5(a),
(b) is a cross-sectional view and a side view of the combination 117' of the electric conductor and the coupling spacer in the same device, FIG. 6 is a cross-sectional view of the flat display device, and FIG. 7 is a cross-sectional view of the flat display device. FIG. 2 is a cross-sectional view of a 1F surface type display device in one embodiment. 1... Fluorescent body, 2... Cathode, 3...
Coupling spacer, 4...' electrode, 5... electrode with high rigidity, 6... electrode with low rigidity, T...
Fri, Togarasu, 8...Insulator, 9...Base metal, 1Q...Positioning hole, 11...-Weight, 12
...base, 13, 13'...sheet,
14... Positioning bottle, 15... Flexible weight, 16... Flexible base. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 Figure 5 α Figure 6 Figure 7 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 電子ヒームを発生するカソードと電子ビームが衝突して
発光する螢光体との間に、電子ビームを表示装置画面上
の水平、あるいは垂直方向に偏向する剛性か異なる複数
個の電極を複数個の結合スペーサを介して焼成接合する
際、焼成接合された複数個の電極と結合スペーサ内部に
発生する熱応力を逆方向の初期曲げ応力を与えて打ち消
すように加工された基盤と重りからなる焼成接合用治具
に配置して焼成接合することによって、焼成接合された
複数個の電極と結合スペーサ内部の残留応力の発生を阻
止することを特徴とする表示装置の電極製造方法。
Between the cathode that generates the electron beam and the phosphor that emits light when the electron beam collides with it, a plurality of electrodes with different rigidities are installed to deflect the electron beam horizontally or vertically on the screen of the display device. A fired joint consisting of a base and a weight that are processed to apply an initial bending stress in the opposite direction to cancel out the thermal stress that occurs inside the multiple fired electrodes and the joint spacer when fired and joined through a joint spacer. 1. A method for manufacturing electrodes for a display device, characterized in that generation of residual stress inside a plurality of electrodes and a bonding spacer that have been fired and joined is prevented by placing the electrodes in a holding jig and joining them by firing.
JP9110483A 1983-05-23 1983-05-23 Manufacture of electrode for display device Pending JPS59215631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9110483A JPS59215631A (en) 1983-05-23 1983-05-23 Manufacture of electrode for display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9110483A JPS59215631A (en) 1983-05-23 1983-05-23 Manufacture of electrode for display device

Publications (1)

Publication Number Publication Date
JPS59215631A true JPS59215631A (en) 1984-12-05

Family

ID=14017212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9110483A Pending JPS59215631A (en) 1983-05-23 1983-05-23 Manufacture of electrode for display device

Country Status (1)

Country Link
JP (1) JPS59215631A (en)

Similar Documents

Publication Publication Date Title
JPS6025142A (en) Manufacturing electrode of indication device
US20100202071A1 (en) Deformable mirror
JP4777681B2 (en) Anodic bonding apparatus, anodic bonding method and acceleration sensor manufacturing method
JPS59215631A (en) Manufacture of electrode for display device
KR930011059B1 (en) Flat picture display devices
KR0137263B1 (en) Image display apparatus and manufacturing method therefor
JPS58157029A (en) Production method of plane-type display device
JP2595840B2 (en) Manufacturing method of piezoelectric vibrator
JPH0474823B2 (en)
JPS6039736A (en) Manufacturing method for flat type display device
JPS60115125A (en) Manufacture of electrode of flat type display device
JPS60218750A (en) Plate-type display device
JPS61171030A (en) Manufacture of flat-type image display device
JP3106825B2 (en) Stacking method of flat electrode
JP3111699B2 (en) Manufacturing method of laminated electrode
CN1188886C (en) Electrode of electronic gun and electronic gun therewith
JPH0910951A (en) Jig and method for joining anode
JPS60232618A (en) Insulator
JPS6191831A (en) Electrode structure of display device
JPH0436939A (en) Display device and manufacture of the same
JP2024053132A (en) Panel retention structure
KR100257236B1 (en) Mirror for tma and manufacturing method thereof
JPS63195939A (en) Electrodes for image display
JPH07169389A (en) Layering and joining method of flat electrode
JPS6041742A (en) Picture display device