JP2021032959A - Image-capturing optical system - Google Patents

Image-capturing optical system Download PDF

Info

Publication number
JP2021032959A
JP2021032959A JP2019150492A JP2019150492A JP2021032959A JP 2021032959 A JP2021032959 A JP 2021032959A JP 2019150492 A JP2019150492 A JP 2019150492A JP 2019150492 A JP2019150492 A JP 2019150492A JP 2021032959 A JP2021032959 A JP 2021032959A
Authority
JP
Japan
Prior art keywords
lens
lens group
lenses
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019150492A
Other languages
Japanese (ja)
Other versions
JP7306687B2 (en
Inventor
靖之 菅野
Yasuyuki Sugano
靖之 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosina Co Ltd
Original Assignee
Cosina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosina Co Ltd filed Critical Cosina Co Ltd
Priority to JP2019150492A priority Critical patent/JP7306687B2/en
Publication of JP2021032959A publication Critical patent/JP2021032959A/en
Application granted granted Critical
Publication of JP7306687B2 publication Critical patent/JP7306687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To achieve a bright interchangeable lens that gets stabilization of the lens with a fluctuation of various kinds of aberrations reduced in an entire focusing image-capturing area, and covers a sufficient optical performance in a standard lens area from a semi-wide angle area.SOLUTION: An image-capturing optical system comprises: a front lens group 101 that has a pair of negative lenses L1 and L4 arranged on both sides of two or three positive lenses L2..., and is configured to use a meniscus lens in which both surfaces face an air space S, and a convex surface is on an object OBJ side for the negative lens L4 on an aperture stop STO side; and a rear lens group 102 that has a pair of negative lenses L5 and L8 arranged on both sides of positive lenses L6 and L7 using two double-sided convex lenses, uses a double-sided concave lens for the negative lens L8 on an image IMG side, and is configured to arrange a final lens L9 arranged at the back of the negative lens L8 on the image IMG side, and by an aspherical lens in which both surfaces face the air space S and both curve surfaces are curved in the same direction of an optical axis Dc.SELECTED DRAWING: Figure 1

Description

本発明は、デジタルカメラ等に使用する交換レンズの光学系に用いて好適な撮像光学系に関する。 The present invention relates to an imaging optical system suitable for use in an optical system of an interchangeable lens used in a digital camera or the like.

一般に、デジタルカメラ等に使用する交換レンズは、ミラーレス化やマウントの大口径化により、バックフォーカスや後玉径の制約が少なくなり、レンズタイプのバリエーションが広がっているとともに、反面、画像素子の大型化や高性能化(高精細化)により、広角から中望遠域(撮影対角画角70−40゜)の明るい交換レンズでは、Fナンバー2.2以下が普通になり、より明るいレンズが求められている。また、デジタルカメラ本体の小型化により、交換レンズのコンパクト化、更には、消費者ニーズによるフォーカシング撮影領域全体における収差安定化も求められている。 In general, interchangeable lenses used in digital cameras, etc. have less restrictions on back focus and rear lens diameter due to mirrorlessness and larger mount diameters, and the variety of lens types is expanding. Due to the increase in size and performance (high definition), bright interchangeable lenses in the wide to medium telescope range (shooting diagonal angle of view 70-40 °) have a F number of 2.2 or less, and brighter lenses have become more common. It has been demanded. Further, by downsizing the digital camera body, it is required to make the interchangeable lens compact, and further to stabilize the aberration in the entire focusing shooting region according to consumer needs.

このような要請から、開口絞りに対して光軸方向の物体側に前群(レンズ群)を配するとともに、像側に後群(レンズ群)を配することにより、軸外主光線の各レンズ面への入射角を小さくし、各レンズ面における非点収差やコマ収差の発生を抑制できるようにした対称配置タイプのレンズ構成を備える光学系も知られている。特に、この種の対称配置タイプの光学系では、レンズの屈折力配置が開口絞りを中心にして対称に近いほど、コマ収差,歪曲収差,倍率色収差等を、前群と後群間で打ち消し合うことができるため、光学系全体として良好な収差補正を実現できる。しかし、この種の対称配置タイプは、一般に、撮影倍率が高くなり、無限遠物体には対応していないとともに、結像サイズなどの仕様も大きく異なるため、用途としては、主に、複写用レンズや製版カメラ用レンズなどの特定分野に限られている。一方、この種の一般的な対称配置タイプのレンズ構成を変形させることにより、デジタルカメラ等のカメラ用レンズとして使用できるようにした撮像光学系も提案されている。 In response to such a request, the front group (lens group) is arranged on the object side in the optical axis direction with respect to the aperture aperture, and the rear group (lens group) is arranged on the image side. An optical system having a symmetrical arrangement type lens configuration is also known in which the angle of incidence on the lens surface is reduced so that the occurrence of astigmatism and coma on each lens surface can be suppressed. In particular, in this type of symmetric arrangement type optical system, the closer the lens refractive power arrangement is to symmetry with respect to the aperture diaphragm, the more coma, distortion, chromatic aberration of magnification, etc. cancel each other out between the front group and the rear group. Therefore, good aberration correction can be realized for the entire optical system. However, this type of symmetrical arrangement type generally has a high imaging magnification, does not support infinity objects, and has significantly different specifications such as imaging size. Therefore, it is mainly used as a copying lens. It is limited to specific fields such as lenses for plate-making cameras. On the other hand, an imaging optical system has also been proposed that can be used as a lens for a camera such as a digital camera by modifying the lens configuration of this kind of general symmetrical arrangement type.

従来、このような撮像光学系、特に、Fナンバーが2.2以下となり、開口絞りの前後に3−5枚のレンズを配した対称配置タイプの撮影光学系は、特許文献1−5により知られている。特許文献1は、5枚レンズにより構成することにより、Fナンバーが1.9の準広角レンズとなるレンズシャッター式カメラ用レンズに適用したものであり、特許文献2は、準画角を32゜とし、Fナンバーが1.4の準広角レンズとなるカメラ対物レンズに適用したものである。また、特許文献3−5は、遠点撮影を考慮したFナンバーが2.8のカメラ用レンズとなる結像レンズに適用したものである。 Conventionally, such an imaging optical system, particularly a symmetrical arrangement type photographing optical system in which an F number is 2.2 or less and 3 to 5 lenses are arranged before and after the aperture diaphragm, is known from Patent Document 1-5. Has been done. Patent Document 1 is applied to a lens for a lens shutter type camera, which is a quasi-wide-angle lens having an F number of 1.9 by being composed of five lenses, and Patent Document 2 has a quasi-angle of view of 32 °. This is applied to a camera objective lens that is a quasi-wide-angle lens with an F number of 1.4. Further, Patent Document 3-5 is applied to an imaging lens which is a camera lens having an F number of 2.8 in consideration of long-distance photography.

特開昭62−183419号公報Japanese Unexamined Patent Publication No. 62-183419 特開平5−80252号公報Japanese Unexamined Patent Publication No. 5-80252 特開2013−250534号公報Japanese Unexamined Patent Publication No. 2013-250534 特開2014−59466号公報Japanese Unexamined Patent Publication No. 2014-594666 特開2016−218486号公報Japanese Unexamined Patent Publication No. 2016-218486

しかし、上述した特許文献1−5に開示された従来におけるレンズ(撮像光学系)は次のような問題点があった。 However, the conventional lens (imaging optical system) disclosed in Patent Document 1-5 described above has the following problems.

第一に、Fナンバーを2.2以下とし、開口絞りの前後に3−5枚のレンズを配する対称配置タイプの撮像光学系の場合、基本的に、遠距離側の光学性能は確保できるとしても、近距離側における十分な光学性能を確保しにくい傾向がある。このように、近距離側、具体的には、広角から中望遠域(撮影対角画角70−40゜)の範囲を十分な光学性能によりカバーする明るい交換レンズの実現は容易でなく、現在においても、このような交換レンズを希望する消費者ニーズに十分に応えていないのが実情である。 First, in the case of a symmetrically arranged type imaging optical system in which the F number is 2.2 or less and 3 to 5 lenses are arranged before and after the aperture diaphragm, the optical performance on the long distance side can be basically ensured. Even so, it tends to be difficult to secure sufficient optical performance on the short-distance side. In this way, it is not easy to realize a bright interchangeable lens that covers the short-range side, specifically, the wide-angle to medium-telephoto range (shooting diagonal angle of view 70-40 °) with sufficient optical performance. However, the reality is that it does not fully meet the needs of consumers who desire such interchangeable lenses.

第二に、対称配置タイプの撮像光学系の場合、Fナンバーをより小さくしたり、撮影画角を変更する場合、基本的な傾向として、非点収差や色収差が増大する問題がある。したがって、フォーカシング撮影領域全体における各種収差の変動を少なくし、その安定化を図るとともに、大型高精細撮像素子に対応し、かつ小型コンパクト化を図るデジタルカメラ等に使用する交換レンズを得る観点からも、その課題が十分に解決されているとは言えず、更なる改善の余地があった。
本発明は、このような背景技術に存在する課題を解決した撮像光学系の提供を目的とするものである。
Secondly, in the case of the symmetrical arrangement type imaging optical system, when the F number is made smaller or the shooting angle of view is changed, there is a problem that astigmatism and chromatic aberration increase as a basic tendency. Therefore, from the viewpoint of obtaining an interchangeable lens used for a digital camera or the like that is compatible with a large high-definition image sensor and is compact and compact, while reducing fluctuations in various aberrations in the entire focusing imaging region and stabilizing the aberration. However, it cannot be said that the problem has been sufficiently solved, and there is room for further improvement.
An object of the present invention is to provide an imaging optical system that solves the problems existing in such a background technique.

本発明は、上述した課題を解決するため、開口絞りSTOに対して光軸Dc方向の物体OBJ側に前レンズ群101を配し、かつ像IMG側に後レンズ群102を配した対称配置タイプのレンズ構成を備える撮像光学系Cにおいて、連続した2又は3枚の正レンズL2…を含む正レンズ群Lf,及びこの正レンズ群Lfの両側に配した一対の負レンズL1,L4を有し、かつ開口絞りSTO側の負レンズL4に、両面が空気空間Sに面する、物体OBJ側が凸面になるメニスカスレンズを用いて構成した前レンズ群101と、2枚の両凸レンズを用いた正レンズL6,L7が連続する正レンズ群Lr,及びこの正レンズ群Lrの両側に配した一対の負レンズL5,L8を有し、かつ像IMG側の負レンズL8に両凹レンズを用いるとともに、像IMG側の負レンズL8の後方に配し、かつ両面が空気空間Sに面するとともに、両曲面が光軸Dcの同一方向に湾曲した非球面レンズによる最終レンズL9を配して構成した後レンズ群102とを備えることを特徴とする。 In order to solve the above-mentioned problems, the present invention is a symmetrical arrangement type in which the front lens group 101 is arranged on the object OBJ side in the optical axis Dc direction and the rear lens group 102 is arranged on the image IMG side with respect to the aperture aperture STO. In the imaging optical system C having the lens configuration of the above, the positive lens group Lf including two or three continuous positive lenses L2 ... And a pair of negative lenses L1 and L4 arranged on both sides of the positive lens group Lf are provided. A front lens group 101 composed of a negative lens L4 on the aperture aperture STO side, a meniscus lens having both sides facing the air space S and a convex surface on the object OBJ side, and a positive lens using two biconvex lenses. It has a positive lens group Lr in which L6 and L7 are continuous, and a pair of negative lenses L5 and L8 arranged on both sides of the positive lens group Lr. A rear lens group configured by arranging the final lens L9, which is an aspherical lens whose curved surfaces are curved in the same direction of the optical axis Dc, while being arranged behind the negative lens L8 on the side and both sides facing the air space S. It is characterized by having 102.

この場合、発明の好適な態様により、前レンズ群101は、物体OBJ側に、当該物体OBJ側が凹面になる負レンズL1を設けて構成するとともに、両曲面が光軸Dcの物体OBJ側に湾曲した少なくとも1つの非球面レンズを含ませて構成することができる。また、後レンズ群102には、開口絞りSTO側に配し、かつ当該開口絞りSTO側が凹面になる負レンズL5を設けるとともに、像IMG側に配し、かつ像IMG側が空気空間Sに面する負レンズL8を設けることができる。さらに、前レンズ群101を構成するに際しては、物体OBJ側に配し、かつ両凹レンズを用いた負レンズL1,両曲面が光軸Dcの物体OBJ側に湾曲し、かつ非球面レンズを用いた物体OBJ側に位置する正レンズL2,及び開口絞りSTO側に配するとともに、物体OBJ側が凸面になる負レンズL4を備えて構成することができるとともに、後レンズ群102を構成するに際しては、両凹レンズを用いた負レンズL5,L8と両凸レンズを用いた正レンズL6,L7を接合した二つの接合レンズJ56,J78により構成し、二つの接合レンズJ56,J78の正レンズL6,L7同士を対向させて配するとともに、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成することもできる。 In this case, according to a preferred embodiment of the present invention, the front lens group 101 is configured by providing a negative lens L1 having a concave surface on the object OBJ side on the object OBJ side, and both curved surfaces are curved toward the object OBJ side on the optical axis Dc. It can be configured by including at least one aspherical lens. Further, the rear lens group 102 is provided with a negative lens L5 arranged on the aperture diaphragm STO side and having a concave surface on the aperture diaphragm STO side, and is arranged on the image IMG side and the image IMG side faces the air space S. A negative lens L8 can be provided. Further, when constructing the front lens group 101, a negative lens L1 which is arranged on the object OBJ side and uses a biconcave lens, both curved surfaces are curved toward the object OBJ side of the optical axis Dc, and an aspherical lens is used. A positive lens L2 located on the object OBJ side and a negative lens L4 having an aperture aperture STO side arranged on the object OBJ side and a negative lens L4 having a convex surface on the object OBJ side can be provided. It is composed of two bonded lenses J56 and J78, which are a combination of negative lenses L5 and L8 using a concave lens and positive lenses L6 and L7 using a biconvex lens, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 face each other. It is also possible to configure both concave lenses of one of the bonded lenses J56 as a negative lens L5 on the aperture aperture STO side.

加えて、本発明は、発明の好適な態様により、後レンズ群102の開口絞りSTO側の負レンズL5から像IMG側の負レンズL8の焦点距離をBFLとし、レンズ全系の焦点距離をEFLとしたとき、「0.7<BFL/EFL<1.6」の条件を満たすように構成することが望ましいとともに、前レンズ群101における正レンズL2…の硝材における異常部分分散性ΔθgFの絶対値が0.015以上となる全ての当該正レンズの焦点距離をEGFLとし、前レンズ群101における全ての正レンズL2…の焦点距離の最大値をAGMXとしたとき、「0.6<EGFL/AGMX<1.2」を満たすように構成することが望ましい。一方、前レンズ群101及び後レンズ群102のそれぞれに1枚の非球面レンズを含めるとともに、各非球面レンズを同一形状に形成し、かつ光軸Dc方向において対称に配することができる。他方、前レンズ群101及び後レンズ群102におけるフォーカス調整時に変化する空気間隔の前後の部分レンズ群(指定レンズ群)Lp…は、最大3つの指定レンズ群Lp…を移動可能に構成することができ、この際、フォーカス調整時に変化する空気間隔は、開口絞りSTOを含む空気間隔,前レンズ群101の2枚の正レンズL2.L3間の空気間隔,後レンズ群102の2枚の正レンズL6,L7間の空気間隔の少なくとも1つを含ませることができる。さらに、前レンズ群101の焦点距離FFLと後レンズ群102の焦点距離RFLが共に正パワーのとき、フォーカス調整時には、レンズ全系を物体OBJ側に移動させて像IMG側の空気間隔を変化させる構成を設けることができる。 In addition, according to a preferred embodiment of the present invention, the focal length of the negative lens L5 on the aperture aperture STO side of the rear lens group 102 to the negative lens L8 on the image IMG side is set to BFL, and the focal length of the entire lens system is set to EFL. Then, it is desirable to configure the lens so as to satisfy the condition of "0.7 <BFL / EFL <1.6", and the absolute value of the abnormal partial dispersibility ΔθgF in the glass material of the positive lens L2 ... In the front lens group 101. When the focal lengths of all the positive lenses having a value of 0.015 or more are EGFL and the maximum value of the focal lengths of all the positive lenses L2 ... In the front lens group 101 is AGMX, "0.6 <EGFL / AGMX". It is desirable to configure it so as to satisfy <1.2 ". On the other hand, one aspherical lens can be included in each of the front lens group 101 and the rear lens group 102, and each aspherical lens can be formed into the same shape and arranged symmetrically in the optical axis Dc direction. On the other hand, the partial lens group (designated lens group) Lp ... Before and after the air spacing that changes during focus adjustment in the front lens group 101 and the rear lens group 102 may be configured to be movable up to three designated lens groups Lp ... At this time, the air spacing that changes during focus adjustment is the air spacing including the aperture aperture STO, and the two positive lenses L2 of the front lens group 101. At least one of the air spacing between L3 and the air spacing between the two positive lenses L6 and L7 of the rear lens group 102 can be included. Further, when the focal length FFL of the front lens group 101 and the focal length RFL of the rear lens group 102 are both positive powers, the entire lens system is moved to the object OBJ side to change the air spacing on the image IMG side at the time of focus adjustment. A configuration can be provided.

