JPS6144289B2 - - Google Patents

Info

Publication number
JPS6144289B2
JPS6144289B2 JP54019922A JP1992279A JPS6144289B2 JP S6144289 B2 JPS6144289 B2 JP S6144289B2 JP 54019922 A JP54019922 A JP 54019922A JP 1992279 A JP1992279 A JP 1992279A JP S6144289 B2 JPS6144289 B2 JP S6144289B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
negative
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54019922A
Other languages
Japanese (ja)
Other versions
JPS55111915A (en
Inventor
Kazuo Fujibayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1992279A priority Critical patent/JPS55111915A/en
Publication of JPS55111915A publication Critical patent/JPS55111915A/en
Publication of JPS6144289B2 publication Critical patent/JPS6144289B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、35mm判スチールカメラに用いるのに
適した、変倍比が大きいズームレンズに関する。 ズームレンズにはカメラを固定したままで被写
体の大きさを自由に変倍できるという利点があ
る。すなわち、撮影者の意図によつて即座に被写
体を最適な大きさに変えて撮影できる。そこで8
mmカメラでは5〜10倍のTVカメラでは10〜30倍
のズームレンズが通常使用のレンズとなつてい
る。 しかし、画面寸法が小さく、動画の撮影をする
8mmカメラやTVカメラに比べ、画面寸法が大き
く静止画を撮影するステイールカメラには光学的
により高性能が必要とされるので、ステイールカ
メラにおいて大変倍比のズームレンズを実現する
ためには収差補正上大きな問題があつた。 本発明は35mmフイルムサイズを用いた時に50mm
程度の標準レンズから300mm程度の超望遠に至る
大変倍比で、かつ全長(第1面からフイルム面ま
で)が望遠端焦点距離より短い高性能ズームレン
ズを提供することにある。 ズームレンズを小型化するためには、変倍部を
短縮する方法とリレー部を短縮する方法の2つの
やり方がある。後者の方法は変倍に伴う収差変動
を小さく抑えられる利点はあるが、リレー部の構
成を望遠タイプに限定されるので、全系を通して
の収差補正が困難となる。前者の方法ではこれと
逆で変倍部によつて生じる変倍に伴う収差変動が
大きくなることが問題となる。本発明は前者の方
法において、収差変動を小さく抑え、小型化に成
功したものである。 一方変倍時の収差変動は、高性能のズームレン
ズを実現する時に特に問題となり、変倍比を大き
くし、かつレンズの小型化をはかるほど大きく発
生する。この理由はレンズの小型化をはかるため
にズームレンズの各レンズ群のパワーを強くする
結果、各レンズ群の収差量が増え、変倍した時に
収差補正のバランスがとれず収差変動が大きくな
る。各レンズ群の中で変倍機能を有する移動レン
ズ群は最もパワーが強く、かつ最も大きく移動す
るので変倍に伴う収差変動に最も大きく影響を及
ぼす。 本発明は大変倍比かつ高性能のズームレンズを
実現するために変倍機能を有する移動レンズ群を
次に示す適切なレンズ配置とレンズ形状を持たせ
ることにより上記問題点の解決をはかつたもので
ある。 本発明は、順に正の第レンズ群、負の第レ
ンズ群、正の第レンズ群、負の第レンズ群か
ら成り、第レンズ群はフオーカシングの機能を
有し、第レンズ群は光軸上を移動して変倍する
機能を有し、第レンズ群は第レンズ群の移動
に連動する往復運動によつて、常に像面位置を一
定に保つ機能を有していて、第レンズ群は固定
の、いわゆるリレーレンズであり、第レンズ群
は順に、前方(物体側)へ凸を向けた負メニスカ
スレンズ、両凹と両凸レンズから成る貼合せレン
ズ、前方へ強い凹面を向けた負レンズを有し、第
レンズ群貼合せレンズの焦点距離をF、第
レンズ群中で第i番目のレンズ面の曲率半径を
Ri、全系の広角端の焦点距離をFωとすると
き、次の条件を満足する。 (1) −0.1/Fω<1/F<0 (2) 1.1Fω<R<1.5Fω (3) 0.65<R/R<1.0 次に各条件を設定した意味を説明する。 大変倍比及び変倍部の小型化を計るために第
レンズ群のパワーを強くすると、変倍に伴う収差
変動が大きく発生するので、特に収差変動に関連
する高次収差の発生を抑えるために、第レンズ
群を3群から構成してパワーの分割をしたが、等
分に分割すると、広角の焦点距離側で負の歪曲が
大きく発生するので、条件(1)が大切である。下限
を越えると広角の焦点距離側での負の歪曲が著し
くなり、上限を越えるとパワーを分割した意味を
失い変倍に伴う収差変動が大きくなる。 第レンズ群中の第2群にある貼合せ面は球面
収差及び軸上色収差の補正に寄与しているが、曲
率が強くなりすぎると広角の焦点距離側で内方の
コマ収差及び高次の倍率色収差を発生させるの
で、条件(2)を設定する。上限を越えると球面収差
及び軸上色収差の補正が困難となり、下限を越え
ると広角の焦点距離側で内方のコマ収差及び高次
の倍率色収差が著しく発生する。また第レンズ
群の中で適切なパワー配分をすることにより、望
遠の焦点距離側で補正過剰になりやすい球面収差
を適切に補正できるが、条件(3)により実現され
る。条件(3)の上限を越えると望遠の焦点距離側で
球面収差が著しく補正過剰となり、下限を越える
とコマ収差及び倍率色収差に変倍に伴う収差変動
が著しくなる。 尚、変倍に伴う収差変動を抑えるために、第
レンズ群の構成を適切に選択することの外に変倍
の際の第レンズ群の光軸上の移動に連動する第
レンズ群の動き方は大切であるから、周知の技
術であるが、念のため補足する。 第レンズ群によつて形成された像面に対する
第レンズ群の位置を焦点距離の広角端と望遠端
において光学的に互いに共役な関係にすると、第
レンズ群の移動に伴う像面移動を同一像面に補
正するための第レンズ群の動き方は変曲点を一
つ持つて、物体側に凸のなめらかな曲線を描き、
焦点距離の広角端と望遠端とで同一の位置とな
る。本例では第レンズ群が広角端の焦点距離と
光学的に共役な位置に移動しないうちに望遠端の
焦点距離が得られるように構成することを特徴と
する。第レンズ群のみによる倍率変化が広角の
焦点距離側から考えて−1/Mminから−Mmax
(但し0<1/Mmin<Mmax)まで変化する時 (a) 0.5<Mmax/Mmin<0.8 の条件を満足することによつて、変倍に伴う球面
収差の変動を小さく抑えることができる。条件(a)
の上限を越えると、球面収差の収差変動が大きく
なり、下限を越えると各レンズ群のパワーが強く
なり種々の収差変動が大きくなる。上記のように
変倍機能をもつ第レンズ群を適切な形状にし、
かつ第レンズ群の動き方を適切にとることによ
り、変倍に伴う収差変動量を小さく抑えられる
が、全系の焦点距離を所定の値にする第レンズ
群を次に示す形状にして変倍に関係しない収差を
適切に補正することができる。 次に、上述した第レンズ群の構成を採用した
ズームレンズにおいて、第レンズ群は、貼合せ
面が前方へ凹を向けた貼合せ負レンズ、前方へ凸
を向けた正メニスカスレンズ、後方(像側)へ凹
を向けた負メニスカスレンズそして貼合せ面が後
方へ凹を向けた貼合せ正レンズを順に有し、また
第レンズ群中で、第j番目のレンズ面の曲率半
径をRj、第j番目のレンズ厚もしくは空気間
隔をDj、第j番目のレンズの屈折率をN
j、第j番目のレンズのアツベ数をνjとする
とき、次の各条件を満足させるのが望ましい。 (4) 0.4Fω<|R|<0.5Fω、 但しR<0 (5) N−N<0.05 (6) 0.9<R/R<1.3 (7) 0.14Fω<D<0.25Fω (8) 0.035/Fω<|N−N|/R
<0.065/Fω、 但しN<N (9) 25<ν−ν これにより第〜第レンズ群で発生する変倍
に伴う収差変動及び変倍に関係しない収差の両方
共、良好に補正された変倍比が大きい高性能のズ
ームレンズを実現できる。 次に各条件について説明する。 第〜レンズ群の中で広角の焦点距離側では
正のパワーをもつ第レンズ群を中心光束が有効
径近い径で通過し、また望遠の焦点距離側では正
のパワーをもつ第レンズ群及び第レンズ群を
中心光束が有効径に近い径で通過する。一方、負
のパワーをもつ第レンズ群については中心光束
は有効径に近い径にはならない。その結果、各レ
ンズ群での色収差の補正を完全にしても、第レ
ンズ群に入射する中心光束において、短波長の球
面収差は著しく補正過剰となる。条件(4)は短波長
の球面収差を補正するためのものであり、上限を
越えると補正が困難となり、下限を越えると短波
長の球面収差は逆に補正不足の状態となる。 第レンズ群中の第群は発散作用をもつが、
貼合せ面に正のパワーをもたせると、貼合せ面で
発生する収差を補正するために第1群第1面が強
い凹面をもつことになり高次球面収差が発生す
る。すなわちサジタルハローが著しく発生する。
