JPS59214009A - High variable power zoom lens for definite distance - Google Patents

High variable power zoom lens for definite distance

Info

Publication number
JPS59214009A
JPS59214009A JP58088196A JP8819683A JPS59214009A JP S59214009 A JPS59214009 A JP S59214009A JP 58088196 A JP58088196 A JP 58088196A JP 8819683 A JP8819683 A JP 8819683A JP S59214009 A JPS59214009 A JP S59214009A
Authority
JP
Japan
Prior art keywords
lens group
lens
negative
magnification
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58088196A
Other languages
Japanese (ja)
Other versions
JPH0146045B2 (en
Inventor
Takayuki Ito
孝之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP58088196A priority Critical patent/JPS59214009A/en
Priority to IT48211/84A priority patent/IT1178378B/en
Priority to DE19843418639 priority patent/DE3418639A1/en
Publication of JPS59214009A publication Critical patent/JPS59214009A/en
Publication of JPH0146045B2 publication Critical patent/JPH0146045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain a high variable power variation ratio of 4 by providing four lens groups which have a negative, a positive, a negative, and a positive focal length successively from a subject side, and allowing this optical system to meet specific requirements. CONSTITUTION:The 1st, the 2nd, the 3rd, and the 4th lens groups are all moved mechanically to vary the power, and a subject plane and an image plane are held at a specific distance to meet various requirements shown by inequalities I -X. In the inequalities, N1 is the refereactive index of the (d) line of the 1st lens, rIIIa and rIIIb are the radii of curvature of the image-side concave surface and image-side concave surface of the subject-side negative lens group in the 3rd lens, and NII is the mean value of the refractive index of the (d) line of the lens in the 3rd lens group; rIV1 is the radius of curvature of the 1st surface of the 4th lens group, and fs is the focal length of the whole system on the low-power side; ms is the lateral power of the low power side and m1s, m12s, and m123s are the composite lateral power values of the 1st, the 2nd, and the 1st- 3rd lens groups on the low-power side; and Xi is the extent of movement of the (i)th lens group and fBS is the back focus of the low power side.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低倍領域だけで(被写体と像の立場を逆にすれ
ば高倍領域だけで)高変倍比を有する有限距離用ズーム
レンズに関する。 有限距離用ズームレンズは、被写体面と像面との距離が
有限で、その距離を一定に保ちなから変倍できるズーム
レンズであるが、低倍領域で使用される代表的なものに
ファクシミリ用ズームレンズ(被写体と像の立場を逆に
すれば引伸し用ズームレンズ)があり、物像間距離が一
定で倍率を連続的に変えることができるため、作業性が
非常によくなるという利点をもっている。 従来知られているズームレンズには、無限物体(倍率0
)から約171o倍程度までの倍率範囲を有するスチー
ルカメラ用ズームレンズと、等倍近辺の倍率を有するコ
ピー用ズームレンズがあるが、本発明は1両者の中間的
な倍率範囲を有するズームレンズであり、具体的には低
倍領域で1/14〜1/3.5倍程度の倍率範囲を有す
るところの、変倍3− 比が4倍と従来にない高変倍比の有限距離用ズームレン
ズを提供しようとするものである。 前述のようなスチールカメラ用ズームレンズとコピー用
ズームレンズの中間的な倍率範囲を有する有限距離用ズ
ームレンズは、今まで変倍比が2倍にも満たないものば
かりしか知られていないが、本発明では4倍という高変
倍比の有限距離用ズームレンズを実現できたものである
。 スチールカメラ用ズームレンズにおいては、変倍比が4
〜5倍というものが既に公知となっているが、写真撮影
用であるため歪曲収差が±3〜5%と大きく、本発明の
ような有限距離用ズームレンズとしては使用できない。 また、コピー用ズームレンズにおいては、変倍比が4〜
9倍という高変倍比で、かつ歪曲収差も小さいものがあ
るが、等倍を基準として、低倍から等倍のレンズ配置と
等倍から高倍のレンズ配置は相対的には全く同じ配置で
あり、レンズ構成も左右はぼ対称であり、歪曲収差を小
さくする事は比較的容易にできるものの、本発明のよう
に低倍4− 領域で高変倍比を有するレンズ系には使えない。 本発明は、レンズ群の移動に関していえばスチールカメ
ラ用ズームレンズの移動方式に似ている。 すなわち、コピー用ズームレンズのように全系を移動さ
せて変倍するのではなく、鏡枠の中でレンズ群が移動す
る事によって変倍する方式である。 しかし、物像間距離が固定さ九ている事、およびズーム
レンズとしては歪曲収差が約±0.5%程度以下という
非常に小さな値を要求される事は、コピー用ズームレン
ズに似ている。 本発明の有限距離用ズームレンズは、後述するように構
成したことにより、スチールカメラ用ズームレンズの変
倍方式を採用しながら歪曲収差を小さく補正し、かつ高
変倍比が実現できたものである。 尚、変倍の方法として、ズームレンズの代わりに、複数
個の固定焦点レンズを回転させるターレット方式も考え
られるが、この方式では、得られる倍率が離散的である
事、及び物像間距離と倍率の調整が非常に難しいという
欠点がある。 以下本発明を詳述すると、被写体側より、負の焦点距離
を有する第ルンズ群と、正の焦点距離を有する第2レン
ズ群と、負の焦点距離を有する第3レンズ群と、正の焦
点距離を有する第4レンズ群とから構成され、第1.第
2.第3.第4レンズ群すべてを機械的に移動させる事
によって変倍すると共に被写体面と像面とを一定に保つ
事ができる有限距離用ズームレンズにおいて、第ルンズ
群は主に被写体面と像面とを一定距離に保つ機能を有し
、第2.第3.第4レンズ群は主に変倍機能を有し、第
ルンズ群は被写体側から正。 負、負、正のレンズで構成され、この第ルンズ群の最も
被写体側の正レンズ(第ルンズという)のd−1ine
の屈折率をN1とする時(]) 1.67<N1 を満足し、 第2レンズ群は被写体側から負、正、正のレンズで構成
され、第3レンズ群は互いに強い凹面を向い合わせた負
、負の配置のレンズ群から構成され、そのうち少なくと
も一つの負レンズ群は正、負あるいは負、正のはり合せ
レンズから成る2群3枚あるいは2群4枚構成であって
、この第3レンズ群の被写体側負レンズ群の像側凹面の
曲率半径をr’za、像側負レンズ群の被写体側凹面の
曲率半径をr□b、第3レンズ群内のレンズのd−1i
neの屈折率の平均値をNmとする時 (3) ]、、67< N m を満足し、 第4レンズ群は負、正、正、正、負のレンズで構成され
、第4レンズ群の第1面の曲率半径を1”It/Iとす
る時 を満足し、かつ、 123 =7− ただし fs:低倍率側の全系の焦点距離 ms:低倍率側の横倍率 mIS:低倍率側の第ルンズ群の横倍率m12s:低倍
