JP2004212541A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2004212541A
JP2004212541A JP2002380668A JP2002380668A JP2004212541A JP 2004212541 A JP2004212541 A JP 2004212541A JP 2002380668 A JP2002380668 A JP 2002380668A JP 2002380668 A JP2002380668 A JP 2002380668A JP 2004212541 A JP2004212541 A JP 2004212541A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
zoom
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380668A
Other languages
Japanese (ja)
Other versions
JP4360086B2 (en
Inventor
Akiko Furuta
明子 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002380668A priority Critical patent/JP4360086B2/en
Publication of JP2004212541A publication Critical patent/JP2004212541A/en
Application granted granted Critical
Publication of JP4360086B2 publication Critical patent/JP4360086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner focus type wide-angle zoom lens which is a four-group zoom lens constituted of negative, positive, negative and positive lens groups, whose maximum viewing angle in a zoom area exceeds 84° and whose zoom ratio is ≥2.5. <P>SOLUTION: The zoom lens is constituted of a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, a third lens group G3 having negative refractive power and a fourth lens group G4 having positive refractive power in order from an object side, and performs variable power by moving all the lens groups along an optical axis, and satisfies conditional expressions (1) 0.8<¾f1/f3¾<1 and (2) 0.9<¾f4/f1¾<1.2. Then, f1 means the focal distance of the first lens group G1, f3 means the focal distance of the third lens group G3 and f4 means the focal distance of the fourth lens group G4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はズームレンズに関し、特に一眼レフカメラや交換レンズ式デジタルカメラに用いられる広画角を有するインナーフォーカス式のズームレンズに関する。
【0002】
【従来の技術】
近年、レンズ交換式の1眼レフカメラボディのデジタル化が進んでいる。デジタル化されたカメラは、CCD等の固体撮像素子を使用するため、結像面における像高が35mmフィルムの像高より小さくなっている。従来の交換レンズは、デジタル1眼レフカメラ本体と35mmフィルム用1眼レフカメラ本体とに共通に取付けて撮影可能である。
【0003】
デジタル1眼レフカメラでは、35mmフィルム用1眼レフカメラよりも像高が小さくなる。このため、レンズの画角は、35mmフィルム用1眼レフカメラに取り付けて使用する場合に比べて、デジタル1眼レフカメラに取付けて使用する場合のほうが小さくなる。つまり、レンズの望遠端状態では、より望遠の効果が得られるのに対し、広角端状態では、広角の効果が減少することになる。そこで、より広角な画角84度以上のズームレンズが望まれている。
【0004】
広角ズームレンズには負屈折力のレンズ群が先行するズームタイプが適している。特に、負・正・負・正の屈折力配置を有する4群構成のズームレンズは明るく、高倍率の広角レンズに多く見られる構成である。しかしながら、ズーム領域中、最大画角が84°を超え、ズーム比を2.5倍以上有する広角ズームレンズの提案はない。負・正・負・正の屈折力配置にて4群構成されている広角ズームレンズは、例えば特開2000−221399号公報(特許文献1)、特開2000−241704号公報(特許文献2)、特開平5−173071号公報(特許文献3)に開示されている。
【0005】
【特許文献1】
特開2000−221399号公報
【特許文献2】
特開2000−241704号公報
【特許文献3】
特開平5−173071号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特開2000−221399号公報では、非球面を使用して、歪曲収差や球面収差を良好に補正しているものの実施例1の最大画角は75°程度であり、ズーム比も2.3倍強しか得られていない。また、当該公報の実施例2は最大画角は105°近くあるものの、ズーム比は2倍弱しかない。
【0007】
特開2000−241704号公報は、1群繰り出しによって、合焦を行なっており、近距離物体になるに従って、主光線が光軸より離れていく。このため、1群の径を大きくしなければ、十分な光量を確保できない。また、径を大きくするとレンズが大きく重くなってしまう問題がある。かつ、1群繰り出し方式では、比較的大きくて重い第1レンズ群を移動させて合焦を行う。この結果、オートフォーカスを行う場合の合焦速度が、インナーフォーカス方式やリアーフォーカス方式に比べて遅いという不都合がある。このため、負・正・負・正の4群構成で、インナーフォーカス式の広角ズームレンズが特開平5−173071号公報に提案されている。しかし、特開平5−173071号公報に開示されたレンズは、最大画角は90°以上あるものの、ズーム比は1.6倍程度しかない。
【0008】
本発明は上記問題に鑑みてなされたものであり、負・正・負・正のレンズ群で構成された4群ズームレンズであって、ズーム領域中の最大画角が84°を超え、ズーム比が2.5倍以上であるインナーフォーカス式の広角ズームレンズを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成され、すべてのレンズ群を光軸に沿って移動させることによって変倍を行い、以下の条件式を満足することを特徴とするズームレンズを提供する。
【0010】
(1) 0.8<|f1/f3|<1
(2) 0.9<│f4/f1│<1.2
ここで、f1:前記第1レンズ群G1の焦点距離,
f3:前記第3レンズ群G3の焦点距離,
f4:前記第4レンズ群G4の焦点距離.