条件(5)はサジタルハローを発生させずに短波長の
球面収差を効果的に補正するためのものである。
条件(6)は第レンズ群中第1群で補正しきれない
球面収差及び非点収差を補正するためのものであ
り、上限を越えると球面収差及び非点収差の補正
が困難となり、下限を越えると補正過剰となる
上、全長が長くなる。第〜第レンズ群で補正
しきれなかつた歪曲を第群中第4群の正レンズ
で補正しているが、条件(7)は歪曲を補正するため
に必要であり、上限を越えるとコマ収差が著しく
発生する上、全長が長くなり、下限を越えると望
遠の焦点距離側で糸巻の歪曲が著しくなる。 条件(8)は像面彎曲を補正するためのものであり
上限を越えると補正過剰となり、下限を越えると
補正不足が著しくなる。条件(9)は倍率色収差を補
正するためのものであり下限を越えると著しく補
正不足となる。 以上は変倍に伴う収差変動並びに変倍によらな
い収差補正の条件について述べたが、次に、フオ
ーカシングの際の収差変動について触れておく。
但し、これらはレンズ設計者によつて普通に採用
される基準である。フオーカシングによる収差変
動は望遠端の焦点距離で最も問題とされる。第
レンズ群についてレンズ形状を適切にすることに
より、収差変動特に球面収差の変動を小さく抑え
ることができる。また望遠側において、基準波長
の性能が良好であつても色収差が大きいと、高性
能が得られないので長焦点側において、色収差の
補正を特に小さく抑えておく必要がある。長焦点
側では第レンズ群で光束径が最大であるので、
第レンズ群での補正が効果的である。そこで、
第レンズ群において、前方から順に、貼合せ面
が前方へ凸を向けた貼合せ両凸レンズ、前方へ強
い凸を向けた正レンズを有し、第レンズ群中
で、第k番目のレンズの曲率半径をRk、第k
番目のレンズの屈折率をNk、第k番目のレン
ズのアツベ数をνkとするとき、 (b) 0.30<|R/R|<0.38 (c) −0.05/Fω<1/R<0.05/Fω (d) 40<ν−ν (e) 0.25<N−N の各条件は、フオーカシングによる収差変動と望
遠側の色収差に有効である。条件(b)、(c)はフオー
カシングによる収差変動を小さく抑えるためのも
のであり、両方とも上限を越えるとフオーカシン
グによる収差変動が大きくなり、特に望遠側にお
いて近距離物体に対する性能が悪化する。下限を
越えると望遠側でのコマ収差及び歪曲が著しくな
り、第レンズ群以下のレンズ系で補正が困難に
なる。条件(d)は望遠側での色収差を補正するため
のものであり、下限を越えると色収差によつて、
望遠側の性能が著しく低下する。条件(e)は望遠側
の球面収差及びコマ収差をバランスよく補正する
ためのものであり、下限を越えるとコマ収差が著
しく発生する。条件(d)、(e)を実現するためには低
屈折率低分散の特殊ガラスを使用することが有効
である。本発明はその特殊ガラスをズームレンズ
系で最も効果が認められる第1群中の第2の硝子
に採用し大変倍比ズームで問題となる望遠側の光
学性能を良好にすることに成功した。 次に本発明による実施例を記載するが、実施例
1、2のレンズ断面形状を第1図、第2図に示
し、実施例1、2、3、4の球面収差、非点収
差、歪曲収差、倍率色収差を第3図a,b,c〜
第6図a,b,cに示す。 なお第3図〜第6図の中でaは広角端焦点距
離、bは中間焦点距離、cは望遠端焦点距離にお
ける収差図である。 なお数値実施例において、riはレンズ面の曲率
半径、diはレンズ厚あるいは空気間隔、Ndはd
線に対する屈折率、νdはd線に対するアツベ数
である。また3次収差係数は広角端焦点距離を1
に正規化した時の値である。
The present invention relates to a zoom lens with a large zoom ratio suitable for use in a 35 mm still camera. A zoom lens has the advantage of being able to freely change the size of the subject while keeping the camera fixed. In other words, the subject can be immediately changed to an optimal size and photographed according to the photographer's intention. So 8
For mm cameras, 5x to 10x zoom lenses are commonly used, and for TV cameras, 10x to 30x zoom lenses are commonly used. However, compared to an 8mm camera or TV camera that has a small screen size and shoots videos, a still camera that has a large screen size and takes still images requires higher optical performance. In order to realize a zoom lens with a very high magnification ratio, there was a big problem in correcting aberrations. The present invention has a film size of 50mm when using a 35mm film size.
The objective of the present invention is to provide a high-performance zoom lens with a high magnification ratio ranging from a standard lens of about 300 mm to a super telephoto lens of about 300 mm, and whose total length (from the first surface to the film surface) is shorter than the focal length at the telephoto end. There are two ways to reduce the size of a zoom lens: one is to shorten the variable power section, and the other is to shorten the relay section. Although the latter method has the advantage of suppressing aberration fluctuations due to zooming, the configuration of the relay section is limited to a telephoto type, making it difficult to correct aberrations throughout the entire system. The former method, on the other hand, has a problem in that aberration fluctuations caused by the zooming section increase as a result of zooming. In the former method, the present invention has successfully suppressed aberration fluctuations and achieved miniaturization. On the other hand, aberration fluctuations during zooming become a particular problem when realizing a high-performance zoom lens, and the larger the zoom ratio and the smaller the lens, the more they occur. The reason for this is that in order to make the lens more compact, the power of each lens group of the zoom lens is increased, which increases the amount of aberration in each lens group, and when changing the magnification, the aberration correction becomes unbalanced and aberration fluctuations increase. Among the lens groups, the movable lens group having a variable power function has the strongest power and moves the most, so it has the greatest effect on aberration fluctuations associated with variable power. In order to realize a zoom lens