JPH0474823B2 - - Google Patents

Info

Publication number
JPH0474823B2
JPH0474823B2 JP3981882A JP3981882A JPH0474823B2 JP H0474823 B2 JPH0474823 B2 JP H0474823B2 JP 3981882 A JP3981882 A JP 3981882A JP 3981882 A JP3981882 A JP 3981882A JP H0474823 B2 JPH0474823 B2 JP H0474823B2
Authority
JP
Japan
Prior art keywords
electrode
spacer
electrodes
elongation
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3981882A
Other languages
Japanese (ja)
Other versions
JPS58157038A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3981882A priority Critical patent/JPS58157038A/en
Publication of JPS58157038A publication Critical patent/JPS58157038A/en
Publication of JPH0474823B2 publication Critical patent/JPH0474823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/124Flat display tubes using electron beam scanning

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳細な説明】 本発明は、平面型表示装置の特に電極相互の位
置決め構造に関するものであり、個々の電極の焼
成固定工程で電極の熱膨張が発生することがなく
て各電極の位置決め精度を向上した装置を提供す
ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure for mutually positioning electrodes in a flat display device, and the present invention relates to a structure for positioning electrodes in a flat display device. The purpose is to provide a device with improved accuracy.

まず、平面型表示装置の概略構成について簡単
に説明する。第1図において、1は螢光体面、2
はカソード、3は結合スペーサ、4は電極であ
る。カソード2を発した電子ビームは種々の電極
4により水平、垂直偏向され、輝度変調されて、
螢光体面1に至つてこれを発光させる。電極4に
は第2図、第3図に示すように穴16,16′が
設けられており、電子ビームはこれら穴16,1
6′を通過する。電極4の剛性は穴16,16′の
形状および数によつて変わる。第2図、第3図に
示す電極5、電極6を例にとれば、図の水平方向
の引張および圧縮に対する剛性は電極5の方が電
極6より大きい。これは電極5ではその剛性が棧
19の単純引張および圧縮に対する剛性となるの
に対して、電極6では棧20の曲げ剛性となるか
らである。棧20のように細く長い形状のものは
容易に曲がり、その曲げ剛性は極めて小さい。
First, the schematic configuration of a flat display device will be briefly described. In Figure 1, 1 is a phosphor surface, 2
is a cathode, 3 is a bonding spacer, and 4 is an electrode. The electron beam emitted from the cathode 2 is horizontally and vertically deflected by various electrodes 4, and its brightness is modulated.
It reaches the phosphor surface 1 and causes it to emit light. The electrode 4 is provided with holes 16, 16' as shown in FIGS. 2 and 3, and the electron beam passes through these holes 16, 16'.
Pass through 6'. The stiffness of the electrode 4 depends on the shape and number of holes 16, 16'. Taking electrodes 5 and 6 shown in FIGS. 2 and 3 as an example, electrode 5 has greater rigidity against tension and compression in the horizontal direction shown in the figures than electrode 6. This is because the stiffness of the electrode 5 corresponds to the stiffness of the rod 19 against simple tension and compression, whereas the stiffness of the electrode 6 corresponds to the bending rigidity of the rod 20. A long, thin shape like the rod 20 bends easily, and its bending rigidity is extremely low.

また、結合スペーサ3は第4図に示すように下
地金属9の両端面に厚み調整用の絶縁物8を付着
させ、その上に結合用のフリツトガラス7が塗布
された構成を持つ。剛性の大きな電極5と、剛性
の小さな電極6および結合スペーサ3が組み合さ
れた状態を第5図に示す。電極5,6は結合スペ
ーサ3に塗布されたフリツトガラス7によつて焼
結固定される。このとき、各電極5,6は相互に
正しく位置決めされていなければならず、第5図
中の寸法aと寸法bが等しいこと、および螢光体
1の印刷パターンピツチ(図示せず)と対応する
ことが要求される。
Further, as shown in FIG. 4, the bonding spacer 3 has a structure in which an insulating material 8 for thickness adjustment is attached to both end surfaces of a base metal 9, and a frit glass 7 for bonding is applied thereon. FIG. 5 shows a state in which the electrode 5 with high rigidity, the electrode 6 with low rigidity and the coupling spacer 3 are combined. The electrodes 5, 6 are sintered and fixed by frit glass 7 applied to the bonding spacer 3. At this time, each electrode 5, 6 must be correctly positioned with respect to each other, and dimensions a and b in FIG. 5 must be equal and correspond to the printed pattern pitch (not shown) of the phosphor 1. required to do so.