【0011】
【発明の実施の形態】
また、本発明では、前記ズームレンズは前記第1レンズ群G1と前記第2レンズ群G2と前記第4レンズ群G4との各群は少なくとも非球面を1枚含み、以下の条件式を満たすことが望ましい。
【0012】
(3) 1.4<│(dw1−dt1)/fw│<1.6
ここで、
dw1:前記ズームレンズの広角端状態における前記第1レンズ群G1と前記第2レンズ群G2との空気間隔,
dt1:前記ズームレンズの望遠端状態における前記第1レンズ群G1と前記第2レンズ群G2との空気間隔,
fw:前記ズームレンズの広角端状態における焦点距離.
【0013】
上記構成におけるズームレンズでは、前記第2レンズ群G2は、物体側から順に、正の屈折力を有する第2レンズ群前群G2aと、正の屈折力を有する第2レンズ群後群G2bとを有し、該第2レンズ群前群G2aを光軸に沿って移動させて合焦を行ない、以下の条件式を満足することが好ましい。
【0014】
(4) 6<|f2/d|<7
ここで、
f2:前記第2レンズ群G2の焦点距離,
d:前記第2レンズ群前群G2aと前記第2レンズ群後群G2bの無限遠状態での空気間隔.
【0015】
本発明にかかるズームレンズは負・正・負・正の4群構成を採用している。負屈折力のレンズ群が先行するズームタイプは、広画角に強く、かつ、明るいズームレンズに有利な構成である。また、広角レンズは曲率半径の小さな面を多数有するために、レンズ面の反射によるゴーストが発生しやすい。そこで、フードを取り付けて、不要な光線をカットする。このとき、花形フードと呼ばれているフードはより効果的に余分な光線をカットすることができるため、広角レンズにはよく用いられる。ここで、1群繰り出し方式の合焦方式の場合、1群は回転しながら合焦を行うため、花形フードを取り付けることは困難である。また、花形フードを1群繰り出し方式のズームレンズに取り付けられるようにしたとしても構造が複雑になるため、好ましくない。
【0016】
その点、インナーフォーカス方式の場合、1群を回転せずに合焦することが可能なので、簡単な構造で花形フードを取り付けることが可能である。また、インナーフォーカス方式では、レンズ径の小さな群で合焦を行うことによって、レンズの重量が軽くなる。この結果、合焦スピードを早くすることができる。
【0017】
また、例えば、35mmフィルム用1眼レフカメラの像高に対して約0.65倍の像高をもつデジタル1眼レフカメラの場合、35mmフィルム用1眼レフカメラ換算にて焦点距離24mmからのズームレンズであれば、デジタル1眼レフカメラで使用した場合、焦点距離36.9mmからのズームレンズとなる。このため、従来標準ズームレンズとして使用する広角端状態の焦点距離となる。よって、デジタル1眼レフカメラと35mmフィルム用1眼レフカメラとに共通に使用するのに好ましいズームレンズの広角端状態の焦点距離は、35mmフィルム用1眼レフカメラにおいて焦点距離24mmのレンズであれば、デジタル1眼レフカメラ使用時には標準レンズとして、また35mmフィルム用1眼レフカメラ使用時には広角レンズとして使用できるという利点がある。さらに、ズーム比が大きいレンズが要求されているため、ズーム比2.5倍以上を有するズームレンズが好ましい。
【0018】
次に、上記各条件式の説明をする。条件式(1)は第1レンズ群G1の焦点距離と第3レンズ群G3の焦点距離との適切な比を規定している。条件式(1)の上限値を上回ると、広角側において、画角84°以上を満たすためには第1レンズ群G1の径が大きくならざるをえず、巨大化してしまい好ましくない。逆に、条件式(1)の下限値を下回ると、所望の明るさを得るためには第3レンズ群G3の径が大きくなり、やはり大型化し好ましくない。
【0019】
条件式(2)は第4レンズ群G4の焦点距離と第1レンズ群G1の焦点距離との適切な比を規定している。条件式(2)の上限値を上回ると、歪曲収差と像面湾に関して非球面を使用しても適正な補正ができなくなるため好ましくない。逆に、条件式(2)の下限値を下回ると、広角端状態におけるバックフォーカスが短くなり、一眼レフカメラに必要なミラーのためのスペースがなくなってしまう。
【0020】
条件式(3)は広角端状態と望遠端状態との第1レンズ群と第2レンズ群との空気間隔の差と、ズームレンズの広角端状態における焦点距離との適切な比を規定している。条件式(3)の上限値を上回ると、レンズの全長が長くなり大型化してしまう。逆に、条件式(3)の下限値を下回ると、レンズの移動量が小さくなるものの、移動量を小さくするために第2レンズ群の屈折力が小さくなる傾向がある。このため、変倍による像面湾曲の変動が大きくなり、特に望遠端状態において非点収差が大きくなり好ましくない。
【0021】
条件式(4)は、第2レンズ群G2の焦点距離と、第2レンズ群の前群G2aと後群G2bとの無限遠状態での空気間隔との適切な比を規定している。条件式(4)の上限値を上回ると、合焦のための移動量は少なくなるが、前群G2aのパワーが大きくなりすぎ、コマ収差の補正が困難となる。逆に、条件式(4)の下限値を下回ると、望遠側の球面収差が増大し補正が困難となる。広角ズームレンズの場合、像面湾曲と歪曲収差が大きくなる傾向がある。通常、像面湾曲と歪曲収差は補正の方向が逆であるため、像面湾曲を小さくしようとすると、歪曲収差が大きくなってしまう。そこで、像面湾曲と歪曲収差を良好に補正するには、第1レンズ群での非球面が有効な手段である。更に、第1レンズの像面側においては光線の偏角が大きく、光軸からも離れているため、収差は大きく発生する。よって、第1レンズの像面側に非球面を設けると、特に大きな効果が得られる。
【0022】