このような構成を有する本発明に係る撮像光学系Cによれば、次のような顕著な効果を奏する。 According to the imaging optical system C according to the present invention having such a configuration, the following remarkable effects are obtained.

(1) レンズ構成を、小型光学系に有利となる開口絞りSTOに対して対称性を有する対称配置タイプにより構成するとともに、前レンズ群101及び後レンズ群102における内部のレンズ群(部分対称レンズ群)も対称性を有するパワー配分にしたため、各レンズ群101,102内における収差の発生及び収差の補正を適切な状態にバランスさせることができる。特に、両面が空気空間Sに面するとともに、両曲面が光軸Dcの同一方向に湾曲した非球面レンズによる最終レンズL9を含ませたため、軸上光線と軸外光線の分離度が増加し、残存収差に対する補正効果を高めることができるとともに、対称配置タイプの効果を高めることができる。これにより、フォーカシング撮影領域全体における各種収差の変動を少なくしてその安定性を高めることができるとともに、Fナンバーを2.2以下とし、準広角域から標準レンズ域において十分な光学性能をカバーする明るい交換レンズを得ることができ、もって、大型高精細撮像素子に対応し、かつ小型コンパクト化を図るデジタルカメラ等に使用する最適な交換レンズを提供することができる。 (1) The lens configuration is configured by a symmetrical arrangement type having symmetry with respect to the aperture aperture STO, which is advantageous for a small optical system, and the internal lens group (partially symmetric lens) in the front lens group 101 and the rear lens group 102. Since the power distribution of the group) also has symmetry, it is possible to balance the occurrence of aberration and the correction of the aberration in the lens groups 101 and 102 in an appropriate state. In particular, since both sides face the air space S and both curved surfaces include the final lens L9 made of an aspherical lens curved in the same direction of the optical axis Dc, the degree of separation between the on-axis ray and the off-axis ray increases. The correction effect on the residual aberration can be enhanced, and the effect of the symmetrical arrangement type can be enhanced. As a result, it is possible to reduce fluctuations in various aberrations in the entire focusing shooting region and improve its stability, and set the F number to 2.2 or less to cover sufficient optical performance in the quasi-wide-angle range to the standard lens range. It is possible to obtain a bright interchangeable lens, and thus it is possible to provide an optimal interchangeable lens used for a digital camera or the like that is compatible with a large high-definition image sensor and is compact and compact.

(2) 好適な態様により、前レンズ群101を構成するに際して、物体OBJ側に、当該物体OBJ側が凹面になる負レンズL1を設けて構成するとともに、両曲面が光軸Dcの物体OBJ側に湾曲した少なくとも1つの非球面レンズを含ませて構成すれば、レンズ面に凸面を多用し、入射角と屈折角を緩やかにできるため、前レンズ群101において入射光の収斂作用を高めた場合であっても、収差発生を抑制することができるとともに、全体のコンパクト化にも寄与できる。しかも、各画角の光線の各レンズ面における通過点の角度差を小さくできるため、大きな光束の収差補正を有利に行うことができる。 (2) According to a preferred embodiment, when the front lens group 101 is configured, a negative lens L1 having a concave surface on the object OBJ side is provided on the object OBJ side, and both curved surfaces are on the object OBJ side of the optical axis Dc. If at least one curved aspherical lens is included, a convex surface is often used on the lens surface, and the incident angle and the refraction angle can be made gentle. Therefore, in the case where the converging action of the incident light is enhanced in the front lens group 101. Even if there is, it is possible to suppress the occurrence of aberration and contribute to the overall compactness. Moreover, since the angle difference between the passing points of the light rays of each angle of view on each lens surface can be reduced, it is possible to advantageously correct the aberration of a large luminous flux.

(3) 好適な態様により、後レンズ群102に、開口絞りSTO側に配し、かつ当該開口絞りSTO側が凹面になる負レンズL5を設けるとともに、像IMG側に配し、かつ像IMG側が空気空間Sに面する負レンズL8を設ければ、使用するレンズの小径化(小径化)を図ることができるため、レンズ加工を有利に行うことができるとともに、対称配置タイプとなるレンズ構成の構築を容易に行うことができる。 (3) According to a preferred embodiment, the rear lens group 102 is provided with a negative lens L5 that is arranged on the aperture diaphragm STO side and has a concave surface on the aperture diaphragm STO side, and is arranged on the image IMG side and the image IMG side is air. If the negative lens L8 facing the space S is provided, the diameter of the lens to be used can be reduced (reduced in diameter), so that lens processing can be advantageously performed and a lens configuration having a symmetrical arrangement type can be constructed. Can be easily performed.

(4) 好適な態様により、前レンズ群101を構成するに際し、物体OBJ側に配し、かつ両凹レンズを用いた負レンズL1,両曲面が光軸Dcの物体OBJ側に湾曲し、かつ非球面レンズを用いた物体OBJ側に位置する正レンズL2,及び開口絞りSTO側に配するとともに、物体OBJ側が凸面になる負レンズL4を備えて構成すれば、前レンズ群101に、物体OBJ側に強い負の両凹レンズや非球面レンズを含めた構成にできるため、準広角領域から標準領域の画角において、広い入射角の収差補正効果を高めることができる。 (4) According to a preferred embodiment, when the front lens group 101 is formed, the negative lens L1 arranged on the object OBJ side and using the biconcave lens, both curved surfaces are curved toward the object OBJ side of the optical axis Dc, and are not. If a positive lens L2 located on the object OBJ side using a spherical lens and a negative lens L4 having an aperture aperture STO side arranged on the object OBJ side and a negative lens L4 having a convex surface on the object OBJ side are provided, the front lens group 101 is on the object OBJ side. Since it is possible to include a negative biconcave lens and an aspherical lens that are strong against the sun, it is possible to enhance the effect of correcting the aberration of a wide incident angle in the field angle from the quasi-wide angle region to the standard region.

(5) 好適な態様により、後レンズ群102を構成するに際し、両凹レンズを用いた負レンズL5,L8と両凸レンズを用いた正レンズL6,L7を接合した二つの接合レンズJ56,J78により構成し、二つの接合レンズJ56,J78の正レンズL6,L7同士を対向させて配するとともに、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成すれば、アッベ数に差を設けることにより軸外色収差の補正を容易かつ有効に行うことができるとともに、屈折率に差を設けることにより球面収差の補正をより強化することができる。これにより、前レンズ群101の残存収差をバランス良く補正することが可能になり、接合レンズJ56とJ78間を調整空間として収差変動を少なくすることができる。しかも、後レンズ群102の開口絞りSTOに近いレンズ面を開口絞りSTOに対向させることができるため、対称配置タイプを用いたレンズ構成の有効性をより高めることができる。 (5) According to a preferred embodiment, when the rear lens group 102 is configured, it is composed of two bonded lenses J56 and J78 in which negative lenses L5 and L8 using a biconcave lens and positive lenses L6 and L7 using a biconvex lens are joined. However, if the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other and the concave lenses of one of the bonded lenses J56 are configured as the negative lens L5 on the aperture aperture STO side, there is a difference in the number of abbreviations. It is possible to easily and effectively correct the off-axis chromatic aberration by providing the lens, and it is possible to further strengthen the correction of the spherical lens by providing a difference in the refractive index. As a result, the residual aberration of the front lens group 101 can be corrected in a well-balanced manner, and the aberration fluctuation can be reduced by setting the space between the junction lenses J56 and J78 as an adjustment space. Moreover, since the lens surface of the rear lens group 102 close to the aperture diaphragm STO can be made to face the aperture diaphragm STO, the effectiveness of the lens configuration using the symmetrical arrangement type can be further enhanced.

(6) 好適な態様により、後レンズ群102の開口絞りSTO側の負レンズL5から像IMG側の負レンズL8の焦点距離をBFLとし、レンズ全系の焦点距離をEFLとしたとき、「0.7<BFL/EFL<1.6」の条件を満たすように構成すれば、後レンズ群102における適切な屈折力バランスを確保できるため、適正なバックフォーカスや全長、更には明るさを得ることができるとともに、前レンズ群101や最終レンズL9の収差補正に負荷をかけ過ぎることなく良好な像性能を得ることができる。 (6) According to a preferred embodiment, when the focal length of the negative lens L5 on the aperture aperture STO side of the rear lens group 102 to the negative lens L8 on the image IMG side is BFL and the focal length of the entire lens system is EFL, "0". If the condition of .7 <BFL / EFL <1.6 "is satisfied, an appropriate balance of refractive force in the rear lens group 102 can be ensured, so that an appropriate back focus, total length, and brightness can be obtained. At the same time, good image performance can be obtained without overloading the aberration correction of the front lens group 101 and the final lens L9.

(7) 好適な態様により、前レンズ群101における正レンズL2…の硝材における異常部分分散性ΔθgFの絶対値が0.015以上となる全ての当該正レンズの焦点距離をEGFLとし、前レンズ群101における全ての正レンズL2…の焦点距離の最大値をAGMXとしたとき、「0.6<EGFL/AGMX<1.2」を満たすように構成すれば、前レンズ群101に、波長分散の少ない異常部分分散性を有する硝材を使用し、低分散レンズを2枚以上連続使用するため、球面収差,コマ収差及び非点収差などの諸収差を良好に補正することができる。 (7) According to a preferred embodiment, the focal lengths of all the positive lenses in which the absolute value of the abnormal partial dispersibility ΔθgF in the glass material of the positive lens L2 ... In the front lens group 101 is 0.015 or more are set to EGFL, and the front lens group. When the maximum value of the focal lengths of all the positive lenses L2 ... In 101 is set to AGMX, if it is configured to satisfy "0.6 <EGFL / AGMX <1.2", the front lens group 101 has a wavelength dispersion. Since a glass material having a small amount of abnormal partial dispersibility is used and two or more low-dispersion lenses are continuously used, various aberrations such as spherical aberration, coma aberration, and non-point aberration can be satisfactorily corrected.

(8) 好適な態様により、前レンズ群101及び後レンズ群102のそれぞれに1枚の非球面レンズを含めるとともに、各非球面レンズを同一形状に形成し、かつ光軸Dc方向において対称に配するようにすれば、同一レンズを用意すれば足りるため、加工を要するレンズの種類を低減でき、特に、成形製造する非球面レンズのコストダウンに寄与できる。しかも、各レンズを対称配置すれば、緒収差を抑えることができるとともに、対称なレンズ配置内において物体距離による空気間隔を変化させることにより、収差変動を低減することができる。 (8) According to a preferred embodiment, one aspherical lens is included in each of the front lens group 101 and the rear lens group 102, each aspherical lens is formed into the same shape, and the aspherical lenses are arranged symmetrically in the optical axis Dc direction. By doing so, it is sufficient to prepare the same lens, so that the types of lenses that require processing can be reduced, and in particular, it is possible to contribute to the cost reduction of the aspherical lens to be molded and manufactured. Moreover, if the lenses are arranged symmetrically, the aberration can be suppressed, and the aberration fluctuation can be reduced by changing the air spacing according to the object distance within the symmetrical lens arrangement.

(9) 好適な態様により、前レンズ群101及び後レンズ群102におけるフォーカス調整時に変化する空気間隔の前後の部分レンズ群(指定レンズ群)Lp…に対して、最大3つの指定レンズ群Lp…を移動可能に構成すれば、対称配置タイプのレンズ構成における、前レンズ群101と後レンズ群102により収差を打ち消すメリットを利用できるため、このメリットを利用した柔軟なフォーカス調整機構を構築することができる。 (9) According to a preferred embodiment, a maximum of three designated lens groups Lp ... For a partial lens group (designated lens group) Lp ... Before and after the air spacing that changes during focus adjustment in the front lens group 101 and the rear lens group 102. If the lens is configured to be movable, the merit of canceling the aberration by the front lens group 101 and the rear lens group 102 in the symmetrical arrangement type lens configuration can be utilized. Therefore, it is possible to construct a flexible focus adjustment mechanism utilizing this merit. it can.

(10) 好適な態様により、フォーカス調整時に変化する空気間隔に、開口絞りSTOを含む空気間隔,前レンズ群101の2枚の正レンズL2.L3間の空気間隔,後レンズ群102の2枚の正レンズL6,L7間の空気間隔の少なくとも1つを含ませれば、本実施形態に係る対称配置タイプの撮像光学系Cに対する最適なフォーカス調整機構を構築することができる。 (10) According to a preferred embodiment, the air spacing that changes during focus adjustment includes the air spacing including the aperture stop STO, and the two positive lenses L2 of the front lens group 101. If at least one of the air spacing between L3 and the air spacing between the two positive lenses L6 and L7 of the rear lens group 102 is included, the optimum focus adjustment for the symmetrical arrangement type imaging optical system C according to the present embodiment is included. A mechanism can be constructed.

(11) 好適な態様により、前レンズ群101の焦点距離FFLと後レンズ群102の焦点距離RFLが共に正パワーのとき、フォーカス調整時に、レンズ全系を物体OBJ側に移動させて像IMG側の空気間隔を変化させる構成を設ければ、フォーカス調整機構の全体構造の単純化を図りつつ、物体OBJとの距離変化による収差変動を少なくすることができる。 (11) According to a preferred embodiment, when the focal length FFL of the front lens group 101 and the focal length RFL of the rear lens group 102 are both positive powers, the entire lens system is moved to the object OBJ side at the time of focus adjustment to the image IMG side. By providing a configuration that changes the air spacing of the lens, it is possible to reduce the aberration fluctuation due to the change in the distance from the object OBJ while simplifying the overall structure of the focus adjustment mechanism.

本発明の好適実施形態の実施例1に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the first embodiment of the preferred embodiment of the present invention, 同実施例1に係る撮像光学系の無限遠時及び図1に示すフォーカス方式F11−F12の縦収差図、The longitudinal aberration diagram of the imaging optical system according to the first embodiment at infinity and the focus method F11-F12 shown in FIG. 同実施例1に係る撮像光学系の図1に示すフォーカス方式F13及びF14の縦収差図、The longitudinal aberration diagram of the focus methods F13 and F14 shown in FIG. 1 of the imaging optical system according to the first embodiment. 本発明の好適実施形態に係る各実施例における光学条件の一覧表、List of optical conditions in each example according to the preferred embodiment of the present invention, 同好適実施形態の実施例2に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the second embodiment of the preferred embodiment, 同実施例3に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the third embodiment, 同実施例4に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the fourth embodiment, 同実施例5に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the fifth embodiment, 同実施例6に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the sixth embodiment, 同実施例6に係る撮像光学系の無限遠時の縦収差図、FIG. 6 is a longitudinal aberration diagram of the imaging optical system according to the sixth embodiment at infinity. 同実施例6に係る撮像光学系の図9に示すフォーカス方式F21−F2Focus method F21-F2 shown in FIG. 9 of the imaging optical system according to the sixth embodiment. 同実施例6に係る撮像光学系の図9に示すフォーカス方式F24−F26の縦収差図、FIG. 9 is a longitudinal aberration diagram of the focus method F24-F26 shown in FIG. 9 of the imaging optical system according to the sixth embodiment. 同実施例6に係る撮像光学系の図9に示すフォーカス方式F27の縦収差図、FIG. 9 is a longitudinal aberration diagram of the focus method F27 shown in FIG. 9 of the imaging optical system according to the sixth embodiment. 同好適実施形態の実施例7に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the seventh embodiment of the preferred embodiment, 同実施例7に係る撮像光学系の無限遠時及び図14に示すフォーカス方式F31及びF32の縦収差図、The longitudinal aberration diagram of the imaging optical system according to the seventh embodiment at infinity and the focus methods F31 and F32 shown in FIG. 同好適実施形態の実施例8に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the eighth embodiment of the preferred embodiment, 同実施例8に係る撮像光学系の無限遠時及び図16に示すフォーカス方式F41の縦収差図、The longitudinal aberration diagram of the image pickup optical system according to the eighth embodiment at infinity and the focus method F41 shown in FIG. 同好適実施形態の実施例9に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the ninth embodiment of the preferred embodiment, 同実施例9に係る撮像光学系の無限遠時の縦収差図、A longitudinal aberration diagram of the imaging optical system according to the ninth embodiment at infinity, 同実施例9に係る撮像光学系の図18に示すフォーカス方式F51−F53の縦収差図、FIG. 18 is a longitudinal aberration diagram of the focus method F51-F53 shown in FIG. 18 of the imaging optical system according to the ninth embodiment. 同実施例9に係る撮像光学系の図18に示すフォーカス方式F54の縦収差図、FIG. 18 is a longitudinal aberration diagram of the focus method F54 shown in FIG. 18 of the imaging optical system according to the ninth embodiment. 同好適実施形態の実施例10に係る撮像光学系の構成図、Configuration diagram of the imaging optical system according to the tenth embodiment of the preferred embodiment,

次に、本発明に係る好適実施形態となる実施例1−実施例10を挙げ、図面に基づき詳細に説明する。 Next, Examples 1 to 10 which are preferable embodiments according to the present invention will be given and will be described in detail with reference to the drawings.

まず、本実施形態に係る実施例1の撮像光学系Cについて、図1−図4を参照して具体的に説明する。 First, the imaging optical system C of the first embodiment according to the present embodiment will be specifically described with reference to FIGS. 1 to 4.