率側の第1.第2レンズ群の合成横倍率 m 1233 :低倍率側の第1〜第3レンズ群の合成
横倍率 Xl :第iレンズ群の移動量 fBs:低倍率側のバックフォーカス の諸条件を満足するよう構成したバックフォーカスの大
きい高変倍有限距離用ズームレンズ系であ8− る。 鏡枠上、第2レンズ群と第4レンズ群を一体に移動させ
れば、あるいは第2.第3.第4レンズ群を比例的に移
動させれば構造は簡単になる。ただし、光学性能的には
、収差のバランスの良い位置に、第1.第2.第3.第
4レンズ群を任意に配置すれば、より収差が良好に補正
される事は明白である。 条件(1)は第ルンズ群に関するものである。 第ルンズ群の第ルンズを正レンズにした理由は歪曲収差
を補正するためであるが、条件(1)の下限を越えると
、第ルンズの像側の曲率半径が小さくなるため、特に低
倍率側の歪曲収差が中間画角で最大値を示し、さらに画
角が大きくなると歪曲収差が小さくなるという、いわゆ
る「歪曲収差の戻り量」が大きくなり1本発明で得よう
とするレンズには使えなくなる。 条件(2) 、 (3)は第3レンズ群に関するもので
ある。条件(2)の上限を越えると、球面収差、像面わ
ん曲をオーバーにする効果が小さくなり、第2、第4レ
ンズ群のパワーを小さくしなければ収差のバランスが取
れなくなり、大型化する。逆に条件(2)の下限を越え
ると、球面収差、像面わん曲がオーバーに補正過剰とな
り、ズーミングに伴う球面収差、像面わん曲の変動の増
大を招く。また条件(3)の下限を越えると、第3レン
ズ群が4つのレンズ群の中で最もパワーの強いレンズ群
であるために、第3レンズ群を構成する各レンズの曲率
半径が小さくなり、高性能は望めない。 条件(4)は第4レンズ群に関するものであるが歪曲収
差を補正するのに重要な条件である。条件(4)の上限
を越えると歪曲収差の補正には有利であるが、球面収差
の補正が困難となり、逆に下限を越えると、ズーミング
に対する歪曲収差の変動が大きくなり本発明の目的に反
する。 条件(5)〜(7)は各レンズ群のパワー配置に関する
ものである。条件(5)の上限を越えると、第ルンズ群
のパワーが小さくなり、第ルンズ群の移動量が大きくな
り小型化に反すると共に、バックフォーカスを大きくす
るのが困難となる。逆に条件(5)の下限を越えると、
小型化には有利であるが、コンペンセータとしてはパワ
ーが強くなり過ぎてズーミングに対する諸収差の変動が
大きくなる。 条件(6)の上限を越えると、第2レンズ群のパワーが
強くなり過ぎて、特に球面収差の変動が大きくなり、逆
に下限を越えると、変倍効果が小さくなるため、第2レ
ンズ群の移動量が増大し大型化する。 条件(7)は条件(2) 、 (3)とも関連するが、
この条件(7)の」二限を越えると、第2.第4レンズ
群で発生するアンダーな収差を補正できないし、バック
フォーカスも小さくなる。逆に条件(7)の下限を越え
ると、第3レンズ群のパワーが強くなり過ぎて、特に像
面わん曲の変動が大きくなる。 条件(8) 、 (9)は第2.第3.第4レンズ群の
移動に関するものである。これらの条件(8) 、 (
9)の上限を越えると、第2.第3.第4レンズ群内で
の変倍効果が小さくなるために、第2〜第4レンズ群の
移動量が増大し、逆に下限を越えると、=11− 第3レンズ群の移動量を小さくする事には有利であるが
、第2.第3あるいは第3.第4レンズ群間隔の変化量
が増大し、各レンズ群内での収差発生量を小さくしなけ
ればならなくなり、構成枚数の増大を招く。 条件(10)は条件というより本発明の光学系の使用に
対する条件である。条件(10)の下限を越えると、光
学系と像面の間にミラー等の装置を入れる事ができなく
なる。 以下、本発明の実施例1〜3を示す。ここで、rは曲率
半径、dはレンズ厚もしくは空気間隔、Nはd−1in
eの屈折率、νはアツベ数、Fはψ物体に対する口径比
、fは全系の焦点距離、ωは主光線の半画角、mは横倍
率、Lは物像間距離、fBはバックフォーカスである。 12−
The present invention relates to a finite-distance zoom lens having a high zoom ratio only in a low-magnification region (or only in a high-magnification region if the positions of the subject and image are reversed). A finite-distance zoom lens is a zoom lens that has a finite distance between the subject plane and the image plane, and can change magnification while keeping that distance constant.A typical zoom lens used in the low-magnification range is a facsimile lens. There is a zoom lens (or a zoom lens for enlarging if the positions of the subject and image are reversed), which have the advantage of greatly improving work efficiency because the distance between the object and image is constant and the magnification can be changed continuously. Conventionally known zoom lenses have an infinite object (magnification of 0).
There are zoom lenses for still cameras that have a magnification range from Specifically, it has a magnification range of 1/14 to 1/3.5 times in the low magnification range, but it is a finite-distance zoom with an unprecedentedly high zoom ratio of 4 times. The aim is to provide lenses. Until now, only finite-distance zoom lenses with a magnification range of less than 2x have been known, which have a magnification range intermediate between still camera zoom lenses and copying zoom lenses, as mentioned above. According to the present invention, a finite distance zoom lens with a high variable power ratio of 4x can be realized. For still camera zoom lenses, the zoom ratio is 4.
-5 times is already known, but since it is used for photography, the distortion is as large as ±3 to 5%, and it cannot be used as a finite distance zoom lens like the present invention. In addition, the zoom lens for copying has a variable power ratio of 4 to 4.
There are some models with a high zoom ratio of 9x and small distortion, but with 1x as the standard, the lens arrangement from low to 1x and from 1 to high magnification are relatively the same arrangement. The lens structure is also approximately symmetrical left and right, and although it is relatively easy to reduce distortion, it cannot be used in a lens system having a high variable power ratio in the low magnification 4-range as in the present invention. Regarding the movement of the lens group, the present invention is similar to the movement method of a zoom lens for a still camera. That is, instead of changing the magnification by moving the entire system like a copying zoom lens, it is a system in