with a high magnification ratio and high performance, the present invention solves the above problems by providing a movable lens group with a variable magnification function with an appropriate lens arrangement and lens shape as shown below. It is something. The present invention consists of a positive lens group, a negative lens group, a positive lens group, and a negative lens group in this order.The lens group has a focusing function, and the lens group focuses on the optical axis. The lens group has the function of moving and changing the magnification, and the lens group has the function of always keeping the image plane position constant by reciprocating movement linked to the movement of the lens group. , is a so-called relay lens, and the first lens group includes, in order, a negative meniscus lens with a convex surface facing forward (object side), a bonded lens consisting of a biconcave and a biconvex lens, and a negative lens with a strongly concave surface facing forward. , the focal length of the bonded lens in the 1st lens group is F2 , the radius of curvature of the i-th lens surface in the 1st lens group is Ri, and the focal length at the wide-angle end of the entire system is Fω, the following conditions are satisfied: do. (1) -0.1/Fω<1/ F2 <0 (2) 1.1Fω< R4 <1.5Fω (3) 0.65< R6 / R3 <1.0 Next, we will explain the meaning of setting each condition. . If the power of the 1st lens group is strengthened in order to achieve a large magnification ratio and to reduce the size of the variable power section, large aberration fluctuations will occur due to the change in magnification. , the power is divided by forming the third lens group into three groups, but if the power is divided into equal parts, a large amount of negative distortion will occur on the wide-angle focal length side, so condition (1) is important. When the lower limit is exceeded, negative distortion becomes significant on the wide-angle focal length side, and when the upper limit is exceeded, the meaning of dividing the power is lost and aberration fluctuations accompanying zooming become large. The bonded surface in the second lens group contributes to the correction of spherical aberration and longitudinal chromatic aberration, but if the curvature becomes too strong, inner coma aberration and high-order aberration will occur on the wide-angle focal length side. Since chromatic aberration of magnification occurs, condition (2) is set. If the upper limit is exceeded, it becomes difficult to correct spherical aberration and longitudinal chromatic aberration, and if the lower limit is exceeded, inner coma aberration and high-order chromatic aberration of magnification will significantly occur on the wide-angle focal length side. Furthermore, by appropriately distributing power within the lens group, it is possible to appropriately correct spherical aberration, which tends to be overcorrected on the telephoto focal length side, which is achieved by condition (3). If the upper limit of condition (3) is exceeded, spherical aberration will be significantly overcorrected on the telephoto focal length side, and if the lower limit is exceeded, aberration fluctuations in comatic aberration and lateral chromatic aberration due to zooming will become significant. In addition to appropriately selecting the configuration of the first lens group, in order to suppress fluctuations in aberrations associated with zooming, the method of movement of the first lens group in conjunction with the movement of the first lens group on the optical axis during zooming is necessary. Although it is a well-known technique because it is important, I will add it just in case. If the position of the first lens group with respect to the image plane formed by the first lens group is optically conjugate to each other at the wide-angle end and the telephoto end of the focal length, the movement of the image plane due to the movement of the first lens group can be made into the same image. The way the first lens group moves to correct the surface is to have one inflection point and draw a smooth curve convex to the object side.