電子ビームは窓W部を紙面に直角に進むが、電
極精度の電子ビームの方向に及ぼす影響はx方向
の方が敏感であり螢光体1の印刷パターンの関係
から、x方向の電極精度はy方向に比較して高く
なければならない。
The electron beam travels through the window W at right angles to the plane of the paper, but the effect of electrode precision on the direction of the electron beam is more sensitive in the x direction.Due to the printed pattern of the phosphor 1, the electrode precision in the x direction is It must be higher compared to the y direction.

各電極5,6の位置決めは電極5,6に精度よ
く加工された位置決め用穴10にピンを差し込む
などして行なう。結合スペーサ3は各電極5,6
間を絶縁し、かつ所定の間隔を保持して固定する
ために用いる。第4図に示したような構成の結合
スペーサ3を各電極5,6間にはさみ、第1図に
示すように荷重Pを加えた状態で加熱すれば、フ
リツトガラス7によつて各電極を固定することが
できる。なお、フリツトガラス7は溶融後は完全
につぶれ、電極間隔には寄与しないため絶縁物8
の厚みhfが対向する各電極5,6との間隔とな
る。
The positioning of each electrode 5, 6 is carried out by inserting a pin into a positioning hole 10 formed in the electrode 5, 6 with high precision. The coupling spacer 3 connects each electrode 5, 6
Used to insulate and maintain and fix a predetermined distance. If a bonding spacer 3 having the structure shown in FIG. 4 is sandwiched between each electrode 5 and 6 and heated under a load P as shown in FIG. 1, each electrode will be fixed by a frit glass 7. can do. Note that the frit glass 7 is completely crushed after melting and does not contribute to the electrode spacing, so the insulator 8
The thickness hf is the distance between the opposing electrodes 5 and 6.

次に、このような構成において生じる電極間位
置決め精度に関する問題点を説明する。
Next, problems related to the accuracy of positioning between electrodes that occur in such a configuration will be explained.

フリツトガラスは400〜500℃で焼成されるが、
室温で電極相互を正確に位置決めしても、焼成温
度ではこれが狂つてしまう。この原因は各電極の
熱膨張率の差、剛性の違いなどによる。
Fritted glass is fired at 400-500℃,
Even if the electrodes are precisely positioned relative to each other at room temperature, this will be disrupted at firing temperatures. This is caused by differences in thermal expansion coefficients, differences in rigidity, etc. of each electrode.

電極の焼成固定は一括してするのではなく、ユ
ニツトに分けて、それぞれを焼成固定し、その
後、ユニツト同志を合体焼成する方が精度よく製
作管理できる。そこで、ここではユニツトの焼成
過程で生ずる精度不良について考える。第6図に
電極5と6を結合スペーサ3によつて焼成固定す
る場合の従来例を示す。ここで、11は重り、1
2は基板、13,13′は重り11と基板12の
電極5,6に及ぼす伸びの影響を防ぐためのシー
ト、15は位置決めピンである。電極5,6は第
2、第3図に示すような伸びに対する剛性が大き
いものと小さいものである。
Rather than firing and fixing the electrodes all at once, it is better to divide the electrodes into units, fire and fix each of them, and then fire the units together for more precise manufacturing control. Therefore, here we will consider the accuracy defects that occur during the firing process of the unit. FIG. 6 shows a conventional example in which the electrodes 5 and 6 are fixed by firing with a bonding spacer 3. Here, 11 is the weight, 1
2 is a substrate, 13 and 13' are sheets for preventing the influence of elongation on the weight 11 and the electrodes 5 and 6 of the substrate 12, and 15 is a positioning pin. The electrodes 5 and 6 have a high rigidity against elongation and a low rigidity as shown in FIGS. 2 and 3.