which the magnification is changed by moving the lens group within the lens frame. However, it is similar to a copying zoom lens in that the distance between the object and image is fixed and that a zoom lens is required to have a very small distortion aberration of approximately ±0.5% or less. . The finite-distance zoom lens of the present invention is constructed as described below, and uses the zoom lens system for still cameras while minimizing distortion and achieving a high zoom ratio. be. As a method of changing magnification, a turret method in which multiple fixed focus lenses are rotated instead of a zoom lens may be considered, but with this method, the obtained magnification is discrete and the distance between objects and The disadvantage is that it is very difficult to adjust the magnification. The present invention will be described in detail below, from the subject side: a lens group having a negative focal length, a second lens group having a positive focal length, a third lens group having a negative focal length, and a lens group having a positive focal length. a fourth lens group having a distance from the first lens group; Second. Third. In a finite-distance zoom lens that can change magnification and keep the object plane and image plane constant by mechanically moving all of the fourth lens group, the fourth lens group mainly controls the object plane and image plane. It has the function of keeping a certain distance, and the second. Third. The fourth lens group mainly has a variable magnification function, and the lens group is positive from the subject side. Consisting of negative, negative, and positive lenses, the d-1ine of the positive lens closest to the subject (referred to as the 1st lens) in this 1st lens group
When the refractive index of is N1 (]) 1.67<N1, the second lens group is composed of negative, positive, and positive lenses from the subject side, and the third lens group has strong concave surfaces facing each other. It is composed of lens groups arranged in negative and negative positions, and at least one of the negative lens groups is composed of three lenses in two groups or four lenses in two groups consisting of positive and negative lenses or negative and positive lenses. The radius of curvature of the image-side concave surface of the object-side negative lens group of the third lens group is r'za, the radius of curvature of the object-side concave surface of the image-side negative lens group is r□b, and d-1i of the lens in the third lens group.
When the average value of the refractive index of ne is Nm, (3) ], , 67 < N m is satisfied, and the fourth lens group is composed of negative, positive, positive, positive, and negative lenses; The radius of curvature of the first surface is 1"It/I, and 123 = 7- where fs: Focal length of the entire system on the low magnification side ms: Lateral magnification on the low magnification side mIS: Low magnification Lateral magnification m12s of the first lens group on the side: Composite lateral magnification m of the first and second lens groups on the low magnification side 1233: Combined lateral magnification Xl of the first to third lens groups on the low magnification side: of the i-th lens group Amount of movement fBs: This is a high variable magnification finite distance zoom lens system with a large back focus configured to satisfy the back focus conditions on the low magnification side.On the lens frame, the second lens group and the fourth lens The structure can be simplified if the groups are moved together, or if the second, third, and fourth lens groups are moved proportionally.However, in terms of optical performance, the aberrations are well-balanced, and the structure is simple. It is clear that aberrations can be better corrected if the first, second, third, and fourth lens groups are arranged arbitrarily. Condition (1) relates to the lun's group. The reason why the first lens is made a positive lens is to correct distortion aberration, but if the lower limit of condition (1) is exceeded, the radius of curvature on the image side of the second lens becomes small, which reduces distortion, especially on the low magnification side. shows a maximum value at an intermediate angle of view, and as the angle of view