また、負先行の4群ズームレンズにて高倍率、大口径を満たそうとする場合、望遠側の球面収差が大きくなりがちである。負の屈折力の大きい第1レンズ群において軸上平行光線(軸上無限遠物体から射出された最も開口数の大きい光線であって、レンズの明るさを決定する光線)が発散される。そして、第2レンズ群へ入射する際に、広角端状態では軸上平行光線の光束径が細いため第1レンズ群の影響はあまりないのだが、望遠端状態では軸上平行光線の光束径が太いため、大きく影響を受ける。そこで、光束が太くなる第2レンズ群及び第4レンズ群に非球面を配置することによって、望遠側の球面収差を効果的に補正することができる。
【0023】
【実施例】
以下、本発明にかかる数値実施例を、添付図面に基づいて説明する。以下の各実施例では、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成され、すべてのレンズ群を光軸に沿って移動させることによって変倍を行う。そして、第2レンズ群G2は、物体側から順に、正の屈折力を有する第2レンズ群前群G2aと、正の屈折力を有する第2レンズ群後群G2bとを有し、第2レンズ群前群G2aを光軸に沿って移動させて、遠距離物体から近距離物体への合焦を行う。
【0024】
また、非球面は、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量をX(y)、近軸曲率半径をr、円錐係数をK、n次の非球面係数をCn とそれぞれしたとき、
以下の数式(a)で表される。
【0025】
【数1】
X(y)=(y/r)/[1+[1−K(y/r)]1/2]+C2・y+C4・y+C6・y+C8・y+C10・y10 (a)
【0026】
また、各実施例の諸元値表において、非球面には面番号の右側に*印を付している。
【0027】
(第1実施例)
図1は、本発明の第1実施例にかかるズームレンズのレンズ構成および広角端状態(W)から望遠端状態(T)への各レンズ群の移動の軌跡を示す図である。物体側から順に、物体側に凸面を向けた負メニスカスレンズと両凹レンズと物体側に凸面を向けた凸メニスカスレンズとからなる第1レンズ群G1と、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズとの貼り合せレンズとからなる第2レンズ群前群G2aと、両凸レンズからなる第2レンズ群後群G2bと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズとの貼り合わせレンズと物体側に凹面を向けた凹メニスカスレンズとからなる第3レンズ群G3と、物体側に凹面を向けた凸メニスカスレンズと、両凸レンズと、物体側に凹面を向けた凹メニスカスレンズとからなる第4レンズ群G4とから構成されている。
【0028】
なお、絞りSは、第2レンズ群後群G2bと第3レンズ群G3との間に配置され、第3レンズ群G3と同時に移動する。また、広角端状態(W)から望遠端状態(T)への変倍時には、各レンズ群が図1に矢印で示すズーム軌道に沿って光軸上を移動する。さらに、第2レンズ群前群G2aを光軸に沿って移動させて、遠距離物体から近距離物体への合焦を行っている。
【0029】
以下の表1に、第1実施例の諸元の値を掲げる。表において、fは焦点距離、FnoはFナンバー、2ωは画角(単位:度)、D0は被写体から第1レンズの物体側面までの距離をそれぞれ示している。面番号は光線の進行する方向に沿った物体側からのレンズ面の順序、屈折率およびアッベ数はそれぞれd線(λ=587.6nm)に対する値を示している。また、絞り面は面番号の数字にSを付して示す。以下、すべての実施例において同様である。
【0030】
また、諸元表の焦点距離、曲率半径、面間隔その他の長さの単位は一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
【0031】
【表1】

Figure 2004212541
Figure 2004212541
Figure 2004212541
【0032】図2(a),(b),図3(a),(b)は第1実施例の諸収差図である。図2(a)は広角端状態(最短焦点距離状態)での無限遠合焦状態における諸収差図、図2(b)は望遠端状態(最長焦点距離状態)での無限遠合焦状態における諸収差図である。また、図3(a)は広角端状態での至近撮影距離における諸収差図、図3(b)は望遠端状態での至近撮影距離における諸収差図である。
【0033】
各収差図において、FNOはFナンバー、NAは開口数、Yは像高、dはd線(λ=587.6nm)をそれぞれ示している。また、非点収差を示す収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示している。以下、すべての実施例において同様である。
各収差図から明らかなように、本実施例では、各焦点距離状態および各撮影距離状態において諸収差が良好に補正されていることがわかる。
【0034】
(第2実施例)
図4は、本発明の第2実施例にかかるズームレンズのレンズ構成および広角端状態(W)から望遠端状態(T)への各レンズ群の移動の軌跡を示す図である。物体側から順に、物体側に凸面を向けた負メニスカスレンズと両凹レンズと物体側に凸面を向けた凸メニスカスレンズとからなる第1レンズ群G1と、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズとの貼り合せレンズとからなる第2レンズ群前群G2aと、物体側に凸面を向けた凸メニスカスレンズからなる第2レンズ群後群G2bと、両凹レンズと、両凹レンズと物体側に凸面を向けた凸メニスカスレンズとの貼り合わせレンズからなる第3レンズ群G3と、2枚の両凸レンズと物体側に凹面を向けた凹メニスカスレンズとからなる第4レンズ群G4とから構成されている。