この場合、焼結後の各電極の伸びをみると電極
5,6は焼結前に比べて共に伸びるが、両者の伸
びが異なつている。そしてこの異なる伸び分だけ
位置決め精度が劣化する。位置決め精度としては
数10μmが要求されるが、上記現象のために
100μm程度の精度しか得られないことが多い。
In this case, looking at the elongation of each electrode after sintering, electrodes 5 and 6 both elongate compared to before sintering, but the elongation of the two is different. Then, the positioning accuracy deteriorates by the amount of this different elongation. Positioning accuracy of several tens of μm is required, but due to the above phenomenon,
Accuracy of only about 100 μm is often achieved.

以下に、その位置誤差の発生原因について説明
する。
The cause of the position error will be explained below.

電極5と6の伸びに影響する因子としては各電
極5,6、結合スペーサ3の下地金属9および絶
縁物8と、シート13,13′と、重り11と、
基板12のそれぞれの熱膨張率と剛性、および各
部の温度むら等が考えられるが、本質的に影響す
るのは電極5,6とシート13,13′と結合ス
ペーサ3の熱膨張率と剛性である。絶縁物8とし
て既に結晶化したフリツトガラスを用い電極5,
6とシート13,13′にいわゆる426合金を用い
た場合についてみれば、絶縁物8の熱膨張率は
426合金に比較して小さいため、スペーサ全体の
熱膨張率は電極5,6に比べて小さくなる。
Factors that affect the elongation of the electrodes 5 and 6 include each electrode 5 and 6, the base metal 9 and insulator 8 of the bonding spacer 3, the sheets 13 and 13', and the weight 11.
The coefficient of thermal expansion and rigidity of each part of the substrate 12 and the temperature unevenness of each part can be considered, but what is essentially influential is the coefficient of thermal expansion and rigidity of the electrodes 5 and 6, the sheets 13 and 13', and the coupling spacer 3. be. The electrodes 5, using already crystallized fritted glass as the insulator 8,
6 and the sheets 13 and 13' are made of so-called 426 alloy, the coefficient of thermal expansion of the insulator 8 is
Since it is smaller than the 426 alloy, the coefficient of thermal expansion of the entire spacer is smaller than that of the electrodes 5 and 6.

このことを考慮して加熱過程をみると、電極5
は比較的剛性が大きいために、結合スペーサ3と
シート13′の拘束にもかかわらずほぼ自身の熱
膨張率すなわち426合金の熱膨張率にしたがつて
伸びる。一方、電極6は剛性が小さいために、こ
れをはさむ結合スペーサ3とシート13の熱膨張
に大きく影響されて伸びるため、スペーサ3とシ
ート13の中間の熱膨張率、すなわち電極6の材
料である426合金と絶縁物8の中間の熱膨張を示
す。これは電極5の伸びに比べ、小さい値であ
る。この状態(400〜500℃)フリツトガラス7に
より結合スペーサ3と電極5,6が結合される。
Considering this and looking at the heating process, the electrode 5
Because of its relatively high rigidity, it expands almost according to its own coefficient of thermal expansion, that is, the coefficient of thermal expansion of the 426 alloy, despite the constraints of the joining spacer 3 and the sheet 13'. On the other hand, since the electrode 6 has low rigidity, it expands under the influence of the thermal expansion of the bonding spacer 3 and the sheet 13 that sandwich it. 426 alloy and Insulator 8 are shown. This is a small value compared to the elongation of the electrode 5. In this state (400 to 500 DEG C.), the coupling spacer 3 and the electrodes 5 and 6 are coupled by the frit glass 7.