The position is the same at the wide-angle end and the telephoto end of the focal length. This example is characterized in that it is configured such that the focal length at the telephoto end is obtained before the first lens group moves to a position optically conjugate with the focal length at the wide-angle end. The magnification change due to only the 1st lens group is -1/Mmin to -Mmax considering from the wide-angle focal length side
(However, when changing to 0<1/Mmin<Mmax), by satisfying the condition (a) 0.5<Mmax/Mmin<0.8, fluctuations in spherical aberration due to zooming can be suppressed to a small value. Condition (a)
When the upper limit is exceeded, fluctuations in spherical aberration become large, and when the lower limit is exceeded, the power of each lens group becomes strong and various aberration fluctuations become large. As mentioned above, the third lens group with variable power function is shaped appropriately,
In addition, by appropriately moving the 1st lens group, the amount of aberration variation due to zooming can be kept small. It is possible to appropriately correct aberrations unrelated to Next, in a zoom lens that adopts the configuration of the first lens group described above, the first lens group includes a negative bonded lens with a concave surface facing forward, a positive meniscus lens with a convex surface facing forward, and a positive meniscus lens with a convex surface facing forward, and a rear (image A negative meniscus lens with a concave side facing toward the side) and a bonded positive lens with a bonded surface facing concave toward the rear, and in the lens group, the radius of curvature of the jth lens surface is Rj, The thickness or air gap of the jth lens is Dj, and the refractive index of the jth lens is N.
j, and when the Abbe number of the j-th lens is νj, it is desirable to satisfy the following conditions. ( 4 ) 0.4 _ _ 0.25Fω (8) 0.035/Fω<|N 6 −N 5 |/R 9
<0.065/Fω, however, N 6 <N 5 (9) 25 < ν 6 - ν 5 As a result, both aberration fluctuations associated with zooming occurring in the th to th lens groups and aberrations unrelated to zooming, A high-performance zoom lens with a large zoom ratio that is well-corrected can be realized. Next, each condition will be explained. Among the lens groups, on the wide-angle focal length side, the central light beam passes through the positive power lens group with a diameter close to the effective diameter, and on the telephoto focal length side, the central light beam passes through the positive power lens group and the positive power lens group. The central light beam passes through the lens group with a diameter close to the effective diameter. On the other hand, for the lens group having negative power, the central light beam does not have a diameter close to the effective diameter. As a result, even if the chromatic aberrations in each lens group are completely corrected, the spherical aberrations at short wavelengths in the central light beam incident on the first lens group are significantly overcorrected. Condition (4) is for correcting short wavelength spherical aberration, and if the upper limit is exceeded, correction becomes difficult, and if the lower limit is exceeded, short wavelength spherical aberration becomes undercorrected. The third group in the first lens group has a diverging effect,
When a positive power is imparted to the bonded surfaces, the first surface of the first group has a strongly concave surface in order to correct the aberrations generated at the bonded surfaces, resulting in higher-order spherical aberration. In other words, a significant sagittal halo occurs.
Condition (5) is for effectively correcting short wavelength spherical aberration without generating a sagittal halo.