最初に、図1を参照して、本実施形態(実施例1)に係る撮像光学系Cの構成について説明する。なお、この撮像光学系Cは、デジタルカメラ用交換レンズに適用することを想定できる。図1中、OBJは物体(被写体)を示し、IMGは像(撮像素子)を示している。したがって、物体OBJ側が光軸Dc方向の前方となり、像IMG側が光軸Dc方向の後方となる。 First, the configuration of the imaging optical system C according to the present embodiment (Example 1) will be described with reference to FIG. It can be assumed that this imaging optical system C is applied to an interchangeable lens for a digital camera. In FIG. 1, OBJ indicates an object (subject), and IMG indicates an image (image sensor). Therefore, the object OBJ side is in front of the optical axis Dc direction, and the image IMG side is in the rear of the optical axis Dc direction.

本実施形態に係る撮像光学系Cは、基本構成として、開口絞りSTOに対して光軸Dc方向の物体OBJ側に前レンズ群101を配し、かつ像IMG側に後レンズ群102を配した対称配置タイプのレンズ構成を備える。 As a basic configuration, the imaging optical system C according to the present embodiment has a front lens group 101 arranged on the object OBJ side in the optical axis Dc direction and a rear lens group 102 arranged on the image IMG side with respect to the aperture diaphragm STO. It has a symmetrical arrangement type lens configuration.

前レンズ群101は、連続した2又は3枚の正レンズL2…を含む正レンズ群Lf,及びこの正レンズ群Lfの前側に配した負レンズL1と後側に配した負レンズL4の計4枚のレンズL1−L4により構成する。より具体的には、両凹レンズを用いた負レンズL1,両凸レンズを用いた正レンズL2及び正メニスカスレンズを用いた正レンズL3,両面(面番号i=7,8)が空気空間Sに面し、かつ物体OBJ側が凸面となる負メニスカスの非球面レンズを用いた開口絞りSTO側の負レンズL4を含む部分対称レンズ群として構成し、各レンズのパワーは順番に(−)(+)(+)(−)となる。 The front lens group 101 includes a positive lens group Lf including two or three consecutive positive lenses L2 ..., A negative lens L1 arranged on the front side of the positive lens group Lf, and a negative lens L4 arranged on the rear side, for a total of four. It is composed of a single lens L1-L4. More specifically, a negative lens L using a biconcave lens, a positive lens L2 using a biconvex lens, and a positive lens L3 using a positive meniscus lens, both sides (plane numbers i = 7, 8) face the air space S. However, it is configured as a partially symmetric lens group including a negative lens L4 on the aperture aperture STO side using an aspherical lens of negative meniscus with a convex surface on the object OBJ side, and the power of each lens is sequentially (-) (+) ( +) (-).

このように、前レンズ群101を構成するに際して、物体OBJ側に、かつ物体OBJ側が凹面になる負レンズL1を配して構成するとともに、両曲面が光軸Dcの物体OBJ側に湾曲した少なくとも1つの非球面レンズを含ませて構成すれば、レンズ面に凸面を多用し、入射角と屈折角を緩やかにできるため、前レンズ群101において入射光の収斂作用を高めた場合であっても、収差発生を抑制することができるとともに、全体のコンパクト化にも寄与できる。しかも、各画角の光線の各レンズ面における通過点の角度差を小さくできるため、大きな光束の収差補正を有利に行うことができる。 In this way, when the front lens group 101 is configured, the negative lens L1 having a concave surface on the object OBJ side and the object OBJ side is arranged, and at least both curved surfaces are curved toward the object OBJ side of the optical axis Dc. If one aspherical lens is included, a convex surface is often used on the lens surface, and the incident angle and the refraction angle can be made gentle. Therefore, even when the converging action of the incident light is enhanced in the front lens group 101. In addition to being able to suppress the occurrence of aberrations, it can also contribute to overall compactness. Moreover, since the angle difference between the passing points of the light rays of each angle of view on each lens surface can be reduced, it is possible to advantageously correct the aberration of a large luminous flux.

また、後レンズ群102は、2枚の両凸レンズを用いた正レンズL6,L7が連続する正レンズ群Lr,及びこの正レンズ群Lrの前側に配した負レンズL5と後側に配した負レンズL8の計4枚のレンズL5−L8を備えるとともに、負レンズL8の後方に配し、かつ両面(i=18,19)が空気空間Sに面するとともに、両曲面(i=18,19)が光軸Dcの同一方向(例示の場合は、像IMG側方向)に湾曲した非球面レンズによる最終レンズL9を備えて構成する。この場合、像IMG側の負レンズL8には、像IMG側が空気空間Sに面する両凹レンズを用いるとともに、開口絞りSTO側の負レンズL5には両凹レンズを用いる。後レンズ群102は、計5枚のレンズL5−L9により構成し、特に、4枚のレンズL5−L8は部分対称レンズ群を構成することにより、各レンズのパワーは順番に(−)(+)(+)(−)となる。 Further, the rear lens group 102 includes a positive lens group Lr in which positive lenses L6 and L7 using two biconvex lenses are continuous, a negative lens L5 arranged on the front side of the positive lens group Lr, and a negative lens L5 arranged on the rear side. It is equipped with a total of four lenses L5-L8, which are lenses L8, and is arranged behind the negative lens L8, both sides (i = 18,19) face the air space S, and both curved surfaces (i = 18,19). ) Is curved in the same direction of the optical axis Dc (in the example, the image IMG side direction), and the final lens L9 is provided by an aspherical lens. In this case, the negative lens L8 on the image IMG side uses a biconcave lens whose image IMG side faces the air space S, and the negative lens L5 on the aperture diaphragm STO side uses a biconcave lens. The rear lens group 102 is composed of a total of five lenses L5-L9, and in particular, the four lenses L5-L8 form a partially symmetrical lens group, so that the power of each lens is sequentially (-) (+). ) (+) (-).

このように、後レンズ群102を構成するに際して、開口絞りSTO側に配し、かつ当該開口絞りSTO側が凹面になる負レンズL5を設けるとともに、像IMG側に配し、かつ像IMG側が空気空間Sに面する負レンズL8を設ければ、使用するレンズの小径化(小径化)を図ることができるため、レンズ加工を有利に行うことができるとともに、対称配置タイプとなるレンズ構成の構築を容易に行うことができる。 In this way, when the rear lens group 102 is configured, the negative lens L5 is provided on the aperture diaphragm STO side and the aperture diaphragm STO side is concave, and is arranged on the image IMG side and the image IMG side is the air space. If the negative lens L8 facing S is provided, the diameter of the lens to be used can be reduced (reduced in diameter), so that lens processing can be advantageously performed and a lens configuration having a symmetrical arrangement type can be constructed. It can be done easily.

したがって、本実施形態に係る撮像光学系Cは、開口絞りSTOを挟み、その前後に部分対称レンズ群がそれぞれ配置される基本形態を備える。また、レンズ全系における9枚の各レンズL1−L9は全て空気間隔Sにより隔てられている。 Therefore, the imaging optical system C according to the present embodiment includes a basic embodiment in which an aperture diaphragm STO is sandwiched and partially symmetrical lens groups are arranged before and after the aperture diaphragm STO. Further, each of the nine lenses L1-L9 in the entire lens system is separated by an air gap S.

なお、最終レンズL9は、負レンズL4に対して同一形状となり、光軸Dc方向に反転した物体OBJ側が凹となる負メニスカスの非球面レンズとなり、光軸Dc方向において対称に配される。このように、前レンズ群101及び後レンズ群102のそれぞれに1枚の非球面レンズを含めるとともに、各非球面レンズを同一形状に形成し、かつ光軸Dc方向において対称に配するようにすれば、同一レンズを用意すれば足りるため、加工を要するレンズの種類を低減でき、特に、成形製造する非球面レンズのコストダウンに寄与できる。しかも、各レンズを対称配置すれば、緒収差を抑えることができるとともに、対称なレンズ配置内において物体距離による空気間隔を変化させることにより、収差変動を低減することができる。 The final lens L9 has the same shape as the negative lens L4, and is an aspherical lens of a negative meniscus in which the object OBJ side inverted in the optical axis Dc direction is concave, and is arranged symmetrically in the optical axis Dc direction. In this way, one aspherical lens is included in each of the front lens group 101 and the rear lens group 102, and each aspherical lens is formed into the same shape and arranged symmetrically in the optical axis Dc direction. For example, since it is sufficient to prepare the same lens, it is possible to reduce the types of lenses that require processing, and in particular, it can contribute to cost reduction of aspherical lenses to be molded and manufactured. Moreover, if the lenses are arranged symmetrically, the aberration can be suppressed, and the aberration fluctuation can be reduced by changing the air spacing according to the object distance within the symmetrical lens arrangement.

表1には、実施例1の撮像光学系Cにおけるレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:50.00mm,Fナンバー:1.95,半画角:23.4゜である。 Table 1 shows the lens data of the entire lens system in the imaging optical system C of Example 1. The imaging optical system C at an infinite object point has a focal length of 50.00 mm, an F number of 1.95, and a half angle of view of 23.4 °.

Figure 2021032959
Figure 2021032959

表1の「面データ」は、物体OBJ側から数えたレンズ面の面番号をiで示し、この面番号iは、図1に示した符号(数字)に一致する。これに対応して、レンズ面の曲率半径R(i)、軸上面間隔D(i)、レンズの屈折率nd(i)、レンズのアッベ数νd(i)、異常部分分散値ΔPgF(i)の絶対値をそれぞれ示す。nd(i)及びνd(i)はd線(586.56〔nm〕)に対する数値である。軸上面間隔D(i)は相対向する面と面間のレンズ厚或いは空気空間を示す。なお、曲率半径R(i)と面間隔D(i)の単位は〔mm〕である。面番号のOBJは物体、STOは開口絞り、IMGは像の位置を示す。曲率半径R(i)のInfinityは平面であり、面番号iの後にAが付いた面は面形状が非球面であることを示す。屈折率nd(i)とアッベ数νd(i)の空欄は空気であることを示す。 The “plane data” in Table 1 indicates the surface number of the lens surface counted from the object OBJ side by i, and this surface number i corresponds to the reference numeral (number) shown in FIG. Correspondingly, the radius of curvature R (i) of the lens surface, the axial top surface distance D (i), the refractive index nd (i) of the lens, the Abbe number νd (i) of the lens, and the abnormal partial dispersion value ΔPgF (i) The absolute values of are shown respectively. nd (i) and νd (i) are numerical values for the d line (586.56 [nm]). The shaft upper surface distance D (i) indicates the lens thickness or the air space between the facing surfaces. The unit of the radius of curvature R (i) and the surface spacing D (i) is [mm]. The surface number OBJ indicates an object, STO indicates an aperture stop, and IMG indicates the position of an image. The Infinity of the radius of curvature R (i) is a plane, and the surface with A after the surface number i indicates that the surface shape is aspherical. The blanks of the refractive index nd (i) and the Abbe number νd (i) indicate that it is air.

また、表1の「非球面係数」は、面の中心を原点とし、光軸Dc方向をZとした直交座標系(X,Y,Z)において、ASPを非球面の面番号としたとき、Zは数1により表される。数1において、Rは中心曲率半径、Kは円錐定数、A4,A6,A8,A10は、それぞれ4次,6次,8次,10次の非球面係数、Hは光軸上の原点からの距離である。なお、表2において、「E」は「×10」を意味する。 Further, the "aspherical coefficient" in Table 1 is obtained when ASP is an aspherical surface number in a Cartesian coordinate system (X, Y, Z) in which the center of the surface is the origin and the optical axis Dc direction is Z. Z is represented by the equation 1. In Equation 1, R is the radius of curvature of the center, K is the conical constant, A4, A6, A8, and A10 are the aspherical coefficients of the 4th, 6th, 8th, and 10th orders, respectively, and H is the aspherical coefficient from the origin on the optical axis. The distance. In Table 2, "E" means "x10".

Figure 2021032959
Figure 2021032959

さらに、表1の「フォーカス可変間隔」は、図1に示すフォーカス方式〔F11〕−〔F14〕に対応する。即ち、実施例1の場合、物体OBJの距離が無限遠から近距離に変化するときのフォーカス調整は、フォーカス方式〔F11〕−〔F14〕で示す4種類の何れかの方式により可能である。〔F11〕は、「L1−L4」,「L5−L6」,「L7−L9」をそれぞれ一体とした3つの各指定レンズ群Lp…を、物体OBJ側に異なる量で移動させ、開口絞りSTO含む空気間隔,後レンズ群102の正レンズL6とL7間の空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、〔F12〕は、「L1−L4」,「L5−L9」をそれぞれ一体とした2つの各指定レンズ群Lp…を、物体OBJ側に異なる量で移動させ、開口絞りSTOを含む空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、〔F13〕は、「L1−L6」,「L7−L9」をそれぞれ一体とした2つの各指定レンズ群Lp…を、物体OBJ側に異なる量で移動させ、後レンズ群102の正レンズL6とL7間の空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、〔F14〕は、レンズ全群「L1−L9」を一体として物体OBJ側に移動させ、像IMG側の空気間隔を変化させる方式である。 Further, the “variable focus interval” in Table 1 corresponds to the focus method [F11]-[F14] shown in FIG. That is, in the case of the first embodiment, the focus adjustment when the distance of the object OBJ changes from infinity to a short distance can be performed by any of the four types of focus methods [F11]-[F14]. In [F11], each of the three designated lens groups Lp ... In which "L1-L4", "L5-L6", and "L7-L9" are integrated is moved to the object OBJ side by different amounts, and the aperture aperture STO A method of changing the including air spacing, the air spacing between the positive lenses L6 and L7 of the rear lens group 102, and the air spacing on the image IMG side, respectively, [F12] is "L1-L4" and "L5-L9", respectively. The method of moving the two integrated designated lens groups Lp ... To the object OBJ side by different amounts and changing the air spacing including the aperture aperture STO and the air spacing on the image IMG side, [F13] is ". The two designated lens groups Lp ... In which "L1-L6" and "L7-L9" are integrated are moved to the object OBJ side by different amounts, and the air spacing between the positive lenses L6 and L7 of the rear lens group 102 is determined. The method of changing the air spacing on the image IMG side, [F14], is a method of moving the entire lens group "L1-L9" to the object OBJ side as a unit to change the air spacing on the image IMG side.

図2−図3に、実施例1の撮像光学系Cにおけるフォーカス方式〔F11〕−〔F14〕に対応する縦収差図を示す。なお、図2中の〔F1s〕は、無限遠時における縦収差図を示す。各縦収差図は、左側から、球面収差(656.27nm,586.56nm,435.83nm)、非点収差(586.56nm)、歪曲収差(586.56nm)を示す。各スケールは、±0.50mm,±0.50mm,±3.0%である。 2 to 3 show a longitudinal aberration diagram corresponding to the focus method [F11]-[F14] in the imaging optical system C of the first embodiment. [F1s] in FIG. 2 shows a longitudinal aberration diagram at infinity. From the left side, each longitudinal aberration diagram shows spherical aberration (656.27 nm, 586.56 nm, 435.83 nm), astigmatism (586.56 nm), and distortion (586.56 nm). Each scale is ± 0.50 mm, ± 0.50 mm, ± 3.0%.

フォーカス方式〔F1s〕,〔F11〕−〔F13〕の場合、平面光軸に垂直な平面の被写体がボケない撮影を行うことができる。特に、レンズ構成の対称点位置となる開口絞りSTOの空気間隔又は後レンズ群102における2枚の正レンズL6とL7間の空気間隔の一方を変化させる場合は、いずれのフォーカス方式であっても良好かつ同等の撮像性能が得られることを確認できる。また、近距離の被写体では撮像性能が良好となる調整間隔がわかっているため、像面湾曲の度合をコントロールする場合にも利用可能である。一方、フォーカス方式〔F14〕の場合、像面湾曲(非点収差)の焦点の合った面がマイナスにカーブしているため、両面中央において焦点が合った被写体では、両面周辺になるに従って近方に焦点が合うカーブになり、被写体よりも遠方は、よりボケた画像や映像になることがわかる。 In the case of the focus methods [F1s] and [F11]-[F13], it is possible to take a picture in which a plane subject perpendicular to the plane optical axis is not blurred. In particular, when changing either the air spacing of the aperture diaphragm STO, which is the position of the symmetric point of the lens configuration, or the air spacing between the two positive lenses L6 and L7 in the rear lens group 102, whichever focus method is used. It can be confirmed that good and equivalent imaging performance can be obtained. Further, since the adjustment interval at which the imaging performance is good for a short-distance subject is known, it can also be used when controlling the degree of curvature of field. On the other hand, in the case of the focus method [F14], since the focused surface of curvature of field (astigmatism) is curved negatively, the subject focused in the center of both sides becomes closer toward the periphery of both sides. It can be seen that the curve is focused on, and the image or video that is farther from the subject becomes more blurred.