その後の冷却過程についてみれば、電極6はス
ペーサ3に結合されていることと、それ自身の剛
性が小さいことから、その収縮はほとんど結合ス
ペーサ3の収縮にならう。電極5は比較的剛性が
大きいから、結合スペーサ3と電極5の材料であ
る426合金の中間の収縮を示す。
Regarding the subsequent cooling process, since the electrode 6 is bonded to the spacer 3 and its own rigidity is small, its contraction almost follows the contraction of the bonded spacer 3. Since the electrode 5 is relatively rigid, it exhibits an intermediate shrinkage of the bonding spacer 3 and the 426 alloy from which the electrode 5 is made.

結局、これら加熱、冷却過程を総合すると電極
5はほぼそれ自身の熱膨張で伸び、収縮時はその
収縮を結合スペーサ3が拘束するために、焼成後
は焼成前に比べ伸びることになる。電極6は結合
スペーサ3とシート13の中間の値、つまり結合
スペーサ3の伸びより大きく伸び、結合スペーサ
3の収縮にしたがつて収縮するから結果としては
伸びることになる。しかし電極5と6はその伸縮
メカニズムが異なるから伸び量が違つてくる。以
上が電極5,6の伸び発生のメカニズムである。
In the end, when these heating and cooling processes are combined, the electrode 5 expands due to its own thermal expansion, and when it contracts, the bonding spacer 3 restrains the contraction, so that it will expand after firing compared to before firing. The electrode 6 will elongate to an intermediate value between the bonding spacer 3 and the sheet 13, ie greater than the elongation of the bonding spacer 3, and will contract as the bonding spacer 3 contracts, resulting in an elongation. However, since electrodes 5 and 6 have different expansion and contraction mechanisms, the amount of expansion will be different. The above is the mechanism by which the electrodes 5 and 6 elongate.

そこで、本発明はかかる伸び量の差に起因する
位置誤差の発生を無くすることのできる平面形表
示装置を提供することを目的とするものであり、
以下、本発明について実施例を参照して詳述す
る。
Therefore, an object of the present invention is to provide a flat display device that can eliminate the occurrence of positional errors caused by such differences in the amount of elongation.
Hereinafter, the present invention will be described in detail with reference to Examples.

本発明の一実施例を第7図に示す。この装置に
おいては、伸び調整用スペーサ14を剛性の小な
る電極6とシート13の間に挿入する。その他の
構造は第6図に示す従来例のものと同様であるの
で説明を省略する。剛性の小なる電極6の加熱焼
成過程における熱膨張はこれをはさむ結合スペー
サ3と、伸び調整用スペーサ14に影響されるか
ら、伸び調整用スペーサ14によつて調整するこ
とができる。そこで、伸び調整用スペーサ14の
熱膨張率は剛性の小なる電極6の熱膨張率が剛性
の大なる電極5のそれと同等となる値に設定す
る。また、伸び調整用スペーサ14を電極5に接
して配置しても同様の効果が期待される。しか
し、この場合電極5の剛性が大きいためその効果
は少なく剛性の小さい電極6に対して配置するこ
らこそその効果が期待できる。
An embodiment of the present invention is shown in FIG. In this device, an elongation adjusting spacer 14 is inserted between the electrode 6 and the sheet 13, which have low rigidity. The rest of the structure is the same as that of the conventional example shown in FIG. 6, so a description thereof will be omitted. Thermal expansion of the electrode 6, which has low rigidity, during the heating and firing process is influenced by the bonding spacer 3 sandwiching the electrode 6 and the elongation adjustment spacer 14, so that it can be adjusted by the elongation adjustment spacer 14. Therefore, the coefficient of thermal expansion of the elongation adjusting spacer 14 is set to a value such that the coefficient of thermal expansion of the electrode 6, which is less rigid, is equivalent to that of the electrode 5, which is more rigid. Further, even if the elongation adjusting spacer 14 is placed in contact with the electrode 5, a similar effect is expected. However, in this case, since the rigidity of the electrode 5 is high, the effect is small and the effect can be expected only when the electrode 5 is arranged with respect to the electrode 6, which has a low rigidity.