becomes larger, the distortion becomes smaller, that is, the so-called "return amount of distortion aberration" becomes large and cannot be used in the lens that the present invention aims to obtain. Conditions (2) and (3) relate to the third lens group. If the upper limit of condition (2) is exceeded, the effect of overdoing spherical aberration and curvature of field becomes small, and unless the powers of the second and fourth lens groups are reduced, the aberrations cannot be balanced, resulting in an increase in size. . Conversely, if the lower limit of condition (2) is exceeded, spherical aberration and field curvature will be excessively corrected, leading to an increase in fluctuations in spherical aberration and field curvature due to zooming. Moreover, if the lower limit of condition (3) is exceeded, the radius of curvature of each lens constituting the third lens group becomes small because the third lens group is the lens group with the strongest power among the four lens groups. High performance cannot be expected. Condition (4) relates to the fourth lens group and is an important condition for correcting distortion aberration. Exceeding the upper limit of condition (4) is advantageous for correcting distortion, but it becomes difficult to correct spherical aberration, and conversely, exceeding the lower limit increases fluctuations in distortion with respect to zooming, which is contrary to the purpose of the present invention. . Conditions (5) to (7) relate to the power arrangement of each lens group. If the upper limit of condition (5) is exceeded, the power of the first lens group decreases and the amount of movement of the second lens group increases, which goes against miniaturization and makes it difficult to increase the back focus. Conversely, if the lower limit of condition (5) is exceeded,
Although it is advantageous for miniaturization, the power becomes too strong to be used as a compensator, and fluctuations in various aberrations with respect to zooming become large. If the upper limit of condition (6) is exceeded, the power of the second lens group becomes too strong, and fluctuations in spherical aberration in particular become large.On the other hand, if the lower limit is exceeded, the variable power effect decreases, so the power of the second lens group becomes too strong. The amount of movement increases and the size increases. Condition (7) is also related to conditions (2) and (3), but
If the second limit of this condition (7) is exceeded, the second limit is exceeded. It is not possible to correct the under-aberration that occurs in the fourth lens group, and the back focus becomes small. On the other hand, if the lower limit of condition (7) is exceeded, the power of the third lens group becomes too strong, and especially the fluctuation of the field curvature becomes large. Conditions (8) and (9) are the second. Third. This relates to movement of the fourth lens group. These conditions (8), (
If the upper limit of 9) is exceeded, the second. Third. Since the magnification change effect within the fourth lens group becomes smaller, the amount of movement of the second to fourth lens groups increases, and conversely, if the lower limit is exceeded, = 11 - the amount of movement of the third lens group is decreased. Although it is advantageous in this case, the second point. Third or third. The amount of change in the distance between the fourth lens groups increases, and the amount of aberration generated within each lens group must be reduced, leading to an increase in the number of lenses. Condition (10) is not so much a condition as a condition for use of the optical system of the present invention. If the lower limit of condition (10) is exceeded, it becomes impossible to insert a device such as a mirror between the optical system and the image plane. Examples 1 to 3 of the present invention are shown below. Here, r is the radius of curvature, d is the lens thickness or air gap, and N is d-1in.
The refractive index of e, ν is the Atsube number, F is the aperture ratio to the ψ object, f is the focal length of the entire system, ω is the half angle of view of the chief ray, m is the lateral magnification, L is the object-to-image distance, and fB is the back Focus. 12-