【0035】
なお、絞りSは、第2レンズ群後群G2bと第3レンズ群G3との間に配置され、第3レンズ群G3と同時に移動する。また、広角端状態(W)から望遠端状態(T)への変倍時には、各レンズ群が図4に矢印で示すズーム軌道に沿って光軸上を移動する。さらに、第2レンズ群前群G2aを光軸に沿って移動させて、遠距離物体から近距離物体への合焦を行っている。
以下の表2に、第2実施例の諸元の値を掲げる。
【0036】
【表2】
Figure 2004212541
Figure 2004212541
Figure 2004212541
【0037】
図5(a),(b)、図6(a),(b)は第2実施例の諸収差図である。図5(a)は広角端状態(最短焦点距離状態)での無限遠合焦状態における諸収差図、図5(b)は望遠端状態(最長焦点距離状態)での無限遠合焦状態における諸収差図である。また、図6(a)は広角端状態での至近撮影距離における諸収差図、図6(b)は望遠端状態での至近撮影距離における諸収差図である。
各収差図から明らかなように、本実施例では、各焦点距離状態および各撮影距離状態において諸収差が良好に補正されていることがわかる。
【0038】
【発明の効果】
以上説明したように、本発明によれば、ズーム方式が負、正、負、正で構成された4群ズームにおいて、最大画角が84°を超え、ズーム比を2.5倍以上有するインナーフォーカス式の広角ズームレンズを提供するができる。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかるズームレンズのレンズ構成および広角端状態(W)から望遠端状態(T)への各レンズ群の移動の様子を示す図である。
【図2】(a)は上記第1実施例の広角端状態での無限遠合焦状態における諸収差図、(b)は望遠端状態での無限遠合焦状態における諸収差図である。
【図3】(a)は上記第1実施例の広角端状態での至近撮影距離における諸収差図、(b)は望遠端状態での至近撮影距離における諸収差図である。
【図4】本発明の第2実施例にかかるズームレンズのレンズ構成および広角端状態(W)から望遠端状態(T)への各レンズ群の移動の様子を示す図である。
【図5】(a)は上記第2実施例の広角端状態での無限遠合焦状態における諸収差図、(b)は望遠端状態での無限遠合焦状態における諸収差図である。
【図6】(a)は上記第2実施例の広角端状態での至近撮影距離における諸収差図、(b)は望遠端状態での至近撮影距離における諸収差図である。
【符号の説明】
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G2a 第2レンズ群前群
G2b 第2レンズ群後群
S 絞り
I 像面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zoom lens, and more particularly, to an inner focus type zoom lens having a wide angle of view used for a single-lens reflex camera or an interchangeable lens type digital camera.
[0002]
[Prior art]
In recent years, digitalization of interchangeable lens single-lens reflex camera bodies has been advanced. Since a digitized camera uses a solid-state imaging device such as a CCD, the image height on an image forming plane is smaller than the image height of a 35 mm film. The conventional interchangeable lens can be attached to the digital single-lens reflex camera main body and the 35-mm film single-lens reflex camera main body in common for photographing.
[0003]
The image height of a digital single-lens reflex camera is smaller than that of a single-lens reflex camera for 35 mm film. For this reason, the angle of view of the lens is smaller when mounted on a digital single-lens reflex camera than when mounted and used on a single-lens reflex camera for 35 mm film. In other words, in the telephoto end state of the lens, a more telephoto effect is obtained, whereas in the wide-angle end state, the wide-angle effect is reduced. Therefore, a zoom lens having a wider angle of view of 84 degrees or more is desired.