Condition (6) is for correcting spherical aberration and astigmatism that cannot be corrected by the first lens group, and if the upper limit is exceeded, it becomes difficult to correct spherical aberration and astigmatism, so the lower limit is If it exceeds this, it will be over-corrected and the total length will become longer. Distortion that could not be corrected by the 1st to 3rd lens groups is corrected by the positive lens of the 4th group in the 4th group, but condition (7) is necessary to correct the distortion, and if the upper limit is exceeded, coma aberration occurs. In addition to this, the overall length becomes long, and if the lower limit is exceeded, the distortion of the pincushion becomes significant at the telephoto focal length side. Condition (8) is for correcting field curvature, and when the upper limit is exceeded, over-correction occurs, and when the lower limit is exceeded, under-correction becomes significant. Condition (9) is for correcting lateral chromatic aberration, and if the lower limit is exceeded, the correction will be significantly insufficient. The above has described the aberration fluctuations associated with zooming and the conditions for aberration correction that are not caused by zooming.Next, we will discuss aberration fluctuations during focusing.
However, these are standards commonly employed by lens designers. Aberration fluctuations due to focusing are most problematic at the telephoto end focal length. By optimizing the lens shape of the first lens group, aberration fluctuations, particularly spherical aberration fluctuations, can be suppressed to a small level. Furthermore, even if the performance of the reference wavelength is good on the telephoto side, if chromatic aberration is large, high performance cannot be obtained, so it is necessary to keep the correction of chromatic aberration particularly small on the long focal length side. On the long focal point side, the beam diameter is maximum in the first lens group, so
Correction in the first lens group is effective. Therefore,
In the 1st lens group, in order from the front, there is a laminated biconvex lens with a laminated surface facing forward with a convexity, and a positive lens with a strong convexity facing forward, and in the 1st lens group, the curvature of the kth lens The radius is Rk, the kth
When the refractive index of the th lens is Nk and the Atsube number of the k th lens is νk, (b) 0.30<|R 4 /R 3 |<0.38 (c) −0.05/Fω<1/R 5 <0.05/Fω (d) 40<ν 2 −ν 1 (e) 0.25<N 1 −N 2 The conditions are effective for aberration fluctuations due to focusing and chromatic aberration on the telephoto side. Conditions (b) and (c) are intended to keep aberration fluctuations due to focusing small; if both exceed their upper limits, aberration fluctuations due to focusing will increase, and performance for close objects will deteriorate, especially on the telephoto side. If the lower limit is exceeded, comatic aberration and distortion on the telephoto side become significant, and correction becomes difficult in the lens system below the 1st lens group. Condition (d) is to correct chromatic aberration at the telephoto end, and if the lower limit is exceeded, chromatic aberration will cause
Performance at the telephoto end is significantly degraded. Condition (e) is for correcting spherical aberration and coma aberration on the telephoto side in a well-balanced manner, and if the lower limit is exceeded, coma aberration will occur significantly. In order to realize conditions (d) and (e), it is effective to use special glass with a low refractive index and low dispersion. The present invention has succeeded in improving the optical performance on the telephoto side, which is a problem with large zoom ratios, by using this special glass for the second glass in the first group, which is most effective in zoom lens systems. Next, examples according to the present invention will be described. The lens cross-sectional shapes of Examples 1 and 2 are shown in FIGS. 1 and 2, and the spherical aberration, astigmatism, and distortion of Examples 1, 2, 3, and 4 are Aberrations and chromatic aberrations of magnification are shown in Figure 3 a, b, c~
Shown in Figures 6a, b, and c. In FIGS. 3 to 6, a is an aberration diagram at the wide-angle end focal length, b is an intermediate focal length, and c is an aberration diagram at the telephoto end focal length. In the numerical examples, ri is the radius of curvature of the lens surface, di is the lens thickness or air gap, and Nd is d.
The refractive index for the line, νd, is the Abbe number for the d line. Also, the third-order aberration coefficient is 1 when the focal length at the wide-angle end is
This is the value when normalized to .