【実施例1】 F=4.0〜5.6    f=48.21〜154.
56ω=23.7°−6,26m = 1/14−1/
3.5L =899.8    f B =100.0
1〜167.85面番号   I    d     
N    vl   310.000  6.85  
1.77250  49.62 −608.672  
2.70 3112゜015  3.50  1.77250  
49.64   58.556  9.50 5 −290.402  3.50  1.80400
  46.66   58.357  0.50 7   57.786  5.75  1.80518
  25.48  131.310  85.62〜2
4.41〜1.479  132.635  2.30
  1.8051B   25.410   38.5
38  5.80  1.69680  55.511
 −117.326  0.15 12   41.340  4.35  1.7291
6  54.713  191.864  1.70〜
9.61〜18.1414  130.169  3.
90  1.80518  25.415  −40.
052  1.80  1.69680  55.51
6     3B、933    3.1017   
−40.226    1.80   1.80400
   46.618    424.643   22
.81〜14.9〜6.3719   −74.980
    2.00   1.8051.8   25.
420     73.076    4.70   
1.5&913   61.021    −51.4
17    0.1522    141.403  
  4.2(11,6180063,423−55,6
612,00 24−316,1494,101,6476033,8
25−33,9952,001,8061040,92
6−87,351 A−415
[Example 1] F=4.0-5.6 f=48.21-154.
56ω=23.7°-6,26m = 1/14-1/
3.5L = 899.8 f B = 100.0
1~167.85 Surface number I d
N vl 310.000 6.85
1.77250 49.62 -608.672
2.70 3112°015 3.50 1.77250
49.64 58.556 9.50 5 -290.402 3.50 1.80400
46.66 58.357 0.50 7 57.786 5.75 1.80518
25.48 131.310 85.62~2
4.41~1.479 132.635 2.30
1.8051B 25.410 38.5
38 5.80 1.69680 55.511
-117.326 0.15 12 41.340 4.35 1.7291
6 54.713 191.864 1.70~
9.61-18.1414 130.169 3.
90 1.80518 25.415 -40.
052 1.80 1.69680 55.51
6 3B, 933 3.1017
-40.226 1.80 1.80400
46.618 424.643 22
.. 81~14.9~6.3719 -74.980
2.00 1.8051.8 25.
420 73.076 4.70
1.5 & 913 61.021 -51.4
17 0.1522 141.403
4.2 (11,6180063,423-55,6
612,00 24-316,1494,101,6476033,8
25-33,9952,001,8061040,92
6-87,351 A-415