このように、前レンズ群101及び後レンズ群102におけるフォーカス調整時に変化する空気間隔の前後の指定レンズ群Lp…に対して、最大3つの指定レンズ群Lp…を移動可能に構成すれば、対称配置タイプのレンズ構成における、前レンズ群101と後レンズ群102により収差を打ち消すメリットを利用できるため、このメリットを利用した柔軟なフォーカス調整機構を構築することができる。 In this way, if a maximum of three designated lens groups Lp ... Are configured to be movable with respect to the designated lens groups Lp ... Before and after the air spacing that changes during focus adjustment in the front lens group 101 and the rear lens group 102, they are symmetrical. Since the merit of canceling the aberration by the front lens group 101 and the rear lens group 102 in the arrangement type lens configuration can be utilized, a flexible focus adjustment mechanism can be constructed by utilizing this merit.

特に、フォーカス調整時に変化する空気間隔として、開口絞りSTOを含む空気間隔,前レンズ群101の2枚の正レンズL2.L3間の空気間隔,後レンズ群102の2枚の正レンズL6,L7間の空気間隔の少なくとも1つを含ませることができ、本実施形態に係る対称配置タイプの撮像光学系Cに対する最適なフォーカス調整機構を構築することができる。 In particular, as the air spacing that changes during focus adjustment, the air spacing including the aperture stop STO and the two positive lenses L2 of the front lens group 101. At least one of the air spacing between L3 and the air spacing between the two positive lenses L6 and L7 of the rear lens group 102 can be included, which is optimal for the symmetrical arrangement type imaging optical system C according to the present embodiment. A focus adjustment mechanism can be constructed.

即ち、撮像光学系の場合、物体OBJ(被写体)との距離を変化させて撮影を行うため、光学系の対称性を少し変形(空気間隔を変化)させながら撮像性能を確保する。したがって、対称性を有する本実施形態における撮像光学系Cは、対称点位置の前後で収差を打ち消す作用が生じることを利用して、開口絞りSTOを含む空気間隔(空気空間S)、或いは前レンズ群101及び後レンズ群102における2枚の両凸レンズ(正レンズL2,L3/L6,L7)間の空気間隔(空気空間S)の両側における指定レンズ群Lp…を移動させるようにした。 That is, in the case of the imaging optical system, since the shooting is performed by changing the distance to the object OBJ (subject), the imaging performance is ensured while slightly deforming the symmetry of the optical system (changing the air spacing). Therefore, the imaging optical system C in the present embodiment having symmetry utilizes the fact that the action of canceling the aberration occurs before and after the position of the symmetry point, so that the air spacing (air space S) including the aperture stop STO or the front lens The designated lens group Lp ... On both sides of the air spacing (air space S) between the two biconvex lenses (positive lenses L2, L3 / L6, L7) in the group 101 and the rear lens group 102 was moved.

例えば、近距離に対して光学系全体を移動させ、像IMG面において像面湾曲がマイナスに変化する状態を考えた場合、焦点面は、像IMG面における画面中心から周辺にかけてレンズ側にカーブするため、画面中心に焦点を合わせた場合、周辺に行くに従ってボケる傾向がある。この現象を、物体OBJ側に置き換えた場合、画面中心の被写体に焦点を合わせることにより、周辺に行くに従って近方に焦点が合うカーブとなり、これより遠方は、よりボケた画像や映像となる。したがって、開口紋りSTOを絞ることにより収差を少なくするとともに、被写体深度を広くして平面被写体を平面像面にする方法が一般的である。即ち、収差を少なくするようにレンズ群を移動させるフォーカス調整方式は、近距離平面(光軸に垂直な平面)の被写体をボケさせないように平面像面にする撮影方式となる。 For example, when the entire optical system is moved with respect to a short distance and the curvature of field changes negatively on the image IMG plane, the focal plane curves toward the lens from the center of the screen to the periphery on the image IMG plane. Therefore, when focusing on the center of the screen, it tends to be blurred toward the periphery. When this phenomenon is replaced with the object OBJ side, by focusing on the subject in the center of the screen, a curve that focuses closer toward the periphery becomes a curve, and a curve farther than this becomes a more blurred image or video. Therefore, it is common to reduce the aberration by narrowing down the aperture pattern STO and widen the subject depth to make a flat subject a plane image plane. That is, the focus adjustment method for moving the lens group so as to reduce aberrations is a shooting method in which a subject on a short-range plane (a plane perpendicular to the optical axis) is set to a plane image plane so as not to be blurred.

一方、撮影技法として、画面の一部の被写体に焦点を合わせることにより、その前後の空間を、よりボカして撮影効果を得る“画づくり”のために、近距離において光学系全体を移動させる方式やレンズ群を移動させて収差を発生させる方式もある。本実施形態のように近距離の被写体において良好な撮像性能を得ることができる調整間隔がわかっている場合は、像面湾曲の度合をコントロールすることにも利用できる。 On the other hand, as a shooting technique, by focusing on a part of the subject on the screen, the entire optical system is moved at a short distance in order to "create an image" that blurs the space before and after it to obtain a shooting effect. There is also a method or a method of moving a lens group to generate aberration. When the adjustment interval that can obtain good imaging performance for a short-distance subject is known as in the present embodiment, it can also be used to control the degree of curvature of field.

なお、物体OBJに対する距離を変化させても収差変動が少なく、かつレンズ群の移動量が少ない広角域レンズでは、撮像光学系の全体を移動させることにより、像IMG側の空気間隔のみを変化させる場合があるとともに、インナーフォーカス方式やフロントフォーカス方式のように、像IMG側の空気間隔を変化させることなく単一レンズ群の移動によりフォーカス調整する場合もある。 In a wide-angle lens in which aberration fluctuation is small even if the distance to the object OBJ is changed and the amount of movement of the lens group is small, only the air spacing on the image IMG side is changed by moving the entire imaging optical system. In some cases, as in the inner focus method and the front focus method, the focus may be adjusted by moving a single lens group without changing the air spacing on the image IMG side.

前レンズ群101の焦点距離FFLと後レンズ群102の焦点距離RFLが共に正パワーのときは、フォーカス調整時に、レンズ全系を物体OBJ側に移動させて像IMG側の空気間隔を変化させる構成を採用できる。この場合、フォーカス調整機構の全体構造の単純化を図りつつ、物体OBJとの距離変化による収差変動を少なくすることができる。図4(c)に、本実施形態(実施例1−10)における焦点距離FFL及びRFLの値を示す。 When the focal length FFL of the front lens group 101 and the focal length RFL of the rear lens group 102 are both positive powers, the entire lens system is moved to the object OBJ side to change the air spacing on the image IMG side during focus adjustment. Can be adopted. In this case, it is possible to reduce the aberration fluctuation due to the change in the distance from the object OBJ while simplifying the overall structure of the focus adjustment mechanism. FIG. 4C shows the values of the focal lengths FFL and RFL in the present embodiment (Example 1-10).

このような全体繰出し方式は、コンパクトで単純な機構により構成できるため、他の多くの撮像光学系に採用されている。上述した様々なフォーカス方式において、全てのレンズ群の移動距離が小さい場合は、レンズ系全体を物体OBJ側に移動させるフォーカス方式〔F14〕を採用可能であり、この場合、全休繰出し方式と同等の性能を確保できる。即ち、全体繰出し方式は、物体OBJに対する距離が無限遠から近距離に変化した場合、像IMG位置が変化するため、レンズ全体を物体OBJ側に移動させてフォーカシングを行う。本実施形態に係る撮像光学系Cでは、開口絞りSTOに対して対称レンズ群又は部分対称レンズ群を有する対称配置タイプのレンズ構成とし、物体OBJとの距離変化による収差変動を少なくしているため、レンズ移動量が少なくなる広角よりのレンズ構成の場合では全体繰出し方式とすることができる。 Since such a total feeding method can be configured by a compact and simple mechanism, it is adopted in many other imaging optical systems. In the various focus methods described above, when the movement distance of all the lens groups is small, the focus method [F14] that moves the entire lens system to the object OBJ side can be adopted. Performance can be ensured. That is, in the overall feeding method, when the distance to the object OBJ changes from infinity to a short distance, the image IMG position changes, so the entire lens is moved to the object OBJ side for focusing. In the imaging optical system C according to the present embodiment, a symmetrical arrangement type lens configuration having a symmetric lens group or a partially symmetric lens group with respect to the aperture diaphragm STO is used to reduce aberration fluctuation due to a change in distance from the object OBJ. In the case of a lens configuration from a wide angle where the amount of lens movement is small, the entire extension method can be used.

加えて、本実施形態に係る撮像光学系Cでは、所定の光学条件を満たすように設定する。第一の光学条件(実施例1−4,6−7に適用)は、後レンズ群102の開口絞りSTO側の負レンズL5から像IMG側の負レンズL8の焦点距離をBFLとし、レンズ全系の焦点距離をEFLとしたとき、
0.7<BFL/EFL<1.6 … (光学条件1)
を満たすことを条件に設定する。
In addition, the imaging optical system C according to the present embodiment is set so as to satisfy a predetermined optical condition. The first optical condition (applicable to Examples 1-4, 6-7) is that the focal length of the negative lens L5 on the aperture diaphragm STO side of the rear lens group 102 to the negative lens L8 on the image IMG side is BFL, and the entire lens is set. When the focal length of the system is EFL,
0.7 <BFL / EFL <1.6 ... (Optical condition 1)
Set on the condition that the condition is satisfied.

撮像光学系(撮像レンズ)の場合、前レンズ群101の屈折力は、「正」から「負」にかけて広い数値を許容できるが、後レンズ群102の屈折力は、レンズ全系を所定の焦点距離にして像IMG位置に結像させるため、「正」に設定する必要がある。レンズ枚数が5枚以下となる前レンズ群101の場合、全体を部分対称レンズ群として構成できるが、後レンズ群102の場合、最終レンズL9は両曲面が光軸Dcの同一方向に湾曲するため、その屈折力を大きくすることができず、ほぼ全ての屈折力を前レンズ群101が負担している。 In the case of an imaging optical system (imaging lens), the refractive power of the front lens group 101 can tolerate a wide value from "positive" to "negative", but the refractive power of the rear lens group 102 focuses the entire lens system at a predetermined focal length. It is necessary to set it to "positive" in order to form an image at the image IMG position at a distance. In the case of the front lens group 101 in which the number of lenses is 5 or less, the entire lens group can be configured as a partially symmetric lens group, but in the case of the rear lens group 102, both curved surfaces of the final lens L9 are curved in the same direction of the optical axis Dc. , The refractive power cannot be increased, and almost all the refractive power is borne by the front lens group 101.

このため、光学条件1を満たすように設定することにより、後レンズ群102における適切な屈折力バランスを確保できる。この結果、適正なバックフォーカスや全長、更には明るさを得ることができるとともに、前レンズ群101や最終レンズL9の収差補正に負荷をかけ過ぎることなく良好な像性能を得ることができる。したがって、光学条件1を満たさない場合には、適正なバックフォーカスや全長、明るさが得られないとともに、前レンズ群101や最終レンズL9の収差補正に負荷をかけ過ぎることになり、良好な像性能を得ることができない。実施例1の場合、図4(a)に示すように、EFLは50.00であり、BFLは40.40である。したがって、BFL/AFLは0.81となり、光学条件1を満たしている。 Therefore, by setting so as to satisfy the optical condition 1, an appropriate refractive power balance in the rear lens group 102 can be ensured. As a result, an appropriate back focus, overall length, and brightness can be obtained, and good image performance can be obtained without overloading the aberration correction of the front lens group 101 and the final lens L9. Therefore, if the optical condition 1 is not satisfied, proper back focus, overall length, and brightness cannot be obtained, and the aberration correction of the front lens group 101 and the final lens L9 is overloaded, resulting in a good image. Performance cannot be obtained. In the case of Example 1, as shown in FIG. 4A, the EFL is 50.00 and the BFL is 40.40. Therefore, BFL / AFL is 0.81, which satisfies the optical condition 1.

また、第二の光学条件(実施例1−5,9−10に適用)は、前レンズ群101における正レンズL2…の硝材における異常部分分散性ΔθgFの絶対値が0.015以上となる全ての当該正レンズの焦点距離をEGFLとし、前レンズ群101における全ての正レンズL2…の焦点距離の最大値をAGMXとしたとき、
0.6<EGFL/AGMX<1.2 … (光学条件2)
を満たすことを条件に設定する。
The second optical condition (applicable to Examples 1-5 and 9-10) is that the absolute value of the abnormal partial dispersibility ΔθgF in the glass material of the positive lens L2 ... In the front lens group 101 is 0.015 or more. When the focal length of the positive lens is EGFL and the maximum value of the focal lengths of all the positive lenses L2 ... In the front lens group 101 is AGMX.
0.6 <EGFL / AGMX <1.2 ... (Optical condition 2)
Set on the condition that the condition is satisfied.

このように設定することにより、前レンズ群101に、波長分散の少ない異常部分分散性を有する硝材を使用し、低分散レンズを2枚以上連続使用するため、球面収差,コマ収差及び非点収差などの諸収差を良好に補正することができる。 By setting in this way, a glass material having anomalous partial dispersibility with little wavelength dispersion is used for the front lens group 101, and two or more low-dispersion lenses are continuously used. Therefore, spherical aberration, coma aberration, and astigmatism are used. Various aberrations such as these can be satisfactorily corrected.

一般に、画角が狭くなるに従って、軸上色収差及び倍率色収差などの色収差がより多く発生し、光学性能を低下させる傾向にあるため、前レンズ群101に、波長分散の少ない異常部分分散性を持つ硝材を使用することにより色収差を補正できることが知られている。上述した光学条件2を満たすように設定し、前レンズ群101の物体OBJ側において色収差を低減する補正を行えば、それ以降のレンズ群、即ち、後レンズ群102の収差負担を少なくすることができるとともに、低分散レンズを2枚以上連続して使用することにより1枚当たりのパワーを弱くすることができる。この結果、屈折面が増え、補正効果により、球面収差、コマ収差、非点収差などの諸収差を低減することができる。 Generally, as the angle of view becomes narrower, more chromatic aberrations such as axial chromatic aberration and magnifying chromatic aberration tend to occur, which tends to deteriorate the optical performance. Therefore, the front lens group 101 has anomalous partial dispersibility with less wavelength dispersion. It is known that chromatic aberration can be corrected by using a glass material. If the setting is made so as to satisfy the above-mentioned optical condition 2 and the correction for reducing the chromatic aberration is performed on the object OBJ side of the front lens group 101, the aberration burden on the subsequent lens group, that is, the rear lens group 102 can be reduced. In addition, the power per lens can be weakened by using two or more low-dispersion lenses in succession. As a result, the number of refracting surfaces increases, and various aberrations such as spherical aberration, coma aberration, and astigmatism can be reduced by the correction effect.

しかも、前レンズ群101を部分対称レンズ群として構成した場合、個々の屈折力を弱めることができるため、入射光が透過するレンズ面に対する入光角度を低く抑えることが可能となり、収差発生及び誤差感度を抑制することができる。異常分散性を有する低屈折率レンズでは、曲率を弱くした場合、所望の屈折力を得ることができないため、レンズ面の入射光角度が大きくなりやすい。したがって、低分散レンズを連続使用することが有効になるとともに、前レンズ群101に高屈折率レンズを追加することにより屈折力を負担させれば、色収差を補正できる異常分散性低屈折率レンズとして有効に利用できる。 Moreover, when the front lens group 101 is configured as a partially symmetric lens group, the individual refractive powers can be weakened, so that the incoming light angle with respect to the lens surface through which the incident light is transmitted can be suppressed to a low level, resulting in aberration generation and errors. Sensitivity can be suppressed. In a low refractive index lens having anomalous dispersibility, when the curvature is weakened, a desired refractive power cannot be obtained, so that the incident light angle on the lens surface tends to be large. Therefore, continuous use of low-dispersion lenses is effective, and if a high-refractive index lens is added to the front lens group 101 to bear the refractive power, chromatic aberration can be corrected as an abnormally dispersive low-refractive index lens. It can be used effectively.

実施例1の場合、図4(b)に示すように、EGFLは57.05であり、AGMXは58.54である。したがって、EGFL/AGMXは0.97となり、光学条件2を満たしている。 In the case of Example 1, as shown in FIG. 4 (b), EGFL is 57.05 and AGMX is 58.54. Therefore, EGFL / AGMX is 0.97, which satisfies the optical condition 2.

実施例1は、前レンズ群101の部分対称レンズ群の各レンズのパワー配分を(負)−(正)−(正)−(負)とし、負レンズL1,L4により正レンズL2,L3を挟むように対称性を持たせるとともに、後レンズ群102の部分対称レンズ群の各レンズのパワー配分を(負)−(正)−(正)−(負)とし、前レンズ群101と同じように負レンズL5,L8で正レンズL6,L8を挟むように対称性を持たせ、さらに、負レンズL5,L8には両凹レンズを使用し、正レンズL6,L7には両凸レンズを使用し、2枚の正レンズL6,L7の間の空気間隔を介して対向させたため、各群内での収差発生と補正をバランスさせている。これにより、全体として相互の良好な収差バランスを確保できる。 In the first embodiment, the power distribution of each lens of the partially symmetric lens group of the front lens group 101 is (negative)-(positive)-(positive)-(negative), and the positive lenses L2 and L3 are formed by the negative lenses L1 and L4. The power distribution of each lens in the partially symmetric lens group of the rear lens group 102 is set to (negative)-(positive)-(positive)-(negative), as in the case of the front lens group 101. The negative lenses L5 and L8 have symmetry so as to sandwich the positive lenses L6 and L8, and the negative lenses L5 and L8 use biconcave lenses and the positive lenses L6 and L7 use biconvex lenses. Since the two positive lenses L6 and L7 are opposed to each other via an air gap, the occurrence and correction of aberration in each group are balanced. As a result, a good mutual aberration balance can be ensured as a whole.