[0004]
A zoom type in which a lens unit having a negative refractive power precedes is suitable for a wide-angle zoom lens. In particular, a four-group zoom lens having a negative, positive, negative, and positive refractive power arrangement is bright, and is a configuration that is often found in wide-angle lenses with high magnification. However, there is no proposal of a wide-angle zoom lens having a maximum angle of view exceeding 84 ° in the zoom region and having a zoom ratio of 2.5 times or more. A wide-angle zoom lens composed of four groups with negative, positive, negative, and positive refractive power arrangements is disclosed in, for example, JP-A-2000-221399 (Patent Document 1) and JP-A-2000-241704 (Patent Document 2). And JP-A-5-173071 (Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-221399 [Patent Document 2]
JP 2000-241704 A [Patent Document 3]
JP-A-5-173071
[Problems to be solved by the invention]
However, in Japanese Patent Application Laid-Open No. 2000-221399, although the distortion and the spherical aberration are satisfactorily corrected by using an aspherical surface, the maximum angle of view of the first embodiment is about 75 °, and the zoom ratio is also 2. Only three times more are obtained. Further, in Example 2 of the publication, the maximum angle of view is close to 105 °, but the zoom ratio is only slightly less than twice.
[0007]
In Japanese Patent Application Laid-Open No. 2000-241704, focusing is performed by one-group extension, and as an object becomes closer, the principal ray moves away from the optical axis. For this reason, a sufficient light amount cannot be secured unless the diameter of the first lens unit is increased. Also, there is a problem that the lens becomes large and heavy when the diameter is increased. In addition, in the one-group moving-out method, focusing is performed by moving a relatively large and heavy first lens group. As a result, there is an inconvenience that the focusing speed when performing autofocus is lower than that of the inner focus method or the rear focus method. For this reason, an inner focus type wide-angle zoom lens having a four-group configuration of negative, positive, negative and positive has been proposed in Japanese Patent Application Laid-Open No. Hei 5-173071. However, the lens disclosed in JP-A-5-173071 has a maximum angle of view of 90 ° or more, but has a zoom ratio of only about 1.6.