【実施例2] F=4.0〜5.6     f =48.25〜15
C69ω=23.7°〜6.2     m=1/14
〜1/3.5L =901.3     f B=98
.80〜165.54面番号  r     d   
  N    ν1  315.000  6.70 
 1.77250  49.62 −5s2.o4o 
  2.70 3  1.19.280  3.50  1..772
50  49.64   60.350  9.70 5 −294.907  3.50  1.80400
  46.66   5B、071  6.00  1
.80518  25.47  134.343  8
5.57〜24.42〜1.648  1.46.22
B   2,30  1.8051B   25.49
   39.010  5.80  169680  
55.510 −11.4.300  0.1511 
  4Q、Q25  4.35  1.72916  
54.712  197.685  1.70〜9.2
8〜17.9513  19g、800  3.60 
 180518  25.414  −41.949 
  +、、80  1.69680  55.515 
  41.949  3.40 15− 16   −42.800    1.80   1.
80400   46゜617    76.950 
   2.70   1.72825   28.51
g     560゜804   21.55〜13.
97〜5,3019   −74.420    2.
00   1.80518   25.420    
74、’420   4.60   1.5891.3
   61.021   −49.700    0.
1522    121:954    4.10  
 1.61800   63.423   −55.3
41    3.5124  −737−.99B  
  4.30   1.64769   33.825
   −35.000   2.00   1.806
10   40.926  −116.842 =16− 【実施例3】 F=4.0〜5.6     f =118.OO〜1
55.25ω=23.7″〜6.2’    m = 
1/14〜1/3.5L =904.1    f B
=98.88〜166.92面番号  r     d
     N    ν1  300.000  6.
20  1.77250  49.62 −571.6
27  2.70 3  160.080  3.50  1.80400
  46.64   59.813  9.00 5−、ssB、5323.5o   1.80400 
 46.66   64.273  5.50  1.
80518  25.47  149.894  83
.90〜23.68〜1.498  122.992 
 2.30  1.80518  25.49   3
9、(+16  6.00  1.69680  55
.510 −127.419  0.20 11   39.566  4.50  1.6968
0  55.512  21.7.650  .1.7
0〜9.14〜18.0713  454.708  
3.40  1.BO31B   25.414  −
43.239  1.80  1..69680  5
5.515   43.230  3.50 16   −44.195    1.80   1.
77250   49.617    44.795 
  3.20   1.71736   29.518
    600.225   21.15〜13.72
〜4.7819   −66.667    2.00
   1.74077   27.820    66
.667    5.00   1.58913   
61.021   −47.481    0.152
2    1.19.969    4.00   1
.58913   61.023   −63.249
    9.2224   3449.114    
4.00   1.56732   42.825  
 −43.629    2.00   1.8061
0   40.926   −100.210 m  I  S                  
    m  12 3
[Example 2] F = 4.0 to 5.6 f = 48.25 to 15
C69ω=23.7°~6.2 m=1/14
~1/3.5L = 901.3 f B = 98
.. 80-165.54 surface number r d
N ν1 315.000 6.70
1.77250 49.62 -5s2. o4o
2.70 3 1.19.280 3.50 1. .. 772
50 49.64 60.350 9.70 5 -294.907 3.50 1.80400
46.66 5B, 071 6.00 1
.. 80518 25.47 134.343 8
5.57~24.42~1.648 1.46.22
B 2,30 1.8051B 25.49
39.010 5.80 169680
55.510 -11.4.300 0.1511
4Q, Q25 4.35 1.72916
54.712 197.685 1.70~9.2
8-17.9513 19g, 800 3.60
180518 25.414 -41.949
+,,80 1.69680 55.515
41.949 3.40 15- 16 -42.800 1.80 1.
80400 46°617 76.950
2.70 1.72825 28.51
g 560°804 21.55~13.
97~5,3019 -74.420 2.
00 1.80518 25.420
74,'420 4.60 1.5891.3
61.021 -49.700 0.
1522 121:954 4.10
1.61800 63.423 -55.3
41 3.5124 -737-. 99B
4.30 1.64769 33.825
-35.000 2.00 1.806
10 40.926 -116.842 =16- [Example 3] F = 4.0 to 5.6 f = 118. OO~1
55.25ω=23.7″~6.2′ m=
1/14~1/3.5L =904.1 fB
=98.88~166.92 Surface number r d
N ν1 300.000 6.
20 1.77250 49.62 -571.6
27 2.70 3 160.080 3.50 1.80400
46.64 59.813 9.00 5-, ssB, 5323.5o 1.80400
46.66 64.273 5.50 1.
80518 25.47 149.894 83
.. 90~23.68~1.498 122.992
2.30 1.80518 25.49 3
9, (+16 6.00 1.69680 55
.. 510 -127.419 0.20 11 39.566 4.50 1.6968
0 55.512 21.7.650 . 1.7
0~9.14~18.0713 454.708
3.40 1. BO31B 25.414 -
43.239 1.80 1. .. 69680 5
5.515 43.230 3.50 16 -44.195 1.80 1.
77250 49.617 44.795
3.20 1.71736 29.518
600.225 21.15~13.72
~4.7819 -66.667 2.00
1.74077 27.820 66
.. 667 5.00 1.58913
61.021 -47.481 0.152
2 1.19.969 4.00 1
.. 58913 61.023 -63.249
9.2224 3449.114
4.00 1.56732 42.825
-43.629 2.00 1.8061
0 40.926 -100.210 m I S
m 12 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1.第3.第5図はそれぞれ実施例1,2゜3に対応
する低倍率側の時のレンズ系構成図。 第2図(a)、(b)、(c) 、第4図(a)、(b
)、(c) 、第6図(a) 、 (b) 、 (c)
はそれぞれ実施例1,2.3に対応する諸収差図で、(
a)は低倍率側、(b)は中間倍率、(c)は高倍率側
の収差図を示す。 図中でriは各レンズ面の曲率半径、dlはレンズ厚も
しくはレンズ面間隔である。 家胴導    閥瑳 仲点収差      歪曲収差
1st. Third. FIG. 5 is a lens system configuration diagram at the low magnification side corresponding to Examples 1 and 2.3, respectively. Figure 2 (a), (b), (c), Figure 4 (a), (b)
), (c), Figure 6 (a), (b), (c)
are various aberration diagrams corresponding to Examples 1 and 2.3, respectively, and (
A) shows the aberration diagrams on the low magnification side, (b) shows the aberration diagrams on the intermediate magnification side, and (c) shows the aberration diagrams on the high magnification side. In the figure, ri is the radius of curvature of each lens surface, and dl is the lens thickness or distance between lens surfaces. Aberration Distortion aberration