また、最終レンズL9は、軸上光線と軸外光線が分離して通過するのを利用し、部分的に面形状を変化することのできる非球面とすることにより残存収差の補正を行った。さらに、後レンズ群102の部分対称レンズ群と最終レンズL9の間を空気間隔とすることにより軸上光線と軸外光線の分離度を増加させ、非球面レンズの効果を大きくするとともに、対称配置タイプの効果を保つため、両面が同方向を向いた非球面レンズとした。なお、撮像光学系Cでは、物体OBJ側の空間と像IMG側の空間の距離が対称とはならないため、完全対称なレンズ構成では良好な収差補正ができない。このため、前レンズ群101は大きな物体からの光線を収束させるように収斂作用を強くしている。 Further, the final lens L9 corrects the residual aberration by making an aspherical surface capable of partially changing the surface shape by utilizing the fact that the on-axis ray and the off-axis ray pass separately. Further, by setting the air spacing between the partially symmetric lens group of the rear lens group 102 and the final lens L9, the degree of separation between the on-axis ray and the off-axis ray is increased, the effect of the aspherical lens is enhanced, and the symmetrical arrangement is performed. In order to maintain the effect of the type, an aspherical lens with both sides facing in the same direction was used. In the imaging optical system C, since the distance between the space on the object OBJ side and the space on the image IMG side is not symmetrical, good aberration correction cannot be performed with a completely symmetrical lens configuration. Therefore, the front lens group 101 has a strong astringent action so as to converge the light rays from a large object.

次に、本実施形態に係る実施例2の撮像光学系Cについて、図4及び図5を参照して説明する。 Next, the imaging optical system C of the second embodiment according to the present embodiment will be described with reference to FIGS. 4 and 5.

実施例2の撮像光学系Cは、上述した実施例1の後レンズ群102における両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。なお、前レンズ群101の構成、即ち、レンズL1,L2,L3,L4及び最終レンズL9は実施例1と同じである。 In the imaging optical system C of the second embodiment, the negative lens L5 using the biconcave lens and the positive lens L6 using the biconvex lens in the rear lens group 102 of the first embodiment described above are configured as the junction lens J56, and the biconvex lens is formed. The positive lens L7 used and the negative lens L8 using the biconcave lens are configured by the junction lens J78, and the positive lenses L6 and L7 of the two junction lenses J56 and J78 are arranged so as to face each other, and one of them is joined. The biconcave lens of the lens J56 was configured as a negative lens L5 on the aperture aperture STO side. The configuration of the front lens group 101, that is, the lenses L1, L2, L3, L4 and the final lens L9 is the same as in the first embodiment.

表2には、実施例2のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:49.80mm,Fナンバー:1.95,半画角:23.5゜である。 Table 2 shows the lens data of the entire lens system of Example 2. The imaging optical system C at an infinite object point has a focal length of 49.80 mm, an F number of 1.95, and a half angle of view: 23.5 °.

Figure 2021032959
Figure 2021032959

このように、後レンズ群102を構成するに際し、両凹レンズを用いた負レンズL5,L8と両凸レンズを用いた正レンズL6,L7を接合した二つの接合レンズJ56,J78により構成し、二つの接合レンズJ56,J78の正レンズL6,L7同士を対向させて配するとともに、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成すれば、アッベ数に差を設けることにより軸外色収差の補正を容易かつ有効に行うことができるとともに、屈折率に差を設けることにより球面収差の補正をより強化することができる。これにより、前レンズ群101の残存収差をバランス良く補正することが可能になり、接合レンズJ56とJ78間を調整空間として収差変動を少なくすることができる。しかも、後レンズ群102の開口絞りSTOに近いレンズ面を開口絞りSTOに対向させることができるため、対称配置タイプを用いたレンズ構成の有効性をより高めることができる。 As described above, when the rear lens group 102 is configured, it is composed of two bonded lenses J56 and J78 in which the negative lenses L5 and L8 using the biconcave lens and the positive lenses L6 and L7 using the biconvex lens are joined. If the positive lenses L6 and L7 of the bonded lenses J56 and J78 are arranged so as to face each other and the concave lenses of one of the bonded lenses J56 are configured as the negative lens L5 on the aperture aperture STO side, the number of abbets can be different. The correction of off-axis chromatic aberration can be easily and effectively performed, and the correction of spherical aberration can be further strengthened by providing a difference in refractive index. As a result, the residual aberration of the front lens group 101 can be corrected in a well-balanced manner, and the aberration fluctuation can be reduced by setting the space between the junction lenses J56 and J78 as an adjustment space. Moreover, since the lens surface of the rear lens group 102 close to the aperture diaphragm STO can be made to face the aperture diaphragm STO, the effectiveness of the lens configuration using the symmetrical arrangement type can be further enhanced.

また、近距離物体に対するフォーカス調整のタイプは実施例1と同じになる4タイプである。実施例2の場合、図4(a)に示すように、EFLは49.80であり、BFLは39.40である。したがって、BFL/AFLは0.79となり、前述した光学条件1を満たしている。さらに、図4(b)に示すように、EGFLは57.05であり、AGMXは58.54である。したがって、EGFL/AGMXは0.97となり、前述した光学条件2を満たしている。加えて、図4(c)に示すように、FFLは108.49の正パワー、RFLは75.31の正パワーとなる。 Further, there are four types of focus adjustment for a short-distance object, which are the same as those in the first embodiment. In the case of the second embodiment, as shown in FIG. 4A, the EFL is 49.80 and the BFL is 39.40. Therefore, BFL / AFL is 0.79, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4 (b), the EGFL is 57.05 and the AGMX is 58.54. Therefore, EGFL / AGMX is 0.97, which satisfies the above-mentioned optical condition 2. In addition, as shown in FIG. 4C, FFL has a positive power of 108.49 and RFL has a positive power of 75.31.

このように、実施例1の基本形態に対して、後レンズ群102における部分対称レンズ群内のレンズ構成を、接合レンズJ56,J78として構成した場合であっても、単レンズの組合わせにより構成した実施例1の基本形態と同等の結像性能を確保できる。 As described above, with respect to the basic embodiment of the first embodiment, even when the lens configuration in the partially symmetrical lens group in the rear lens group 102 is configured as the bonded lenses J56 and J78, the configuration is made by combining single lenses. It is possible to secure the same imaging performance as the basic embodiment of the first embodiment.

次に、本実施形態に係る実施例3の撮像光学系Cについて、図4及び図6を参照して説明する。 Next, the imaging optical system C of the third embodiment according to the present embodiment will be described with reference to FIGS. 4 and 6.

実施例3は、図6に示すように、前レンズ群101に5枚のレンズL1,LS,L2,L3,L4を使用し、後レンズ群102に5枚のレンズL5,L6,L7,L8,L9を使用したものである。この場合、前レンズ群101の負レンズL1に両凹レンズを使用するとともに、正レンズLSに物体OBJ側が凸面となるメニスカスレンズを使用し、負レンズL1と正レンズLSを接合レンズとして構成した。また、正レンズL3,L4は同タイプの形状を有し、両面が物体OBJ側に凸面になる正メニスカスレンズにより構成した。このように、前レンズ群101の正レンズに、両面が物体OBJ側に凸面となるメニスカスレンズを用いれば全長を圧縮できるため、屈折力を均等に近くすることができ、前レンズ群101をよりコンパクトにできるとともに、光線の入射光角度を小さくできるため、収差発生及び誤差感度を抑制することができる。 In Example 3, as shown in FIG. 6, five lenses L1, LS, L2, L3, L4 are used in the front lens group 101, and five lenses L5, L6, L7, L8 are used in the rear lens group 102. , L9 is used. In this case, a biconcave lens is used for the negative lens L1 of the front lens group 101, a meniscus lens having a convex surface on the object OBJ side is used for the positive lens LS, and the negative lens L1 and the positive lens LS are configured as a junction lens. Further, the positive lenses L3 and L4 have the same type of shape, and are composed of positive meniscus lenses whose both sides are convex toward the object OBJ side. In this way, if a meniscus lens whose both sides are convex toward the object OBJ side is used as the positive lens of the front lens group 101, the entire length can be compressed, so that the refractive power can be made evenly close, and the front lens group 101 can be made more uniform. Since it can be made compact and the incident light angle of the light beam can be reduced, it is possible to suppress the occurrence of aberration and the error sensitivity.

また、正レンズL3,L4の硝材は、異常部分分散値0.0375を有する。さらに、負レンズL5は、両面が物体OBJ側に凸面を有する負メニスカスレンズとなり、非球面レンズにより構成する。前レンズ群101は、部分対称レンズ群として構成し、レンズL1−L4のパワーは、(−)(+)(+)(+)(−)となる。 Further, the glass materials of the positive lenses L3 and L4 have an abnormal partial dispersion value of 0.0375. Further, the negative lens L5 is a negative meniscus lens having both sides convex on the object OBJ side, and is composed of an aspherical lens. The front lens group 101 is configured as a partially symmetrical lens group, and the powers of the lenses L1-L4 are (−) (+) (+) (+) (−).

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。これにより、レンズL5−L8の4枚は、パワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。実施例3も、開口絞りSTOを挟み、その前後に対称性を有する部分レンズ群を配している。また、最終レンズL9はレンズL4と同形状であり、光軸Dc上で反転した物体OBJ側に凹面を有する負メニスカスの非球面レンズである。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a bonded lens J78, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other, and both concave lenses of one bonded lens J56 are used as a negative lens L5 on the aperture aperture STO side. Configured. As a result, the four lenses L5-L8 are configured as a partially symmetrical lens group having powers (-) (+) (+) (-). In the third embodiment as well, a partial lens group having symmetry is arranged before and after the aperture diaphragm STO. Further, the final lens L9 is an aspherical lens of a negative meniscus having the same shape as the lens L4 and having a concave surface on the object OBJ side inverted on the optical axis Dc.

表3には、実施例3のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:48.25mm,Fナンバー:1.74,半画角:24.2゜である。 Table 3 shows the lens data of the entire lens system of Example 3. The imaging optical system C at an infinite object point has a focal length of 48.25 mm, an F number of 1.74, and a half angle of view of 24.2 °.

Figure 2021032959
Figure 2021032959

近距離物体に対するフォーカス調整のタイプは実施例1と同じになる4タイプである。実施例3の場合、図4(a)に示すように、EFLは48.25であり、BFLは40.77である。したがって、BFL/AFLは0.85となり、前述した光学条件1を満たしている。また、図4(b)に示すように、レンズL2,L3は、共にEGFLが94.26であり、AGMXが94.26である。したがって、EGFL/AGMXは1.00となり、前述した光学条件2を満たしている。加えて、図4(c)に示すように、FFLは131.90の正パワー、RFLは60.82の正パワーとなる。 There are four types of focus adjustment for short-distance objects, which are the same as those in the first embodiment. In the case of Example 3, as shown in FIG. 4A, the EFL is 48.25 and the BFL is 40.77. Therefore, BFL / AFL is 0.85, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4B, the lenses L2 and L3 both have an EGFL of 94.26 and an AGMX of 94.26. Therefore, EGFL / AGMX is 1.00, which satisfies the above-mentioned optical condition 2. In addition, as shown in FIG. 4C, FFL has a positive power of 131.90 and RFL has a positive power of 60.82.

このように、実施例1の基本形態に対して、各レンズ群の枚数やレンズ形態を変更した場合であっても、実施例1の基本形態と同等の結像性能を確保できる。 As described above, even when the number of lens groups and the lens form are changed with respect to the basic form of the first embodiment, the same imaging performance as the basic form of the first embodiment can be ensured.

次に、本実施形態に係る実施例4の撮像光学系Cについて、図4及び図7を参照して説明する。 Next, the imaging optical system C of the fourth embodiment according to the present embodiment will be described with reference to FIGS. 4 and 7.

実施例4は、実施例2を更に広角化したタイプとなり、図7に示すように、前レンズ群101のレンズL1−L4と後レンズ群102のレンズL5−L8(接合レンズJ56,J78)により構成した。この場合、各レンズ群101,102のパワーがそれぞれ(−)(+)(+)(−)となる部分対称レンズ群として構成される。最終レンズL9には、前レンズ群101のレンズ(負レンズ)L4と同形状で光軸Dc上で反転した物体OBJ側が凹面となる負メニスカスの非球面レンズを用いている。 Example 4 is a type in which the angle of Example 2 is further widened, and as shown in FIG. 7, the lenses L1-L4 of the front lens group 101 and the lenses L5-L8 (junction lenses J56, J78) of the rear lens group 102 are used. Configured. In this case, it is configured as a partially symmetrical lens group in which the powers of the lens groups 101 and 102 are (−) (+) (+) (−), respectively. For the final lens L9, an aspherical lens having the same shape as the lens (negative lens) L4 of the front lens group 101 and having a concave surface on the OBJ side of the object inverted on the optical axis Dc is used.

表4に、実施例4のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:37.00mm,Fナンバー:1.95である。 Table 4 shows the lens data of the entire lens system of Example 4. The imaging optical system C at an infinite object point has a focal length of 37.00 mm and an F number of 1.95.

Figure 2021032959
Figure 2021032959

近距離物体に対するフォーカス調整のタイプは実施例1と同じになる4タイプである。実施例4の場合、図4(a)に示すように、EFLは37.00であり、BFLは31.85である。したがって、BFL/AFLは0.86となり、前述した光学条件1を満たしている。さらに、図4(b)に示すように、レンズL3は、EGFLが41.12であり、AGMXが45.23である。したがって、EGFL/AGMXは0.91となり、前述した光学条件2を満たしている。加えて、図4(c)に示すように、FFLは97.17の正パワー、RFLは51.20の正パワーとなる。 There are four types of focus adjustment for short-distance objects, which are the same as those in the first embodiment. In the case of Example 4, as shown in FIG. 4A, the EFL is 37.00 and the BFL is 31.85. Therefore, BFL / AFL is 0.86, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4B, the lens L3 has an EGFL of 41.12 and an AGMX of 45.23. Therefore, EGFL / AGMX is 0.91, which satisfies the above-mentioned optical condition 2. In addition, as shown in FIG. 4C, FFL has a positive power of 97.17 and RFL has a positive power of 51.20.

このように、フォーカス調整のタイプを、実施例1(実施例2)と同じになる4タイプを採用する場合、実施例1の基本形態を維持する構成であれば、細部の具体的構成が異なる場合であっても、実施例1の基本形態と同等の撮像性能を確保できる。 In this way, when four types of focus adjustments that are the same as those of the first embodiment (second embodiment) are adopted, the specific configurations of the details are different as long as the configuration maintains the basic form of the first embodiment. Even in this case, it is possible to secure the same imaging performance as the basic embodiment of the first embodiment.

次に、本実施形態に係る実施例5の撮像光学系Cについて、図4及び図8を参照して説明する。 Next, the imaging optical system C of the fifth embodiment according to the present embodiment will be described with reference to FIGS. 4 and 8.

実施例5は、実施例4と同様に広角化を図るとともに、特に、Fナンバーを1.26に大口径化したタイプとなり、図8に示すように、前レンズ群101のレンズ枚数を4枚、後レンズ群102のレンズ枚数を5枚とした。即ち、前レンズ群101は、両凹レンズの負レンズL1,両凸レンズの正レンズL2,物体OBJ側が凸面となる正のメニスカスレンズ(正レンズ)L3,物体OBJ側が凸面となる負のメニスカスレンズ(負レンズ)L4により構成したものであり、各レンズのパワーが(−)(+)(+)(−)となる部分対称レンズ群として構成した。 In the fifth embodiment, the angle is widened as in the fourth embodiment, and the F number is increased to 1.26 in particular. As shown in FIG. 8, the number of lenses in the front lens group 101 is four. The number of lenses in the rear lens group 102 was set to 5. That is, the front lens group 101 is a negative lens L1 of a biconcave lens, a positive lens L2 of a biconvex lens, a positive meniscus lens (positive lens) L3 having a convex surface on the object OBJ side, and a negative meniscus lens (negative) having a convex surface on the object OBJ side. Lens) It is composed of L4, and is configured as a partially symmetric lens group in which the power of each lens is (-) (+) (+) (-).

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。これにより、レンズL5−L8の4枚は、パワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。実施例5も、開口絞りSTOを挟み、その前後に部分対称レンズを配している。また、最終レンズL9は物体OBJ側に凹面を有する負メニスカスの非球面レンズである。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a bonded lens J78, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other, and both concave lenses of one bonded lens J56 are used as a negative lens L5 on the aperture aperture STO side. Configured. As a result, the four lenses L5-L8 are configured as a partially symmetrical lens group having powers (-) (+) (+) (-). Also in the fifth embodiment, the aperture diaphragm STO is sandwiched, and the partially symmetrical lenses are arranged before and after the aperture diaphragm STO. The final lens L9 is a negative meniscus aspherical lens having a concave surface on the OBJ side of the object.

表5に、実施例5のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:51.14mm,Fナンバー:1.26,半画角:22.9゜である。 Table 5 shows the lens data of the entire lens system of Example 5. The imaging optical system C at an infinite object point has a focal length of 51.14 mm, an F number of 1.26, and a half angle of view of 22.9 °.