[0008]
The present invention has been made in view of the above problem, and is a four-group zoom lens including negative, positive, negative, and positive lens groups, wherein a maximum angle of view in a zoom region exceeds 84 °, and zooming is performed. It is an object to provide an inner focus type wide-angle zoom lens having a ratio of 2.5 times or more.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a second lens group G2 having a negative refractive power. The zoom lens system includes three lens groups G3 and a fourth lens group G4 having a positive refractive power, and performs zooming by moving all the lens groups along the optical axis to satisfy the following conditional expression. A featured zoom lens is provided.
[0010]
(1) 0.8 <| f1 / f3 | <1
(2) 0.9 <| f4 / f1 | <1.2
Here, f1: the focal length of the first lens group G1,
f3: focal length of the third lens group G3,
f4: focal length of the fourth lens group G4.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, in the zoom lens, each of the first lens group G1, the second lens group G2, and the fourth lens group G4 includes at least one aspherical surface, and satisfies the following conditional expression. Is desirable.
[0012]
(3) 1.4 <│ (dw1-dt1) / fw│ <1.6
here,
dw1: an air gap between the first lens group G1 and the second lens group G2 in the wide-angle end state of the zoom lens;
dt1: air gap between the first lens group G1 and the second lens group G2 in the telephoto end state of the zoom lens;
fw: focal length of the zoom lens in the wide-angle end state.
[0013]
In the zoom lens having the above configuration, the second lens group G2 includes, in order from the object side, a second lens group front group G2a having a positive refractive power and a second lens group rear group G2b having a positive refractive power. Preferably, the front lens group G2a of the second lens group is moved along the optical axis to perform focusing, and the following conditional expression is satisfied.
[0014]
(4) 6 <| f2 / d | <7
here,
f2: focal length of the second lens group G2,
d: Air gap between the front group G2a of the second lens group and the rear group G2b of the second lens group at infinity.
[0015]
The zoom lens according to the present invention employs a four-group configuration of negative, positive, negative, and positive. The zoom type in which a lens unit having a negative refractive power precedes is a configuration that is strong in a wide angle of view and advantageous for a bright zoom lens. In addition, since the wide-angle lens has a large number of surfaces having a small radius of curvature, ghost due to reflection on the lens surface is likely to occur. Therefore, a hood is attached to cut off unnecessary light rays. At this time, a hood called a flower-shaped hood is often used for a wide-angle lens because it can more effectively cut off unnecessary light rays. Here, in the case of the focusing method of the one-group feeding-out method, since the first group performs focusing while rotating, it is difficult to attach a flower-shaped hood. Further, even if the flower-shaped hood can be attached to the zoom lens of the one-group extension type, the structure becomes complicated, which is not preferable.
[0016]
On the other hand, in the case of the inner focus method, it is possible to focus without rotating the first lens group, so that it is possible to mount the flower hood with a simple structure. In addition, in the inner focus method, by performing focusing with a group having a small lens diameter, the weight of the lens is reduced. As a result, the focusing speed can be increased.
[0017]
Further, for example, in the case of a digital single-lens reflex camera having an image height of about 0.65 times the image height of a single-lens reflex camera for 35 mm film, the focal length from 24 mm is calculated in terms of a single-lens reflex camera for 35 mm film. In the case of a zoom lens, when used in a digital single-lens reflex camera, the zoom lens has a focal length of 36.9 mm. Therefore, the focal length in the wide-angle end state used as a conventional standard zoom lens is obtained. Therefore, the focal length in the wide-angle end state of the zoom lens that is preferable to be commonly used for the digital single-lens reflex camera and the single-lens reflex camera for 35 mm film is a lens having a focal length of 24 mm in the single-lens reflex camera for 35 mm film. For example, there is an advantage that it can be used as a standard lens when using a digital single-lens reflex camera and as a wide-angle lens when using a single-lens reflex camera for 35 mm film. Further, since a lens having a large zoom ratio is required, a zoom lens having a zoom ratio of 2.5 times or more is preferable.
[0018]
Next, each of the above conditional expressions will be described. Conditional expression (1) defines an appropriate ratio between the focal length of the first lens group G1 and the focal length of the third lens group G3. If the value exceeds the upper limit of conditional expression (1), the diameter of the first lens group G1 must be large in order to satisfy the angle of view of 84 ° or more on the wide-angle side, which is undesirably large. Conversely, when the value goes below the lower limit of conditional expression (1), the diameter of the third lens group G3 increases in order to obtain desired brightness, which is also undesirably large.