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1のレンズ断面図。第2図は実
施例2のレンズ断面図。第3図a,b,cは実施
例1の広角、中間、望遠端における無限遠物体に
対する縦収差曲線図。第4図a,b,cは実施例
2の縦収差曲線図。第5図a,b,cは実施例3
の縦収差曲線図。第6図a,b,cは実施例4の
縦収差曲線図。図中、riはレンズ面の曲率半径、
diはレンズ厚もしくは空気間隔、dはd線の収差
曲線、gはg線の収差曲線、△Mはメリデイオナ
ル像面、△Sはサジタル像面である。
FIG. 1 is a sectional view of the lens of Example 1. FIG. 2 is a sectional view of the lens of Example 2. FIGS. 3a, b, and c are longitudinal aberration curve diagrams for an object at infinity at the wide-angle, intermediate, and telephoto ends of Example 1. FIGS. 4a, b, and c are longitudinal aberration curve diagrams of Example 2. Figure 5 a, b, and c are Example 3
A longitudinal aberration curve diagram of . FIGS. 6a, b, and c are longitudinal aberration curve diagrams of Example 4. In the figure, ri is the radius of curvature of the lens surface.
di is the lens thickness or air gap, d is the d-line aberration curve, g is the g-line aberration curve, ΔM is the meridional image surface, and ΔS is the sagittal image surface.