また、前記のメカニズムにより、電極精度の不
良が起きていることを確認するために行なつた実
験の結果を第8図に示す。この実験では伸び調整
用スペーサ14として第4図に示す結合スペーサ
3と同構造のものを用いた。hfは第4図に示す絶
縁物8の厚み、hmは下地金属9の厚みである。
伸び調整用スペーサ14の熱膨張率を絶縁物8の
厚みによつて調整(厚いほど熱膨張率が小さくな
る)し、絶縁物8の厚みを横軸に(したがつて
hf/hmが大きいほど熱膨張率は小さくなる)、焼
成後の電極の長さ75mm当りの電極伸びを縦軸にと
つた。電極5および6と示してあるのは電極5お
よび6に隣接して伸び調整用スペーサ14を配置
したことを示している。
Further, FIG. 8 shows the results of an experiment conducted to confirm that electrode accuracy defects occur due to the above-mentioned mechanism. In this experiment, a spacer 14 for adjusting elongation having the same structure as the bonding spacer 3 shown in FIG. 4 was used. hf is the thickness of the insulator 8 shown in FIG. 4, and hm is the thickness of the base metal 9.
The coefficient of thermal expansion of the elongation adjusting spacer 14 is adjusted by the thickness of the insulator 8 (the thicker the coefficient of thermal expansion is), and the thickness of the insulator 8 is plotted on the horizontal axis (therefore, the coefficient of thermal expansion is smaller).
The larger hf/hm is, the smaller the thermal expansion coefficient is), and the vertical axis is the electrode elongation per 75 mm of electrode length after firing. Electrodes 5 and 6 indicate that the elongation adjusting spacer 14 is placed adjacent to the electrodes 5 and 6.

この結果は先に述べたメカニズム通り、剛性の
小さな電極6に対してはその効果がある。すなわ
ち伸び調整用スペーサ14の熱膨張率の変化に対
して電極伸びが変わつている。剛性の大きな電極
5に対してはその効果があまりないことを示して
いる。すなわち伸び調整用スペーサ14の熱膨張
率の変化に対して電極伸びが変わらない。また、
当然のことながら伸び調整用スペーサ14の熱膨
張率が小さくなるにつれて電極6の伸びも小さく
なつている。そして、この場合は絶縁物8と下地
金属9の厚み比hf/hmを1.2にすれば、電極6の
焼成後伸びと電極5のそれとを等しくすることが
可能であることを示している。この様に、電極伸
びの差を防止する手段として、結合スペーサ3の
剛性に比較して各電極の剛性を小さくすることが
あげられる。このようにすると各電極はその剛性
が小さいために焼成過程におけるその伸縮は結合
スペーサ3の伸縮にしたがう。そのため、各電極
の焼成による熱膨張差は小さくなる。焼成によつ
て伸びの差が小さくなるこの手段は理想的である
といえる。
This result is effective for the electrode 6 having small rigidity, as described above by the mechanism. That is, the electrode elongation changes in response to a change in the coefficient of thermal expansion of the elongation adjusting spacer 14. This shows that this effect is not so great for the electrode 5 which has a large rigidity. That is, the electrode elongation does not change even if the thermal expansion coefficient of the elongation adjusting spacer 14 changes. Also,
Naturally, as the coefficient of thermal expansion of the elongation adjusting spacer 14 becomes smaller, the elongation of the electrode 6 also becomes smaller. In this case, it is shown that by setting the thickness ratio hf/hm of the insulator 8 and the base metal 9 to 1.2, it is possible to make the elongation of the electrode 6 equal to that of the electrode 5 after firing. As described above, one way to prevent the difference in electrode elongation is to make the rigidity of each electrode smaller than the rigidity of the coupling spacer 3. In this case, since each electrode has a small rigidity, its expansion and contraction during the firing process follows the expansion and contraction of the bonding spacer 3. Therefore, the difference in thermal expansion due to firing of each electrode becomes small. This means that the difference in elongation is reduced by firing can be said to be ideal.