Figure 2021032959
Figure 2021032959

近距離物体に対するフォーカス調整のタイプは実施例1と同じになる4タイプである。実施例5の場合、図4(a)に示すように、EFLは51.14、BFLは51.43である。したがって、BFL/AFLは1.01となり、前述した光学条件1を満たしている。また、図4(c)に示すように、FFLは128.46の正パワー、RFLは65.65の正パワーとなる。 There are four types of focus adjustment for short-distance objects, which are the same as those in the first embodiment. In the case of Example 5, as shown in FIG. 4A, the EFL is 51.14 and the BFL is 51.43. Therefore, BFL / AFL is 1.01, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4C, FFL has a positive power of 128.46 and RFL has a positive power of 65.65.

したがって、実施例5のように、撮像光学系Cを広角化し、さらに、Fナンバーを1.26に大口径化した場合であっても、実施例2−4と同様、実施例1の基本形態と同等の撮像性能を確保できる。 Therefore, even when the imaging optical system C has a wide angle and the F number has a large aperture of 1.26 as in the fifth embodiment, the basic embodiment of the first embodiment is the same as in the second to fourth embodiments. It is possible to secure the same imaging performance as.

次に、本実施形態に係る実施例6の撮像光学系Cについて、図4及び図9−図13を参照して説明する。 Next, the imaging optical system C of the sixth embodiment according to the present embodiment will be described with reference to FIGS. 4 and 9-13.

実施例6は、レンズ枚数として、前レンズ群101を5枚のレンズにより構成し、後レンズ群102を5枚のレンズにより構成したものである。即ち、前レンズ群101は、両凹レンズを用いた負レンズL1,両面が物体OBJ側に凸面となる正のメニスカスとなる非球面レンズを用いた正レンズLS,両凸レンズを用いた正レンズL2,L3,物体OBJ側が凸面となる負メニスカスレンズ(負レンズ)L4により構成し、各レンズのパワーが(−)(+)(+)(+)(−)となる部分対称レンズ群として構成される。レンズL2,L3は、ほぼ同等な屈折力となり、レンズL2における硝材の異常部分分散値は0.037、レンズL3における硝材の異常部分分散値は0.0194である。前レンズ群101を構成するに際して、物体OBJ側に配し、かつ両凹レンズを用いた負レンズL1,両曲面が光軸Dcの物体OBJ側に湾曲し、かつ非球面レンズを用いた物体OBJ側に位置する正レンズL2,及び開口絞りSTO側に配するとともに、物体OBJ側が凸面になる負レンズL4を備えて構成すれば、前レンズ群101に、物体OBJ側に強い負の両凹レンズや非球面レンズを含めた構成にできるため、準広角領域から標準領域の画角において、広い入射角の収差補正効果を高めることができる。 In the sixth embodiment, the front lens group 101 is composed of five lenses and the rear lens group 102 is composed of five lenses as the number of lenses. That is, the front lens group 101 includes a negative lens L1 using a biconcave lens, a positive lens LS using an aspherical lens having a positive meniscus with both sides convex toward the object OBJ side, and a positive lens L2 using a biconvex lens. It is composed of L3 and a negative meniscus lens (negative lens) L4 whose convex surface is on the object OBJ side, and is configured as a partially symmetric lens group in which the power of each lens is (-) (+) (+) (+) (-). .. The lenses L2 and L3 have substantially the same refractive power, and the abnormal partial dispersion value of the glass material in the lens L2 is 0.037, and the abnormal partial dispersion value of the glass material in the lens L3 is 0.0194. When constructing the front lens group 101, the negative lens L1 which is arranged on the object OBJ side and uses a biconcave lens, both curved surfaces are curved toward the object OBJ side of the optical axis Dc, and the object OBJ side using an aspherical lens. If the front lens group 101 is provided with a positive lens L2 located in the front lens group 101 and a negative lens L4 having a convex surface on the object OBJ side in addition to being arranged on the aperture aperture STO side, a strong negative biconcave lens or aspherical lens on the object OBJ side is provided. Since the configuration can include a spherical lens, it is possible to enhance the effect of correcting the aberration of a wide incident angle in the angle of view from the quasi-wide angle region to the standard region.

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。これにより、レンズL5−L8の4枚は、パワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。最終レンズL9は、物体OBJ側が凹面となる負メニスカスの非球面レンズを用いている。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a bonded lens J78, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other, and both concave lenses of one bonded lens J56 are used as a negative lens L5 on the aperture aperture STO side. Configured. As a result, the four lenses L5-L8 are configured as a partially symmetrical lens group having powers (-) (+) (+) (-). The final lens L9 uses an aspherical lens with a negative meniscus whose concave surface is on the OBJ side of the object.

また、フォーカス方式、即ち、物体OBJの距離が無限遠から近距離に変化する場合のフォーカス調整の方式は、図9に示すように、7種類のフォーカス方式〔F21〕−〔F27〕を適用した。即ち、〔F21〕は、「L1−L2」,「L3−L9」をそれぞれ一体とした2つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、前レンズ群101の正レンズL2とL3間の空気間隔,像IMG側の空気間隔を変化させる方式、〔F22〕は、「L1−L5」,「L6−L9」をそれぞれ一体とした2つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、後レンズ群102の正レンズL6とL7間の空気間隔,像IMG側の空気間隔を変化させる方式、〔F23〕は、「L1,LS」,「L2−L4」,「L5−L9」をそれぞれ一体とした3つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、前レンズ群101の正レンズLSとL2間の空気間隔,開口絞りSTO含む空気間隔,像IMG側の空気間隔を変化させる方式、〔F24〕は、「L1−L2」,「L3」,「L4−L9」をそれぞれ一体とした3つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、前レンズ群101の正レンズL2とL3間の空気間隔,前レンズ群101の正レンズL3と負レンズL4間の空気間隔,像IMG側の空気間隔を変化させる方式、〔F25〕は、「L1−L3」,「L4−L6」,「L7−L9」をそれぞれ一体とした3つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、前レンズ群101の正レンズL3と負レンズL4間の空気間隔,後レンズ群102の正レンズL5とL6間の空気間隔,像IMG側の空気間隔を変化させる方式、〔F26〕は、「L1−L2」,「L3−L4」,「L5−L9」をそれぞれ一体とした3つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、前レンズ群101の正レンズL3と負レンズL4間の空気間隔,開口絞りSTO含む空気間隔,像IMG側の空気間隔を変化させる方式、〔F27〕は、「L1−L4」,「L5−L6」,「L7−L9」をそれぞれ一体とした3つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、開口絞りSTO含む空気間隔,後レンズ群102の正レンズL6とL7間の空気間隔,像IMG側の空気間隔を変化させる方式である。 Further, as a focus method, that is, a focus adjustment method when the distance of the object OBJ changes from infinity to a short distance, seven types of focus methods [F21]-[F27] are applied as shown in FIG. That is, in [F21], the two designated lens groups Lp ... In which "L1-L2" and "L3-L9" are integrated are moved to the object OBJ side by different amounts, and the positive lens L2 of the front lens group 101 is moved. The method of changing the air spacing between the lens and L3 and the air spacing on the image IMG side, [F22] is an object OBJ with two designated lens groups Lp ... In which "L1-L5" and "L6-L9" are integrated. A method of changing the air spacing between the positive lenses L6 and L7 of the rear lens group 102 and the air spacing on the image IMG side by moving them to the side by different amounts, [F23] is "L1, LS", "L2-L4". , Each of the three designated lens groups Lp ... In which "L5-L9" is integrated is moved to the object OBJ side by a different amount, and the air spacing between the positive lens LS and L2 of the front lens group 101 and the air including the aperture aperture STO. The method of changing the distance and the air distance on the image IMG side, [F24] is that the object OBJ side has three designated lens groups Lp ... In which "L1-L2", "L3", and "L4-L9" are integrated. The method of changing the air spacing between the positive lens L2 and L3 of the front lens group 101, the air spacing between the positive lens L3 and the negative lens L4 of the front lens group 101, and the air spacing on the image IMG side. In [F25], each of the three designated lens groups Lp ... In which "L1-L3", "L4-L6", and "L7-L9" are integrated is moved to the object OBJ side by different amounts, and the front lens group 101 The air spacing between the positive lens L3 and the negative lens L4, the air spacing between the positive lenses L5 and L6 of the rear lens group 102, and the air spacing on the image IMG side are changed. The three designated lens groups Lp ... In which "L3-L4" and "L5-L9" are integrated are moved to the object OBJ side by different amounts, and the air between the positive lens L3 and the negative lens L4 of the front lens group 101 is moved. The method of changing the interval, the air interval including the aperture throttle STO, and the air interval on the image IMG side, [F27] is each of the three integrated "L1-L4", "L5-L6", and "L7-L9". This is a method in which the designated lens group Lp ... Is moved to the object OBJ side by different amounts to change the air spacing including the aperture aperture STO, the air spacing between the positive lenses L6 and L7 of the rear lens group 102, and the air spacing on the image IMG side. ..

表6には、実施例6のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:49.17mm,Fナンバー:1.94,半画角:23.7゜である。 Table 6 shows the lens data of the entire lens system of Example 6. The imaging optical system C at an infinite object point has a focal length of 49.17 mm, an F number of 1.94, and a half angle of view of 23.7 °.

Figure 2021032959
Figure 2021032959

図10−図13に、実施例6の撮像光学系Cにおけるフォーカス方式〔F21〕−〔F27〕に対応する縦収差図を示す。なお、図10の〔F2s〕は、無限遠時における縦収差図を示す。各縦収差図は、左側から、球面収差(656.27nm,586.56nm,435.83nm)、非点収差(586.56nm)、歪曲収差(586.56nm)を示す。各スケールは、±0.50mm,±0.50mm,±3.0%である。 10-13 show a longitudinal aberration diagram corresponding to the focus method [F21]-[F27] in the imaging optical system C of the sixth embodiment. [F2s] in FIG. 10 shows a longitudinal aberration diagram at infinity. From the left side, each longitudinal aberration diagram shows spherical aberration (656.27 nm, 586.56 nm, 435.83 nm), astigmatism (586.56 nm), and distortion (586.56 nm). Each scale is ± 0.50 mm, ± 0.50 mm, ± 3.0%.

実施例6の場合、図4(a)に示すように、EFLは49.28であり、BFLは75.15である。したがって、BFL/AFLは1.52となり、前述した光学条件1を満たしている。また、図4(b)に示すように、レンズL2のEGFLは60.00,AGMXは74.53であり、EGFL/AGMXは0.81となり、前述した光学条件2を満たしているとともに、レンズL3のEGFLは55.00,AGMXは74.53であり、EGFL/AGMXは0.74となり、前述した光学条件2を満たしている。 In the case of Example 6, as shown in FIG. 4A, the EFL is 49.28 and the BFL is 75.15. Therefore, BFL / AFL is 1.52, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4B, the EGFL of the lens L2 is 60.00, the AGMX is 74.53, and the EGFL / AGMX is 0.81, which satisfy the above-mentioned optical condition 2 and the lens. The EGFL of L3 is 55.00, the AGMX is 74.53, and the EGFL / AGMX is 0.74, which satisfy the above-mentioned optical condition 2.

このように、前レンズ群101及び後レンズ群102におけるフォーカス調整時に変化する空気間隔の前後の指定レンズ群Lp…を、最大3つの指定レンズ群Lp…を移動可能に構成するとともに、指定レンズ群Lp…の位置を異ならせることにより、7種類のフォーカス方式〔F21〕−〔F27〕を選定する場合であっても良好な撮像性能を確保できるとともに、対称配置タイプのレンズ構成のメリットを利用した各種フォーカス調整機構を構築することができる。 In this way, the designated lens group Lp ... Before and after the air spacing that changes during focus adjustment in the front lens group 101 and the rear lens group 102 is configured to be movable up to three designated lens groups Lp ..., and the designated lens group is movable. By changing the position of Lp ..., good imaging performance can be ensured even when seven types of focus methods [F21]-[F27] are selected, and the merit of the symmetrical arrangement type lens configuration is utilized. Various focus adjustment mechanisms can be constructed.

次に、本実施形態に係る実施例7の撮像光学系Cについて、図4,図14及び図15を参照して説明する。 Next, the imaging optical system C of the seventh embodiment according to the present embodiment will be described with reference to FIGS. 4, 14 and 15.

実施例7における基本的なレンズ構成は、実施例6と同じである。即ち、レンズ枚数として、前レンズ群101を5枚のレンズにより構成し、後レンズ群102を5枚のレンズにより構成したものである。即ち、前レンズ群101は、両凹レンズを用いた負レンズL1,両面が物体OBJ側に凸面となる正のメニスカスとなる非球面レンズを用いた正レンズLS,両凸レンズを用いた正レンズL2,L3,物体OBJ側が凸面となる負メニスカスレンズ(負レンズ)L4により構成し、各レンズのパワーが(−)(+)(+)(+)(−)となる部分対称レンズ群として構成される。レンズL2,L3は、ほぼ同等な屈折力となり、レンズL2における硝材の異常部分分散値は0.037、レンズL3における硝材の異常部分分散値は0.0194である。 The basic lens configuration in Example 7 is the same as in Example 6. That is, as the number of lenses, the front lens group 101 is composed of five lenses, and the rear lens group 102 is composed of five lenses. That is, the front lens group 101 includes a negative lens L1 using a biconcave lens, a positive lens LS using an aspherical lens having a positive meniscus with both sides convex toward the object OBJ side, and a positive lens L2 using a biconvex lens. It is composed of L3 and a negative meniscus lens (negative lens) L4 whose convex surface is on the object OBJ side, and is configured as a partially symmetric lens group in which the power of each lens is (-) (+) (+) (+) (-). .. The lenses L2 and L3 have substantially the same refractive power, and the abnormal partial dispersion value of the glass material in the lens L2 is 0.037, and the abnormal partial dispersion value of the glass material in the lens L3 is 0.0194.

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。これにより、レンズL5−L8の4枚は、パワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。最終レンズL9は、物体OBJ側が凹面となる負メニスカスの非球面レンズを用いている。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a bonded lens J78, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other, and both concave lenses of one bonded lens J56 are used as a negative lens L5 on the aperture aperture STO side. Configured. As a result, the four lenses L5-L8 are configured as a partially symmetrical lens group having powers (-) (+) (+) (-). The final lens L9 uses an aspherical lens with a negative meniscus whose concave surface is on the OBJ side of the object.

また、実施例7は、物体OBJに対する距離が無限遠から近距離に変化する場合のフォーカス方式を変更したものである。即ち、部分対称レンズ群を構成する2枚の正レンズ(両凸レンズ)L2とL3間,L6とL7間の一つの空気間隔を変化させると同時に、像IMG側の空気間隔の移動量を極小にすることによりレンズL7−L9を像IMG面から一定の距離に保つ所謂フロントフォーカス方式としたものであり、図14に示すように、2種類のフォーカス方式〔F31〕,〔F32〕を適用した。〔F31〕は、「L7−L9」を固定し、「L1−L2」,「L3−L6」をそれぞれ一体とした2つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、前レンズ群101の正レンズL2とL3間の空気間隔,後レンズ群102の正レンズL6とL7間の空気間隔を変化させる方式、〔F32〕は、「L7−L9」を固定し、「L1−L6」が一体となる一つ指定レンズ群Lpを物体OBJ側に異なる量で移動させ、後レンズ群102の正レンズL6とL7間の空気間隔を変化させる方式である。 Further, in the seventh embodiment, the focus method when the distance to the object OBJ changes from infinity to a short distance is changed. That is, while changing one air spacing between the two positive lenses (biconvex lenses) L2 and L3 and between L6 and L7 that make up the partially symmetrical lens group, the amount of movement of the air spacing on the image IMG side is minimized. This is a so-called front focus method for keeping the lenses L7-L9 at a constant distance from the image IMG surface, and as shown in FIG. 14, two types of focus methods [F31] and [F32] are applied. In [F31], "L7-L9" is fixed, and two designated lens groups Lp ... In which "L1-L2" and "L3-L6" are integrated are moved to the object OBJ side by different amounts, and the front is moved. In the method of changing the air spacing between the positive lenses L2 and L3 of the lens group 101 and the air spacing between the positive lenses L6 and L7 of the rear lens group 102, [F32] fixes "L7-L9" and "L1-L1-". This is a method in which one designated lens group Lp in which "L6" is integrated is moved to the object OBJ side by a different amount, and the air spacing between the positive lenses L6 and L7 of the rear lens group 102 is changed.

表7には、実施例7のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:48.73mm,Fナンバー:1.94,半画角:23.9゜である。 Table 7 shows the lens data of the entire lens system of Example 7. The imaging optical system C at an infinite object point has a focal length of 48.73 mm, an F number of 1.94, and a half angle of view of 23.9 °.