Claims (1)

【特許請求の範囲】 1 順に、正の第レンズ群、負の第レンズ
群、正の第レンズ群そして負の第レンズ群を
配置したズームレンズに於いて、第レンズ群は
フオーカシングの機能を有し、第レンズ群は光
軸上を移動して変倍する機能を有し、第レンズ
群は第レンズ群の移動による像面の移動を補正
するために往復運動をするものとし、第レンズ
群は順に、前方へ凸を向けた負のメニスカスレン
ズ、両凹と両凸から成る貼合せレンズそして前方
へ強い凹面を向けた負レンズから成り、第レン
ズ群貼合せレンズの集点距離をF、第レン
ズ群中で第i番目のレンズ面の曲率半径Ri、
全系の広角端の焦点距離をFωとするとき、 (1) −0.1/Fω<1/F<0 (2) 1.1Fω<R<1.5Fω (3) 0.65<R/R<1.0 の各条件を満足することを特徴とするズームレン
ズ。 2 順に、正の第レンズ群、負の第レンズ
群、正の第レンズ群そして負の第レンズ群を
配置したズームレンズに於いて、第レンズ群は
フオーカシングの機能を有し、第レンズ群は光
軸上を移動して変倍する機能を有し、第レンズ
群は第レンズ群の移動による像面の移動を補正
するために往復運動をするものとし、第レンズ
群は順に前方へ凸を向けた負のメニスカスレン
ズ、両凹と両凸から成る貼合せレンズそして前方
へ強い凹面を向けた負レンズを有しまた第群は
順に貼合せ面が前方へ凹を向けた貼合せ両凹レン
ズ、前方へ凸を向けた正のメニスカスレンズ、後
方へ凹を向けた負メニスカスレンズそして貼合せ
面が後方へ凹を向けた貼合せ正レンズを有し、第
レンズ群貼合せレンズの焦点距離をF、第
レンズ群中で第i番目のレンズ面の曲率半径を
Ri、第レンズ群中で第j番目のレンズ面の
曲率半径をRj、第j番目のレンズ厚もしくは
空気間隔をDj、第j番目のレンズの屈折率を
Nj、第j番目のレンズのアツベ数をνj、
全系の広角端の焦点距離をFωとするとき、 (1) −0.1/Fω<1/F<0 (2) 1.1Fω<R<1.5Fω (3) 0.65<R/R<1.0 (4) 0.4Fω<|R|<0.5Fω、但しR
<0 (5) N−N<0.05 (6) 0.9<R/R<1.3 (7) 0.14Fω<D<0.25Fω (8) 0.035/Fω<|N−N|/R
<0.065/Fω、 但しN<N (9) 25<ν−ν の各条件を満足することを特徴とするズームレン
ズ。
[Claims] 1. In a zoom lens in which a positive first lens group, a negative first lens group, a positive first lens group, and a negative first lens group are arranged in order, the first lens group has a focusing function. However, the first lens group has a function of changing magnification by moving on the optical axis, and the second lens group makes reciprocating motion to correct the movement of the image plane due to the movement of the first lens group. consists of a negative meniscus lens with a convex surface facing forward, a laminated lens consisting of biconcave and biconvex lenses, and a negative lens with a strongly concave surface facing forward, and the focal length of the laminated lens of the first lens group is F2 , the radius of curvature Ri of the i-th lens surface in the lens group,
When the focal length of the entire system at the wide-angle end is Fω, (1) −0.1/Fω<1/F 2 <0 (2) 1.1Fω<R 4 <1.5Fω (3) 0.65<R 6 /R A zoom lens characterized by satisfying each of the following conditions: 3 <1.0. 2. In a zoom lens in which a positive lens group, a negative lens group, a positive lens group, and a negative lens group are arranged in order, the first lens group has a focusing function, and the third lens group has a focusing function. It has the function of changing magnification by moving on the optical axis, and the first lens group makes reciprocating motion to correct the movement of the image plane due to the movement of the first lens group, and the first lens group convexes forward in order. The group includes a negative meniscus lens with a concave surface facing forward, a laminated lens consisting of a biconcave and a biconvex lens, and a negative lens with a strongly concave surface facing forward; It has a positive meniscus lens with a convex side facing forward, a negative meniscus lens with a concave side facing backward, and a bonded positive lens with a bonded surface facing concave backward, and the focal length of the bonded lens in the first lens group is F. 2. The radius of curvature of the i-th lens surface in the lens group is Ri, the radius of curvature of the j-th lens surface in the lens group is Rj, the thickness or air gap of the j-th lens is Dj, and the j-th lens surface is Dj. The refractive index of the th lens is Nj, the Atsube number of the jth lens is νj,
When the focal length of the entire system at the wide-angle end is Fω, (1) −0.1/Fω<1/F 2 <0 (2) 1.1Fω<R 4 <1.5Fω (3) 0.65<R 6 /R 3 <1.0 (4) 0.4Fω<|R 2 |<0.5Fω, however, R 2
<0 (5) N 2 -N 1 <0.05 (6) 0.9<R 7 /R 4 <1.3 (7) 0.14Fω<D 7 <0.25Fω (8) 0.035/Fω<|N 6 -N 5 |/R 9
A zoom lens characterized by satisfying the following conditions: <0.065/Fω, provided that N 6 <N 5 (9) 25 < ν 6 - ν 5 .
JP1992279A 1979-02-22 1979-02-22 Zoom lens Granted JPS55111915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992279A JPS55111915A (en) 1979-02-22 1979-02-22 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992279A JPS55111915A (en) 1979-02-22 1979-02-22 Zoom lens