Claims (1)

【特許請求の範囲】 1 被写体側より、負の焦点距離を有する第ルンズ群と
、正の焦点距離を有する第2レンズ群と、負の焦点距離
を有する第3レンズ群と、正の焦点距離を有する第4レ
ンズ群とから構成され、第1.第2.第3.第4レンズ
群すべてを機械的に移動させる事によって変倍すると共
に被写体面と像面とを一定に保つ事ができる有限距離用
ズームレンズにおいて、第ルンズ群は主に被写体面と像
面とを一定距離に保つ機能を有し、第2.第3、第4レ
ンズ群は主に変倍機能を有し、第ルンズ群の最も被写体
側のレンズは正レンズ(第ルンズという)であり、この
第ルンズのd−1ineの屈折率をN1とする時 (1) 1.67< N s を満足し、 第3レンズ群は互いに凹の強い面を向い合わせた負、負
の配置のレンズ群から構成され、この第3レンズ群の被
写体側負レンズ群の倫側凹面の曲率半径をrTna、像
側負レンズ群の被写体側凹面の曲率半径をr m b 
、第3レンズ群内のレンズのd−1ineの屈折率の平
均値をNmとする時(3) 1.67<Nnr を満足し、 第4レンズ群の第1面の曲率半径をrF/Iとする時 を満足し、かつ、 15 125 1235 fs:低倍率側の全系の焦点距離 ms:低倍率側の横倍率 mIS:低倍率側の第ルンズ群の横倍率m H2S :
低倍率側の第1.第2レンズ群の合成横倍率 m123s:低倍率側の第1〜第3レンズ群の合成横倍
率 XI :第jレンズ群の移動量 fBs :低倍率側のバックフォーカスの諸条件を満足
するよう構成した事を特徴とするバックフォーカスの大
きい高変倍有限距離用ズームレンズ。 2 第2レンズ群と第4レンズ群が一体に移動する事を
特徴とする特許請求の範囲第1項記載の高変倍有限距離
用ズームレンズ。
[Claims] 1. From the subject side, a lens group with a negative focal length, a second lens group with a positive focal length, a third lens group with a negative focal length, and a positive focal length. a fourth lens group having a first lens group; Second. Third. In a finite-distance zoom lens that can change magnification and keep the object plane and image plane constant by mechanically moving all of the fourth lens group, the fourth lens group mainly controls the object plane and image plane. It has the function of keeping a certain distance, and the second. The third and fourth lens groups mainly have a variable magnification function, and the lens closest to the object in the lens group is a positive lens (referred to as the first lens), and the d-1ine refractive index of this lens is N1. When (1) 1.67<N s is satisfied, the third lens group is composed of negative and negative lens groups with strongly concave surfaces facing each other, and the object side negative side of this third lens group is The radius of curvature of the concave surface on the negative side of the lens group is rTna, and the radius of curvature of the concave surface on the subject side of the negative lens group on the image side is r m b
, when the average value of the d-1ine refractive index of the lenses in the third lens group is Nm, (3) satisfies 1.67<Nnr, and the radius of curvature of the first surface of the fourth lens group is rF/I 15 125 1235 fs: Focal length of the entire system on the low magnification side ms: Lateral magnification on the low magnification side mIS: Lateral magnification of the lens group on the low magnification side m H2S:
The first one on the low magnification side. Composite lateral magnification m123s of the second lens group: Composite lateral magnification XI of the first to third lens groups on the low magnification side: Movement amount fBs of the j-th lens group: Constructed to satisfy the conditions of back focus on the low magnification side A high variable magnification finite distance zoom lens with a large back focus. 2. The high variable power finite distance zoom lens according to claim 1, wherein the second lens group and the fourth lens group move together.
JP58088196A 1983-05-19 1983-05-19 High variable power zoom lens for definite distance Granted JPS59214009A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58088196A JPS59214009A (en) 1983-05-19 1983-05-19 High variable power zoom lens for definite distance
IT48211/84A IT1178378B (en) 1983-05-19 1984-05-17 HIGH VOICE POWER ZOOM TARGET FOR FINISHED DISTANCES
DE19843418639 DE3418639A1 (en) 1983-05-19 1984-05-18 Varifocal lens for finite distances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088196A JPS59214009A (en) 1983-05-19 1983-05-19 High variable power zoom lens for definite distance