Figure 2021032959
Figure 2021032959

図15に、実施例7の撮像光学系Cにおけるフォーカス方式〔F31〕−〔F32〕に対応する縦収差図を示す。なお、図15の〔F3s〕は、無限遠時における縦収差図を示す。各縦収差図は、左側から、球面収差(656.27nm,586.56nm,435.83nm)、非点収差(586.56nm)、歪曲収差(586.56nm)を示す。各スケールは、±0.50mm,±0.50mm,±3.0%である。 FIG. 15 shows a longitudinal aberration diagram corresponding to the focus method [F31]-[F32] in the imaging optical system C of the seventh embodiment. [F3s] in FIG. 15 shows a longitudinal aberration diagram at infinity. From the left side, each longitudinal aberration diagram shows spherical aberration (656.27 nm, 586.56 nm, 435.83 nm), astigmatism (586.56 nm), and distortion (586.56 nm). Each scale is ± 0.50 mm, ± 0.50 mm, ± 3.0%.

実施例7の場合、図4(a)に示すように、EFLは48.73であり、BFLは71.22である。したがって、BFL/AFLは1.46となり、前述した光学条件1を満たしている。また、図4(b)に示すように、レンズL3のEGFLは60.03,AGMXは62.49であり、EGFL/AGMXは0.96となり、前述した光学条件2を満たしている。 In the case of Example 7, as shown in FIG. 4A, the EFL is 48.73 and the BFL is 71.22. Therefore, BFL / AFL is 1.46, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4B, the EGFL of the lens L3 is 60.03, the AGMX is 62.49, and the EGFL / AGMX is 0.96, which satisfy the above-mentioned optical condition 2.

このように、「L1−L2」と「L3−L6」の2つのレンズ群を移動群とするフォーカス方式〔F31〕と、「L1−L6」の一つのレンズ群を一体として移動群とするフォーカス方式のいずれのフォーカス方式であっても、実施例2−6と同様、実施例1の基本形態と同等の撮像性能を確保できるとともに、対称配置タイプのレンズ構成のメリットを利用した各種フォーカス調整機構を構築することができる。 In this way, the focus method [F31] in which the two lens groups of "L1-L2" and "L3-L6" are used as the moving group, and the focus in which one lens group of "L1-L6" is used as the moving group are integrated. Regardless of the focus method of the method, as in the case of the second to sixth embodiments, it is possible to secure the same imaging performance as the basic form of the first embodiment, and various focus adjustment mechanisms utilizing the merits of the symmetrical arrangement type lens configuration. Can be built.

次に、本実施形態に係る実施例8の撮像光学系Cについて、図4及び図16−図17を参照して説明する。 Next, the imaging optical system C of the eighth embodiment according to the present embodiment will be described with reference to FIGS. 4 and 16-17.

実施例8は、レンズ枚数として、前レンズ群101を4枚のレンズにより構成し、後レンズ群102を5枚のレンズにより構成したものである。即ち、前レンズ群101は、両凹レンズを用いた負レンズL1,物体OBJ側が凸面となる正メニスカスレンズ(正レンズ)L2,L3,物体OBJ側が凸面となる負メニスカスレンズ(負レンズ)L4により構成し、各レンズのパワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。 In Example 8, as the number of lenses, the front lens group 101 is composed of four lenses, and the rear lens group 102 is composed of five lenses. That is, the front lens group 101 is composed of a negative lens L1 using both concave lenses, a positive meniscus lens (positive lens) L2 and L3 having a convex surface on the object OBJ side, and a negative meniscus lens (negative lens) L4 having a convex surface on the object OBJ side. However, it is configured as a partially symmetric lens group in which the power of each lens is (-) (+) (+) (-).

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。これにより、レンズL5−L8の4枚は、パワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。最終レンズL9は、物体OBJ側が凸面となる負メニスカスの非球面レンズを用いている。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a bonded lens J78, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other, and both concave lenses of one bonded lens J56 are used as a negative lens L5 on the aperture aperture STO side. Configured. As a result, the four lenses L5-L8 are configured as a partially symmetrical lens group having powers (-) (+) (+) (-). The final lens L9 uses an aspherical lens with a negative meniscus whose convex surface is on the OBJ side of the object.

また、実施例8は、物体OBJに対する距離が無限遠から近距離に変化する場合のフォーカス方式を変更したものである。即ち、フォーカス調整の方式は、図16に示すように、指定レンズ群Lp…を構成するレンズL4−L6,L7−L9をそれぞれ一体とした2つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、レンズL3とL4間の空気間隔,レンズL6とL7間の空気間隔を変化させるフォーカス方式〔F41〕を採用したものであり、レンズL1−L3を像IMG面から一定の距離に保つ所詞リアフォーカス方式とした。 Further, in the eighth embodiment, the focus method when the distance to the object OBJ changes from infinity to a short distance is changed. That is, as shown in FIG. 16, the focus adjustment method differs on the object OBJ side from each of the two designated lens groups Lp ... In which the lenses L4-L6 and L7-L9 constituting the designated lens group Lp ... Are integrated. A focus method [F41] is adopted in which the air spacing between the lenses L3 and L4 and the air spacing between the lenses L6 and L7 are changed by moving the lenses by an amount, and the lenses L1-L3 are kept at a constant distance from the image IMG surface. The rear focus method was used.

表8に、実施例8のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:49.80mm,Fナンバー:1.94,半画角:23.5゜である。 Table 8 shows the lens data of the entire lens system of Example 8. The imaging optical system C at an infinite object point has a focal length of 49.80 mm, an F number of 1.94, and a half angle of view: 23.5 °.

Figure 2021032959
Figure 2021032959

図17に、実施例8の撮像光学系Cにおけるフォーカス方式〔F41〕に対応する縦収差図を示す。なお、図17の〔F4s〕は、無限遠時における縦収差図を示す。各縦収差図は、左側から、球面収差(656.27nm,586.56nm,435.83nm)、非点収差(586.56nm)、歪曲収差(586.56nm)を示す。各スケールは、±0.50mm,±0.50mm,±3.0%である。 FIG. 17 shows a longitudinal aberration diagram corresponding to the focus method [F41] in the imaging optical system C of the eighth embodiment. [F4s] in FIG. 17 shows a longitudinal aberration diagram at infinity. From the left side, each longitudinal aberration diagram shows spherical aberration (656.27 nm, 586.56 nm, 435.83 nm), astigmatism (586.56 nm), and distortion (586.56 nm). Each scale is ± 0.50 mm, ± 0.50 mm, ± 3.0%.

実施例8の場合、図4(a)に示すように、EFLは49.80であり、BFLは47.73である。したがって、BFL/AFLは0.96となり、前述した光学条件1を満たしている。 In the case of Example 8, as shown in FIG. 4A, the EFL is 49.80 and the BFL is 47.73. Therefore, BFL / AFL is 0.96, which satisfies the above-mentioned optical condition 1.

このように、指定レンズ群Lp…を構成するレンズL4−L6,L7−L9をそれぞれ一体とした2つの各指定レンズ群Lp…を物体OBJ側に異なる量で移動させ、レンズL3とL4間の空気間隔,レンズL6とL7間の空気間隔を変化させるとともに、レンズL1−L3を像IMG面から一定の距離に保つ所詞リアフォーカス方式とした場合であっても、実施例2−7と同様、実施例1の基本形態と同等の撮像性能を確保できるとともに、対称配置タイプのレンズ構成のメリットを利用した各種フォーカス調整機構を構築することができる。 In this way, the two designated lens groups Lp ... In which the lenses L4-L6 and L7-L9 constituting the designated lens group Lp ... Are integrated are moved to the object OBJ side by different amounts, and between the lenses L3 and L4. Even when the air spacing and the air spacing between the lenses L6 and L7 are changed and the lenses L1-L3 are kept at a constant distance from the image IMG surface, the same as in Example 2-7. It is possible to secure the same imaging performance as the basic embodiment of the first embodiment, and to construct various focus adjustment mechanisms utilizing the merits of the symmetrical arrangement type lens configuration.

次に、本実施形態に係る実施例9の撮像光学系Cについて、図4及び図18−図21を参照して説明する。 Next, the imaging optical system C of the ninth embodiment according to the present embodiment will be described with reference to FIGS. 4 and 18-21.

実施例9の撮像光学系Cの構成は前述した実施例1の基本形態と同じである。即ち、前レンズ群101は、両凹レンズを用いた負レンズL1,両面が物体OBJ側に凸面となる正メニスカスの非球面レンズ(正レンズ)L2,両凸レンズを用いた正レンズL3,物体OBJ側が凸面となる負メニスカスレンズ(負レンズ)L4により構成し、各レンズのパワーは、(−)(+)(+)(−)となる部分対称レンズ群として構成される。 The configuration of the imaging optical system C of the ninth embodiment is the same as that of the basic embodiment of the first embodiment described above. That is, in the front lens group 101, the negative lens L1 using the biconcave lens 1, the aspherical lens (positive lens) L2 of the positive meniscus whose both sides are convex toward the object OBJ side, the positive lens L3 using the biconvex lens, and the object OBJ side are It is composed of a negative meniscus lens (negative lens) L4 having a convex surface, and the power of each lens is configured as a partially symmetric lens group having (-) (+) (+) (-).

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成する。そして、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成する。これにより、各レンズのパワーは、(−)(+)(+)(−)となる部分対称レンズ群として構成される。なお、最終レンズL9は物体OBJ側が凸面となる負メニスカスの非球面レンズとして構成される。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a junction lens J78. Then, the positive lenses L6 and L7 of the two junction lenses J56 and J78 are arranged so as to face each other, and the concave lenses of one of the junction lenses J56 are configured as the negative lens L5 on the aperture diaphragm STO side. As a result, the power of each lens is configured as a partially symmetrical lens group of (-) (+) (+) (-). The final lens L9 is configured as an aspherical lens with a negative meniscus whose convex surface is on the OBJ side of the object.

表9には、実施例9のレンズ全系のレンズデータを示す。無限物点時の撮像光学系Cは、焦点距離:36.01mm,Fナンバー:1.27,半画角:31.4゜である。 Table 9 shows the lens data of the entire lens system of Example 9. The imaging optical system C at an infinite object point has a focal length of 36.01 mm, an F number of 1.27, and a half angle of view of 31.4 °.

Figure 2021032959
Figure 2021032959

フォーカス方式は実施例1と同じになる4タイプである。図18に示す〔F51〕−〔F54〕は、図1に示す〔F11〕−〔F14〕にそれぞれ対応する。実施例9の場合、図4(a)に示すように、EFLは36.01であり、BFLは38.40である。したがって、BFL/AFLは1.07となり、前述した光学条件1を満たしている。また、図4(c)に示すように、FFLは111.36の正パワー、RFLは40.58の正パワーとなる。 There are four types of focus methods, which are the same as those in the first embodiment. [F51]-[F54] shown in FIG. 18 correspond to [F11]-[F14] shown in FIG. 1, respectively. In the case of Example 9, as shown in FIG. 4A, the EFL is 36.01 and the BFL is 38.40. Therefore, BFL / AFL is 1.07, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4C, FFL has a positive power of 111.36 and RFL has a positive power of 40.58.

図20−図21に、実施例9の撮像光学系Cにおけるフォーカス方式〔F51〕−〔F54〕に対応する縦収差図を示す。なお、図19の〔F5s〕は、無限遠時における縦収差図を示す。各縦収差図は、左側から、球面収差(656.27nm,586.56nm,435.83nm)、非点収差(586.56nm)、歪曲収差(586.56nm)を示す。各スケールは、±0.50mm,±0.50mm,±3.0%である。 20-21 show a longitudinal aberration diagram corresponding to the focus method [F51]-[F54] in the imaging optical system C of the ninth embodiment. [F5s] in FIG. 19 shows a longitudinal aberration diagram at infinity. From the left side, each longitudinal aberration diagram shows spherical aberration (656.27 nm, 586.56 nm, 435.83 nm), astigmatism (586.56 nm), and distortion (586.56 nm). Each scale is ± 0.50 mm, ± 0.50 mm, ± 3.0%.

実施例9は、広角化とFナンバーを1.265に大口径化した実施例となるが、各収差は、他の実施例と同様に良好な撮像性能が確保されている。なお、レンズ全体を移動させるフォーカシング方式では、像面湾曲(非点収差)の焦点面がプラス側にカーブするため、被写体の中央で焦点が合った場合、被写体の周辺に行くに従って遠方に焦点が合うカーブがあり、被写体に対して近方はよりボケた画像や映像が得られる。また、近距離の被写体では良好な撮像性能が確保される調整間隔が分かるため、像面湾曲の度合をコントロールすることにも利用できる。 Example 9 is an example in which the angle is widened and the F number is increased to 1.265, but good imaging performance is ensured for each aberration as in the other examples. In the focusing method that moves the entire lens, the focal plane of curvature of field (astigmatism) curves to the plus side, so if the focus is in the center of the subject, the focus will be farther toward the periphery of the subject. There is a matching curve, and images and videos that are closer to the subject can be obtained. Further, since the adjustment interval for ensuring good imaging performance can be known for a short-distance subject, it can also be used to control the degree of curvature of field.

次に、本実施形態に係る実施例10の撮像光学系Cについて、図4及び図22を参照して説明する。 Next, the imaging optical system C of the tenth embodiment according to the present embodiment will be described with reference to FIGS. 4 and 22.

実施例10は、図22に示すように、前レンズ群101に、両凹レンズを用いた負レンズL1,両面が物体OBJ側に凸面となる正メニスカスの非球面レンズを用いた正レンズL2,物体OBJ側が凸面となる正メニスカスレンズ(正レンズ)L3,物体OBJ側が凸面となる負メニスカスレンズ(負レンズ)L4により構成し、レンズL1−L4のパワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。 In Example 10, as shown in FIG. 22, the front lens group 101 includes a negative lens L1 using a biconcave lens, a positive lens L2 using a positive meniscus aspherical lens having both sides convex toward the object OBJ side, and an object. It is composed of a positive meniscus lens (positive lens) L3 with a convex surface on the OBJ side and a negative meniscus lens (negative lens) L4 with a convex surface on the object OBJ side, and the power of the lenses L1-L4 is (-) (+) (+) (-). ) Is configured as a partially symmetric lens group.

後レンズ群102は、両凹レンズを用いた負レンズL5と両凸レンズを用いた正レンズL6を接合レンズJ56として構成するとともに、両凸レンズを用いた正レンズL7と両凹レンズを用いた負レンズL8を接合レンズJ78により構成したものであり、二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成した。これにより、レンズL5−L8の4枚は、パワーが(−)(+)(+)(−)となる部分対称レンズ群として構成される。また、最終レンズL9は物体OBJ側が凸面となる負メニスカスの非球面レンズである。 The rear lens group 102 includes a negative lens L5 using a biconcave lens and a positive lens L6 using a biconvex lens as a junction lens J56, and a positive lens L7 using a biconvex lens and a negative lens L8 using a biconcave lens. It is composed of a bonded lens J78, and the positive lenses L6 and L7 of the two bonded lenses J56 and J78 are arranged so as to face each other, and both concave lenses of one bonded lens J56 are used as a negative lens L5 on the aperture aperture STO side. Configured. As a result, the four lenses L5-L8 are configured as a partially symmetrical lens group having powers (-) (+) (+) (-). The final lens L9 is an aspherical lens with a negative meniscus whose convex surface is on the OBJ side of the object.

表10には、実施例10のレンズ全系のレンズデータを示す。無限物点時における撮像光学系Cは、焦点距離:48.00mm,Fナンバー:1.26,半画角:24.4゜である。 Table 10 shows the lens data of the entire lens system of Example 10. The imaging optical system C at an infinite object point has a focal length of 48.00 mm, an F number of 1.26, and a half angle of view: 24.4 °.

Figure 2021032959
Figure 2021032959

フォーカス方式は実施例1及び実施例9と同じになる4タイプである。実施例10の場合、図4(a)に示すように、EFLは48.00であり、BFLは45.40である。したがって、BFL/AFLは0.95となり、前述した光学条件1を満たしている。また、図4(c)に示すように、FFLは126.00の正パワー、RFLは53.15の正パワーとなる。 There are four types of focus methods that are the same as those of the first and ninth embodiments. In the case of Example 10, as shown in FIG. 4A, the EFL is 48.00 and the BFL is 45.40. Therefore, BFL / AFL is 0.95, which satisfies the above-mentioned optical condition 1. Further, as shown in FIG. 4C, FFL has a positive power of 126.00 and RFL has a positive power of 53.15.

実施例10は、特に、Fナンバーが1.261となる大口径化した撮像光学系Cとなるが、他の実施例と同様に良好な撮像性能が確保される。 The tenth embodiment is, in particular, a large-diameter imaging optical system C having an F number of 1.261, but good imaging performance is ensured as in the other examples.

以上、実施例1−10を含む好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 Although preferred embodiments including Examples 1-10 have been described in detail above, the present invention is not limited to such embodiments, and the present invention is not limited to such embodiments, and the detailed configuration, shape, material, quantity, numerical value, etc. It may be arbitrarily changed, added or deleted without departing from the gist of the present invention.