Publications (2)

Publication Number Publication Date
JPS55111915A JPS55111915A (en) 1980-08-29
JPS6144289B2 true JPS6144289B2 (en) 1986-10-02

Family

ID=12012705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992279A Granted JPS55111915A (en) 1979-02-22 1979-02-22 Zoom lens

Country Status (1)

Country Link
JP (1) JPS55111915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503210A (en) * 1986-04-28 1988-11-24 ドウソン オフシヨア プロプライアタリー リミテツド rotating cleaner device
JPH0434477B2 (en) * 1986-06-13 1992-06-08 Iseki Kaihatsu Koki

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735822A (en) * 1980-08-14 1982-02-26 Canon Inc Zoom lens
JPS57169716A (en) * 1981-04-10 1982-10-19 Minolta Camera Co Ltd Zoom lens system of high variable magnification including wide angle region
JPS57168209A (en) * 1981-04-09 1982-10-16 Minolta Camera Co Ltd Zoom lens system
JPH0629907B2 (en) * 1985-08-22 1994-04-20 キヤノン株式会社 Zoom lens with large aperture ratio
JP4586961B2 (en) * 2004-03-30 2010-11-24 株式会社ニコン Zoom lens with anti-vibration function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109739A (en) * 1974-02-04 1975-08-29
JPS52128152A (en) * 1976-04-20 1977-10-27 Olympus Optical Co Ltd Highly variable multiplying zoom lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109739A (en) * 1974-02-04 1975-08-29
JPS52128152A (en) * 1976-04-20 1977-10-27 Olympus Optical Co Ltd Highly variable multiplying zoom lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503210A (en) * 1986-04-28 1988-11-24 ドウソン オフシヨア プロプライアタリー リミテツド rotating cleaner device
JPH0434477B2 (en) * 1986-06-13 1992-06-08 Iseki Kaihatsu Koki

Also Published As

Publication number Publication date
JPS55111915A (en) 1980-08-29

Similar Documents

Publication Publication Date Title
JP3710609B2 (en) Small zoom lens
JPH05173071A (en) Wide angle zoom lens
JPH09325274A (en) Zoom lens
JPH05173073A (en) Three-group zoom lens
JPS62235916A (en) Zoom lens
JPH0777656A (en) Zoom lens
JPH05157965A (en) Wide-angle lens
JP3033149B2 (en) Compact zoom lens
JPH0359406B2 (en)
JPH0921950A (en) Zoom lens
JPH07140388A (en) Zoom lens
JPS6119967B2 (en)
JP3821330B2 (en) Zoom lens
JPH0414763B2 (en)
JP3723643B2 (en) High zoom ratio zoom lens system
JPH0727976A (en) Small-sized two-group zoom lens system
JPS6144289B2 (en)
US5054899A (en) Medium telephoto lens system
JPH0640170B2 (en) High-magnification wide-angle zoom lens
JP3219574B2 (en) Zoom lens
JP2924119B2 (en) Zoom lens
JP2004264457A (en) Super-high magnifying zoom lens
JP4171942B2 (en) Zoom lens
JPH0634883A (en) Super wide-angle variable power zoom lens
JPS6116962B2 (en)