Publications (2)

Publication Number Publication Date
JPS59214009A true JPS59214009A (en) 1984-12-03
JPH0146045B2 JPH0146045B2 (en) 1989-10-05

Family

ID=13936141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088196A Granted JPS59214009A (en) 1983-05-19 1983-05-19 High variable power zoom lens for definite distance

Country Status (3)

Country Link
JP (1) JPS59214009A (en)
DE (1) DE3418639A1 (en)
IT (1) IT1178378B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201310A (en) * 1989-01-30 1990-08-09 Canon Inc Zoom lens with internal focus lens
JP2005107036A (en) * 2003-09-29 2005-04-21 Nikon Corp Zoom lens
JP2011033895A (en) * 2009-08-03 2011-02-17 Olympus Imaging Corp Variable magnification optical system and image pickup device
JP2014134560A (en) * 2013-01-08 2014-07-24 Ricoh Imaging Co Ltd Zoom lens system and electronic imaging device including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065636U (en) * 1991-12-25 1994-01-25 齋藤遠心機工業株式会社 Chinese medicine decoction device
DE4315630C2 (en) * 1993-05-04 1996-01-11 Zeiss Carl Jena Gmbh Varifocal lens with finite transmission length
DE4344366C2 (en) * 1993-12-24 1997-05-28 Zeiss Carl Jena Gmbh Optical system with variable image scale

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711315A (en) * 1980-06-24 1982-01-21 Konishiroku Photo Ind Co Ltd Zoom lens with highly variable magnification preceding negative groups

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201310A (en) * 1989-01-30 1990-08-09 Canon Inc Zoom lens with internal focus lens
JP2005107036A (en) * 2003-09-29 2005-04-21 Nikon Corp Zoom lens
JP2011033895A (en) * 2009-08-03 2011-02-17 Olympus Imaging Corp Variable magnification optical system and image pickup device
JP2014134560A (en) * 2013-01-08 2014-07-24 Ricoh Imaging Co Ltd Zoom lens system and electronic imaging device including the same

Also Published As

Publication number Publication date
DE3418639A1 (en) 1984-11-22
JPH0146045B2 (en) 1989-10-05
DE3418639C2 (en) 1987-12-17
IT1178378B (en) 1987-09-09
IT8448211A0 (en) 1984-05-17

Similar Documents

Publication Publication Date Title
JP3601733B2 (en) High magnification zoom lens
JPS63153511A (en) Compact and high variable power zoom lens
JP2558138B2 (en) Zoom lens
JP2004258240A (en) Variable focal length lens system
JPH05264902A (en) Zoom lens
JP3352804B2 (en) Zoom lens system
JPH0642017B2 (en) Compact zoom lens
JPH07294816A (en) Zoom lens
JP2021043376A (en) Imaging optical system
JP3723643B2 (en) High zoom ratio zoom lens system
JP2000028919A (en) Middle telephotographic lens
JPS59214009A (en) High variable power zoom lens for definite distance
JP2021032959A (en) Image-capturing optical system
JPS6140086B2 (en)
JPH0150882B2 (en)
JPH03136014A (en) Telephoto zoom lens
JPS6119013B2 (en)
JPS6144289B2 (en)
JPH0248089B2 (en)
JPS6116962B2 (en)
JPS6042453B2 (en) zoom lens
JPS6120846B2 (en)
JPH0248086B2 (en)
JP2004212541A (en) Zoom lens
JPH04242709A (en) Zoom lens