[0019]
Conditional expression (2) defines an appropriate ratio between the focal length of the fourth lens group G4 and the focal length of the first lens group G1. If the value exceeds the upper limit of conditional expression (2), it is not preferable because appropriate correction cannot be performed even if an aspheric surface is used for the distortion and the image surface. Conversely, when the value goes below the lower limit of conditional expression (2), the back focus in the wide-angle end state becomes short, and the space for the mirror required for the single-lens reflex camera is lost.
[0020]
Conditional expression (3) defines an appropriate ratio between the difference in air gap between the first lens unit and the second lens unit in the wide-angle end state and the telephoto end state, and the focal length of the zoom lens in the wide-angle end state. I have. When the value exceeds the upper limit of conditional expression (3), the overall length of the lens becomes longer and the lens becomes larger. Conversely, when the value goes below the lower limit of conditional expression (3), the amount of movement of the lens decreases, but the refractive power of the second lens group tends to decrease in order to reduce the amount of movement. For this reason, the fluctuation of the curvature of field due to zooming increases, and astigmatism increases particularly in the telephoto end state, which is not preferable.
[0021]
Conditional expression (4) defines an appropriate ratio between the focal length of the second lens group G2 and the air gap between the front group G2a and the rear group G2b of the second lens group at infinity. If the upper limit of conditional expression (4) is exceeded, the amount of movement for focusing will be small, but the power of the front group G2a will be too large, making it difficult to correct coma. Conversely, when the value goes below the lower limit of conditional expression (4), spherical aberration on the telephoto side increases, and correction becomes difficult. In the case of a wide-angle zoom lens, curvature of field and distortion tend to increase. Normally, the directions of correction of the field curvature and the distortion are opposite to each other. Therefore, if the field curvature is reduced, the distortion increases. Therefore, an aspheric surface in the first lens group is an effective means for satisfactorily correcting the field curvature and the distortion. Furthermore, on the image plane side of the first lens, the deflection angle of the light beam is large and is far from the optical axis, so that a large aberration occurs. Therefore, when an aspheric surface is provided on the image surface side of the first lens, a particularly large effect can be obtained.
[0022]
Also, when trying to satisfy a high magnification and a large aperture with a negative leading four-group zoom lens, spherical aberration on the telephoto side tends to increase. In the first lens group having a large negative refractive power, an axially parallel light beam (a light beam having the largest numerical aperture and emitted from an axially infinite object and determining the brightness of the lens) is diverged. When the light enters the second lens group, the light flux diameter of the axially parallel light beam is small in the wide-angle end state, so the influence of the first lens group is not so large. However, in the telephoto end state, the light flux diameter of the axially parallel light beam is small. Because it is thick, it is greatly affected. Therefore, by arranging aspherical surfaces in the second lens unit and the fourth lens unit that increase the light flux, spherical aberration on the telephoto side can be effectively corrected.
[0023]
【Example】
Hereinafter, numerical examples according to the present invention will be described with reference to the accompanying drawings. In each of the following embodiments, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive refractive power And a fourth lens group G4 having the following formula, and zooming is performed by moving all the lens groups along the optical axis. The second lens group G2 includes, in order from the object side, a front lens group G2a having a positive refractive power and a rear lens group G2b having a positive refractive power. The front group G2a is moved along the optical axis to focus from a long-distance object to a short-distance object.
[0024]
The aspheric surface has a height y in the direction perpendicular to the optical axis, a displacement amount in the optical axis direction at the height y of X (y), a paraxial radius of curvature r, a conic coefficient K, and an n-th order non-spherical surface. When each of the spherical coefficients is represented by Cn,
It is represented by the following equation (a).
[0025]
(Equation 1)
X (y) = (y 2 / r) / [1+ [1-K (y 2 / r 2)] 1/2] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 (A)
[0026]
In the specification value tables of each embodiment, an aspherical surface is marked with * on the right side of the surface number.