電極の剛性を小さくする方法としては、たとえ
ば第9図に示す構成がある。電子ビームの通過す
る穴16の他に剛性調整穴17,18を設けるこ
とにより電極としての電気的特性を変えることな
く、剛性を小さくすることができる。電極構成が
このようにできない場合は先に述べたように伸び
調整スペーサを挿入して電極伸びを調整すればよ
い。こうして、この手段を併用することにより、
電極相互の位置決めを精度良く管理することが可
能となる。
As a method of reducing the rigidity of the electrode, there is a configuration shown in FIG. 9, for example. By providing rigidity adjusting holes 17 and 18 in addition to the hole 16 through which the electron beam passes, the rigidity can be reduced without changing the electrical characteristics of the electrode. If the electrode structure cannot be configured in this way, the expansion of the electrode can be adjusted by inserting an expansion adjustment spacer as described above. In this way, by using this method in combination,
It becomes possible to control the mutual positioning of the electrodes with high precision.

このように、本発明によれば、剛性の小さい電
極に適切な熱膨張率をもつた伸び調整用スペーサ
を隣接させて配置したことによりこの電極のフリ
ツトガラス焼成時に発生する伸び量を剛性の大き
い電極のそれに合わせることができ、かつ、結合
スペーサの剛性に比べて各電極の剛性を小さくす
る構造としてフリツトガラス焼成時に発生する伸
びの差をなくするようにしたことにより、電極相
互間およびカソード、螢光体に対する位置決めを
高精度に容易に行なうことが可能となつて、効果
の大きい平面型表示装置を得ることができるもの
である。
As described above, according to the present invention, by arranging the elongation adjustment spacer having an appropriate coefficient of thermal expansion adjacent to the electrode with low rigidity, the amount of elongation that occurs during firing of the frit glass of this electrode can be reduced by the amount of elongation that occurs when firing the frit glass. The structure reduces the rigidity of each electrode compared to the rigidity of the bonding spacer, eliminating the difference in elongation that occurs during firing of the frit glass. It is possible to easily perform positioning with respect to the body with high precision, and it is possible to obtain a highly effective flat display device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は平面型表示装置の一般的な構成を示す
側面図、第2図、第3図はその剛性の大なる電極
と小なる電極の平面図、第4図a,bはその結合
スペーサの平面図と正面図、第5図a,bはその
電極および結合スペーサの組み合わされた状態を
示す断平面図および側面図、第6図は従来の平面
型表示装置の一部のユニツトの製造工程の側面
図、第7図は本発明の一実施例における平面型表
示装置の製造工程の側面図、第8図a,bは同装
置において伸び調整用スペーサによつて電極伸び
を制御したときの特性図、第9図は同装置に用い
られる剛性調整穴の設けられた電極の形状を示す
平面図である。 1……螢光体、2……カソード、3……結合ス
ペーサ、5……剛性の大なる電極、6……剛性の
小なる電極。
Fig. 1 is a side view showing the general configuration of a flat display device, Figs. 2 and 3 are plan views of the large and small electrodes, and Fig. 4 a and b are the coupling spacers. 5A and 5B are a sectional plan view and a side view showing the combined state of the electrodes and coupling spacers, and FIG. 6 is a diagram showing the manufacture of some units of a conventional flat display device. 7 is a side view of the manufacturing process of a flat panel display device according to an embodiment of the present invention, and FIGS. 8a and 8b are side views of the process when the electrode elongation is controlled by the elongation adjustment spacer in the same device. FIG. 9 is a plan view showing the shape of an electrode provided with a rigidity adjustment hole used in the device. 1... Fluorescent material, 2... Cathode, 3... Coupling spacer, 5... Electrode with high rigidity, 6... Electrode with low rigidity.