例えば、前レンズ群101構成するに際して、物体OBJ側に配し、かつ物体OBJ側が凹面になる負レンズL1,及び開口絞りSTO側に配し、かつ両曲面が光軸Dcの物体OBJ側に湾曲した非球面レンズによる負レンズL4を設けて構成した場合を例示したが、使用する個々のレンズの形態は他の形態を排除するものではない。また、後レンズ群102は、開口絞りSTO側に配し、かつ当該開口絞りSTO側が凹面になる負レンズL5,2枚の両凸レンズを用いた正レンズ群Lr,及び像IMG側が空気空間Sに面する、両凹レンズによる負レンズL8を設けて構成することが望ましいが、使用する個々のレンズの形態は他の形態を排除するものではない。同様に、前レンズ群101を構成するに際して、物体OBJ側に配し、かつ両凹レンズを用いた負レンズL1,両曲面が光軸Dcの物体OBJ側に湾曲し、かつ非球面レンズを用いた、物体OBJ側から二番目に位置する正レンズL2,及び開口絞りSTO側に配するとともに、物体OBJ側が凸面になり、かつ像IMG側の湾曲面を所定の大きさ以下となる曲率に設定した負レンズL4を設けて構成し、開口絞りSTOから三番目までの空気空間Sに接する面形状を開口絞りSTOに対向させて構成する場合を例示したが、使用する個々のレンズの形態は他の形態を排除するものではない。この際、後レンズ群102は、両凹レンズを用いた負レンズL5,L8と両凸レンズを用いた正レンズL6,L7を接合した二つの接合レンズJ56,J78の各正レンズL6,L7同士を対向させて配し、一方の接合レンズJ56の両凹レンズを開口絞りSTO側の負レンズL5として構成するとともに、開口絞りSTOから三番目までの空気空間Sに接する面形状を開口絞りSTOに対向させることが望ましいが、使用する個々のレンズの形態は他の形態を排除するものではない。他方、後レンズ群102の開口絞りSTO側の負レンズL5から像側の負レンズL8の焦点距離をBFLとし、レンズ全系の焦点距離をEFLとしたとき、「0.7<BFL/EFL<1.6」の条件を満たすように構成するとともに、前レンズ群101は、正レンズL2,L3の硝材における異常部分分散性ΔθgFの絶対値が0.015以上となる全てのレンズの焦点距離をEGFLとし、前レンズ群101及び後レンズ群102における全ての正レンズの最大値をAGMXとしたとき、「0.6<EGFL/AGMX<1.2」の条件を満たすように構成することが望ましいが、これらの条件のいずれか一方のみを満たす場合或いは双方を満たさない場合を排除するものではない。 For example, when the front lens group 101 is configured, it is arranged on the object OBJ side and is arranged on the negative lens L1 and the aperture diaphragm STO side in which the object OBJ side is concave, and both curved surfaces are curved toward the object OBJ side of the optical axis Dc. Although the case where the negative lens L4 made of the aspherical lens is provided is illustrated, the form of each lens used does not exclude other forms. Further, the rear lens group 102 is arranged on the aperture aperture STO side, and the positive lens group Lr using the negative lens L5 and two biconvex lenses whose aperture aperture STO side is concave, and the image IMG side are in the air space S. It is desirable to provide a negative lens L8 with both concave lenses facing each other, but the form of each lens used does not exclude other forms. Similarly, when constructing the front lens group 101, a negative lens L1 arranged on the object OBJ side and using a biconcave lens, both curved surfaces curved toward the object OBJ side of the optical axis Dc, and an aspherical lens was used. , The positive lens L2 located second from the object OBJ side and the aperture aperture STO side are arranged, and the object OBJ side is a convex surface and the curved surface on the image IMG side is set to a curvature of a predetermined size or less. An example is illustrated in which a negative lens L4 is provided and the surface shape in contact with the air space S from the aperture aperture STO to the third is opposed to the aperture aperture STO, but the form of each lens used is other. It does not exclude the form. At this time, the rear lens group 102 faces the positive lenses L6 and L7 of the two bonded lenses J56 and J78, which are obtained by bonding the negative lenses L5 and L8 using the biconcave lens and the positive lenses L6 and L7 using the biconvex lens. The two concave lenses of one of the bonded lenses J56 are configured as the negative lens L5 on the aperture aperture STO side, and the surface shape in contact with the air space S from the aperture aperture STO to the third is opposed to the aperture aperture STO. However, the morphology of the individual lenses used does not preclude other morphologies. On the other hand, when the focal distance from the negative lens L5 on the aperture aperture STO side of the rear lens group 102 to the negative lens L8 on the image side is BFL and the focal distance of the entire lens system is EFL, "0.7 <BFL / EFL < The front lens group 101 is configured to satisfy the condition of "1.6", and the front lens group 101 sets the focal distances of all lenses in which the absolute value of the abnormal partial dispersibility ΔθgF in the glass material of the positive lenses L2 and L3 is 0.015 or more. When EGFL is used and the maximum values of all the positive lenses in the front lens group 101 and the rear lens group 102 are AGMX, it is desirable to configure the lens so as to satisfy the condition of "0.6 <EGFL / AGMX <1.2". However, it does not exclude the case where only one of these conditions is satisfied or the case where both are not satisfied.

本発明に係る撮像光学系は、デジタルカメラやビデオカメラ等の各種光学機器における専用レンズ或いは交換レンズ等に利用できる。 The imaging optical system according to the present invention can be used as a dedicated lens or an interchangeable lens in various optical devices such as digital cameras and video cameras.

C:撮像光学系,101:前レンズ群,102:後レンズ群,STO:開口絞り,OBJ:物体,IMG:像,Dc:光軸,L1:負レンズ,L2…:正レンズ,L4:負レンズ,L5:負レンズ,L6…:正レンズ,L7:正レンズ,L8:負レンズ,L9:最終レンズ,Lf:正レンズ群,Lr:正レンズ群,Lp…:指定レンズ群,J56:接合レンズ,J78:接合レンズ,S:空気空間 C: Imaging optical system, 101: Front lens group, 102: Rear lens group, STO: Aperture aperture, OBJ: Object, IMG: Image, Dc: Optical axis, L1: Negative lens, L2 ...: Positive lens, L4: Negative Lens, L5: Negative lens, L6 ...: Positive lens, L7: Positive lens, L8: Negative lens, L9: Final lens, Lf: Positive lens group, Lr: Positive lens group, Lp ...: Designated lens group, J56: Junction Lens, J78: Junction lens, S: Air space

Claims (11)

開口絞りに対して光軸方向の物体側に前レンズ群を配し、かつ像側に後レンズ群を配した対称配置タイプのレンズ構成を備える撮像光学系において、連続した2又は3枚の正レンズを含む正レンズ群,及びこの正レンズ群の両側に配した一対の負レンズを有し、かつ開口絞り側の負レンズに、両面が空気空間に面する、物体側が凸面になるメニスカスレンズを用いて構成した前記前レンズ群と、2枚の両凸レンズを用いた正レンズが連続する正レンズ群,及びこの正レンズ群の両側に配した一対の負レンズを有し、かつ像側の負レンズに、両凹レンズを用いるとともに、像側の負レンズの後方に配し、かつ両面が空気空間に面するとともに、両曲面が光軸の同一方向に湾曲した非球面レンズによる最終レンズを配して構成した後レンズ群とを備えることを特徴とする操像光学系。 In an imaging optical system having a symmetrical arrangement type lens configuration in which a front lens group is arranged on the object side in the optical axis direction and a rear lens group is arranged on the image side with respect to the aperture aperture, two or three consecutive positive lenses are used. A meniscus lens that has a positive lens group including a lens and a pair of negative lenses arranged on both sides of this positive lens group, and has a negative lens on the aperture aperture side, both sides facing the air space and an object side having a convex surface. It has a front lens group constructed by using the lens group, a positive lens group in which positive lenses using two biconvex lenses are continuous, and a pair of negative lenses arranged on both sides of the positive lens group, and is negative on the image side. A biconcave lens is used as the lens, and a final lens made of an aspherical lens whose curved surfaces are curved in the same direction of the optical axis is arranged while being arranged behind the negative lens on the image side and both sides facing the air space. An image-manipulating optical system characterized in that it includes a rear lens group. 前記前レンズ群は、物体側に配し、かつ物体側が凹面になる前記負レンズを備えるとともに、両曲面が光軸の物体側に湾曲した少なくとも1つの非球面レンズを含ませてなることを特徴とする請求項1記載の撮像光学系。 The front lens group includes the negative lens which is arranged on the object side and whose object side is concave, and includes at least one aspherical lens whose curved surfaces are curved toward the object side of the optical axis. The imaging optical system according to claim 1. 前記後レンズ群は、前記開口絞り側に配し、かつ当該開口絞り側が凹面になる前記負レンズを備えるとともに、像側に配し、かつ像側が空気空間に面する前記負レンズを備えることを特徴とする請求項1又は2記載の撮像光学系。 The rear lens group includes the negative lens arranged on the aperture diaphragm side and having a concave surface on the aperture diaphragm side, and also includes the negative lens arranged on the image side and facing the air space on the image side. The imaging optical system according to claim 1 or 2, wherein the imaging optical system is characterized. 前記前レンズ群は、物体側に配し、かつ両凹レンズを用いた前記負レンズ,両曲面が光軸の物体側に湾曲し、かつ非球面レンズを用いた物体側に位置する前記正レンズ,及び前記開口絞り側に配するとともに、物体側が凸面になる前記負レンズを備えて構成することを特徴とする請求項1記載の撮像光学系。 The front lens group is the negative lens which is arranged on the object side and uses a biconcave lens, and the positive lens which has both curved surfaces curved toward the object side of the optical axis and is located on the object side using an aspherical lens. The imaging optical system according to claim 1, further comprising the negative lens arranged on the aperture aperture side and having a convex surface on the object side. 前記後レンズ群は、両凹レンズを用いた前記負レンズと両凸レンズを用いた前記正レンズを接合した二つの接合レンズにより構成し、前記二つの接合レンズの正レンズ同士を対向させて配するとともに、一方の接合レンズの両凹レンズを前記開口絞り側の負レンズとして構成することを特徴とする請求項1記載の操像光学系。 The rear lens group is composed of two bonded lenses in which the negative lens using a biconcave lens and the positive lens using a biconvex lens are joined, and the positive lenses of the two bonded lenses are arranged so as to face each other. The image control optical system according to claim 1, wherein the biconcave lens of one of the junction lenses is configured as a negative lens on the aperture aperture side. 前記後レンズ群の前記開口絞り側の前記負レンズから像側の前記負レンズの焦点距離をBFLとし、レンズ全系の焦点距離をEFLとしたとき、
0.7<BFL/EFL<1.6
の条件を満たすことを特徴とする請求項1記載の撮像光学系。
When the focal length of the negative lens on the image side from the negative lens on the aperture diaphragm side of the rear lens group is BFL and the focal length of the entire lens system is EFL.
0.7 <BFL / EFL <1.6
The imaging optical system according to claim 1, wherein the image pickup optical system according to claim 1 is satisfied.
前記前レンズ群における前記正レンズの硝材における異常部分分散性ΔθgFの絶対値が0.015以上となる全ての当該正レンズの焦点距離をEGFLとし、前記前レンズ群における全ての前記正レンズの焦点距離の最大値をAGMXとしたとき、
0.6<EGFL/AGMX<1.2
の条件を満たすことを特徴とする請求項1記載の撮像光学系。
The focal lengths of all the positive lenses in which the absolute value of the abnormal partial dispersibility ΔθgF in the glass material of the positive lens in the front lens group is 0.015 or more are defined as EGFL, and the focal lengths of all the positive lenses in the front lens group. When the maximum value of the distance is AGMX,
0.6 <EGFL / AGMX <1.2
The imaging optical system according to claim 1, wherein the image pickup optical system according to claim 1 is satisfied.
前記前レンズ群及び前記後レンズ群のそれぞれに1枚の非球面レンズを含めるとともに、各非球面レンズを同一形状に形成し、かつ光軸方向において対称に配することを特徴とする請求項1記載の撮像光学系。 Claim 1 is characterized in that one aspherical lens is included in each of the front lens group and the rear lens group, each aspherical lens is formed into the same shape, and the aspherical lenses are arranged symmetrically in the optical axis direction. The imaging optical system described. 前記前レンズ群及び前記後レンズ群におけるフォーカス調整時に変化する空気間隔の前後の部分レンズ群(指定レンズ群)は、最大3つの指定レンズ群を移動可能に構成することを特徴とする請求項1記載の撮像光学系。 Claim 1 is characterized in that the front and rear partial lens groups (designated lens groups) before and after the air spacing that changes during focus adjustment in the front lens group and the rear lens group are configured to be movable up to three designated lens groups. The imaging optical system described. 前記フォーカス調整時に変化する空気間隔は、前記開口絞りを含む空気間隔,前記前レンズ群の2枚の正レンズ間の空気間隔,前記後レンズ群の2枚の正レンズ間の空気間隔の少なくとも1つを含むことを特徴とする請求項9記載の撮像光学系。 The air spacing that changes during the focus adjustment is at least one of the air spacing including the aperture diaphragm, the air spacing between the two positive lenses in the front lens group, and the air spacing between the two positive lenses in the rear lens group. The imaging optical system according to claim 9, wherein the image pickup optical system comprises one. 前記前レンズ群の焦点距離FFLと後レンズ群の焦点距離RFLが共に正パワーのとき、フォーカス調整時には、レンズ全系を物体側に移動させて像側の空気間隔を変化させる構成を備えることを特徴とする請求項1,9又は10記載の撮像光学系。 When the focal length FFL of the front lens group and the focal length RFL of the rear lens group are both positive powers, the entire lens system is moved to the object side to change the air spacing on the image side at the time of focus adjustment. The imaging optical system according to claim 1, 9 or 10.
JP2019150492A 2019-08-20 2019-08-20 Imaging optical system Active JP7306687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019150492A JP7306687B2 (en) 2019-08-20 2019-08-20 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019150492A JP7306687B2 (en) 2019-08-20 2019-08-20 Imaging optical system

Publications (2)

Publication Number Publication Date
JP2021032959A true JP2021032959A (en) 2021-03-01
JP7306687B2 JP7306687B2 (en) 2023-07-11

Family

ID=74676372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150492A Active JP7306687B2 (en) 2019-08-20 2019-08-20 Imaging optical system

Country Status (1)

Country Link
JP (1) JP7306687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079379A (en) * 2022-06-17 2022-09-20 湖南长步道光学科技有限公司 Visible-near infrared optical system and optical lens
US11785324B1 (en) * 2022-05-27 2023-10-10 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356270A (en) * 2000-06-15 2001-12-26 Canon Inc Variable power optical system having vibration-proof function and optical equipment using the same
JP2013231941A (en) * 2012-04-06 2013-11-14 Ricoh Imaging Co Ltd Macro lens system
JP2015222437A (en) * 2015-07-29 2015-12-10 オリンパス株式会社 Zoom lens and image capturing device having the same
JP2016118770A (en) * 2014-12-22 2016-06-30 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device, and camera system
JP2016157140A (en) * 2011-09-30 2016-09-01 オリンパス株式会社 Zoom lens, imaging apparatus using the same, video transmission device, and video transmission system
JP2017207665A (en) * 2016-05-19 2017-11-24 株式会社タムロン Variable power optical system and imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356270A (en) * 2000-06-15 2001-12-26 Canon Inc Variable power optical system having vibration-proof function and optical equipment using the same
JP2016157140A (en) * 2011-09-30 2016-09-01 オリンパス株式会社 Zoom lens, imaging apparatus using the same, video transmission device, and video transmission system
JP2013231941A (en) * 2012-04-06 2013-11-14 Ricoh Imaging Co Ltd Macro lens system
JP2016118770A (en) * 2014-12-22 2016-06-30 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device, and camera system
JP2015222437A (en) * 2015-07-29 2015-12-10 オリンパス株式会社 Zoom lens and image capturing device having the same
JP2017207665A (en) * 2016-05-19 2017-11-24 株式会社タムロン Variable power optical system and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11785324B1 (en) * 2022-05-27 2023-10-10 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
CN115079379A (en) * 2022-06-17 2022-09-20 湖南长步道光学科技有限公司 Visible-near infrared optical system and optical lens

Also Published As

Publication number Publication date
JP7306687B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US8427762B2 (en) Optical system and optical apparatus including the optical system
JP5207761B2 (en) Optical system and optical apparatus having the same
CN107632377B (en) Optical imaging system
JP4989079B2 (en) Zoom lens and image projection apparatus having the same
US8400720B2 (en) Zoom lens and image projection apparatus including the same
JP2005062225A (en) Zoom lens and image projector having the same
JP2013114133A (en) Optical system and optical apparatus including the same
US8149524B2 (en) Optical system and image pickup apparatus having the same
CN108267842B (en) Optical imaging system
US8970968B2 (en) Photographing lens system
US9746650B2 (en) Zoom lens and imaging apparatus
US11002944B2 (en) Optical system and image pickup apparatus
CN108267839B (en) Optical imaging system
JP7306687B2 (en) Imaging optical system
CN108267840B (en) Optical imaging system
JP7335596B2 (en) Imaging optical system
JP2010122536A (en) Zoom lens
JP2677269B2 (en) High magnification zoom lens including wide angle range
JP7184338B2 (en) large aperture lens
JP2021076740A (en) Large diameter imaging optical system
CN212379644U (en) Optical imaging system
JP2900487B2 (en) Compact zoom lens
JP7410556B2 (en) Large diameter semi-wide-angle imaging lens
CN114265181B (en) Optical lens
JPH10133103A (en) Wide-angle photographic lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230622

R150 Certificate of patent or registration of utility model

Ref document number: 7306687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150