Claims (1)

【特許請求の範囲】[Claims] 1 一端部に電子ビームを放射するカソードと、
他端部に電子ビームの衝突によつて可視光を発す
る蛍光体と、前記カソードと蛍光体の間に位置し
電子ビームを制御するための、複数の電極で構成
された制御電極と、前記複数の電極を相互に固定
するための結合スペーサ及び伸び調整用スペーサ
を有した平面型表示装置であつて、前記複数の電
極の所定の電極には電子ビームが通過しない位置
に剛性を変えるための穴部が形成されるととも
に、前記複数の電極は前記結合スペーサに塗布さ
れたフリツトガラスにより相互に焼成固定された
平面型表示装置。
1 a cathode that emits an electron beam at one end;
a phosphor that emits visible light upon collision of the electron beam at the other end; a control electrode that is located between the cathode and the phosphor and is configured of a plurality of electrodes for controlling the electron beam; A flat display device having a coupling spacer for mutually fixing electrodes and a spacer for adjusting expansion, wherein a hole for changing rigidity is provided in a predetermined electrode of the plurality of electrodes at a position where the electron beam does not pass through. A flat panel display device in which a portion is formed and the plurality of electrodes are fixed to each other by firing with frit glass applied to the coupling spacer.
JP3981882A 1982-03-12 1982-03-12 Plane type display device Granted JPS58157038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3981882A JPS58157038A (en) 1982-03-12 1982-03-12 Plane type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3981882A JPS58157038A (en) 1982-03-12 1982-03-12 Plane type display device

Publications (2)

Publication Number Publication Date
JPS58157038A JPS58157038A (en) 1983-09-19
JPH0474823B2 true JPH0474823B2 (en) 1992-11-27

Family

ID=12563543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3981882A Granted JPS58157038A (en) 1982-03-12 1982-03-12 Plane type display device

Country Status (1)

Country Link
JP (1) JPS58157038A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025142A (en) * 1983-07-21 1985-02-07 Matsushita Electric Ind Co Ltd Manufacturing electrode of indication device
JPS63105439A (en) * 1986-10-23 1988-05-10 Canon Inc Multielectron beam image pickup tube

Also Published As

Publication number Publication date
JPS58157038A (en) 1983-09-19

Similar Documents

Publication Publication Date Title
JPS6025142A (en) Manufacturing electrode of indication device
EP0050294B1 (en) Method of making an electrode construction and electrode construction obtainable by this method
JPH0474823B2 (en)
JPH0459729B2 (en)
JPH04255651A (en) Flat type display device and drive method therefor
JP2558993B2 (en) Image display device and method of manufacturing image display device
JPH0444374B2 (en)
JPS6039736A (en) Manufacturing method for flat type display device
JPS61171030A (en) Manufacture of flat-type image display device
JPS60218750A (en) Plate-type display device
US5697823A (en) Electron gun of CRT and manufacturing method therefor
JP3114497B2 (en) Flat panel display and manufacturing method thereof
JPH0449736B2 (en)
JPS59215631A (en) Manufacture of electrode for display device
JP2000268749A (en) Flat-panel display device
JPH07169389A (en) Layering and joining method of flat electrode
JPH11306980A (en) Assembling method for image forming device and manufacture of the device
JPS63195939A (en) Electrodes for image display
JPH021798Y2 (en)
JPH054771B2 (en)
JPH0430138B2 (en)
JPH03129648A (en) Display device
JPH01235135A (en) Display device
JPS60185347A (en) Picture display device
JPH06283119A (en) Electrode body structure for flat type cathode-ray tube display device