[0027]
(First embodiment)
FIG. 1 is a diagram illustrating a lens configuration of a zoom lens according to Example 1 of the present invention and a locus of movement of each lens group from a wide-angle end state (W) to a telephoto end state (T). In order from the object side, a first lens group G1 including a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a convex meniscus lens having a convex surface facing the object side, a biconvex lens, and a convex surface facing the object side. A second lens group front group G2a including a cemented lens of a negative meniscus lens and a convex meniscus lens having a convex surface facing the object side, a second lens group rear group G2b including a biconvex lens, and a concave surface facing the object side Lens group G3 including a cemented lens of a convex meniscus lens and a biconcave lens and a concave meniscus lens with a concave surface facing the object side, a convex meniscus lens with a concave surface facing the object side, a biconvex lens, and an object And a fourth lens group G4 including a concave meniscus lens having a concave surface facing the side.
[0028]
The stop S is disposed between the rear group G2b of the second lens group and the third lens group G3, and moves simultaneously with the third lens group G3. Further, at the time of zooming from the wide-angle end state (W) to the telephoto end state (T), each lens group moves on the optical axis along a zoom trajectory indicated by an arrow in FIG. Further, the front group G2a of the second lens group is moved along the optical axis to focus from a long-distance object to a short-distance object.
[0029]
Table 1 below shows values of specifications of the first embodiment. In the table, f indicates the focal length, Fno indicates the F number, 2ω indicates the angle of view (unit: degree), and D0 indicates the distance from the subject to the object side surface of the first lens. The surface number indicates the order of the lens surface from the object side along the traveling direction of the light ray, and the refractive index and Abbe number indicate values for the d-line (λ = 587.6 nm). The aperture surface is indicated by adding S to the numeral of the surface number. Hereinafter, the same applies to all embodiments.
[0030]
In addition, the unit of the focal length, radius of curvature, surface spacing and other lengths in the specification table are generally `` mm '', but the same optical performance can be obtained even if the optical system is proportionally enlarged or reduced, It is not limited to this.
[0031]
[Table 1]
Figure 2004212541
Figure 2004212541
Figure 2004212541
FIGS. 2A, 2B, 3A and 3B are graphs showing various aberrations of the first embodiment. FIG. 2A is a diagram of various aberrations in an infinity in-focus state in a wide-angle end state (shortest focal length state), and FIG. 2B is an infinity in-focus state in a telephoto end state (longest focal length state). It is a some aberration figure. FIG. 3A is a diagram showing various aberrations at the closest shooting distance in the wide-angle end state, and FIG. 3B is a diagram showing various aberrations at the closest shooting distance in the telephoto end state.
[0033]
In each aberration diagram, FNO represents an F number, NA represents a numerical aperture, Y represents an image height, and d represents a d-line (λ = 587.6 nm). In the aberration diagram showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. Hereinafter, the same applies to all embodiments.
As is clear from the aberration diagrams, in the present embodiment, various aberrations are favorably corrected in each focal length state and each shooting distance state.
[0034]
(Second embodiment)
FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to Example 2 of the present invention and a locus of movement of each lens group from a wide-angle end state (W) to a telephoto end state (T). In order from the object side, a first lens group G1 including a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a convex meniscus lens having a convex surface facing the object side, a biconvex lens, and a convex surface facing the object side. A second lens group front group G2a including a cemented lens of a negative meniscus lens and a convex meniscus lens having a convex surface facing the object side, and a second lens group rear group G2b including a convex meniscus lens having a convex surface facing the object side. A third lens group G3 comprising a cemented lens of a biconcave lens, a biconcave lens and a convex meniscus lens having a convex surface facing the object side, a concave meniscus lens having two biconvex lenses and a concave surface facing the object side, And a fourth lens group G4.
[0035]
The stop S is disposed between the rear group G2b of the second lens group and the third lens group G3, and moves simultaneously with the third lens group G3. Further, at the time of zooming from the wide-angle end state (W) to the telephoto end state (T), each lens group moves on the optical axis along a zoom trajectory indicated by an arrow in FIG. Further, the front group G2a of the second lens group is moved along the optical axis to focus from a long-distance object to a short-distance object.
Table 2 below gives data values of the second embodiment.
[0036]
[Table 2]
Figure 2004212541
Figure 2004212541
Figure 2004212541
[0037]
FIGS. 5A and 5B, FIGS. 6A and 6B are graphs showing various aberrations of the second embodiment. FIG. 5A is a diagram showing various aberrations in the infinity in-focus state in the wide-angle end state (the shortest focal length state), and FIG. 5B is in the infinity in-focus state in the telephoto end state (the longest focal length state). It is a some aberration figure. FIG. 6A is a diagram showing various aberrations at the closest shooting distance in the wide-angle end state, and FIG. 6B is a diagram showing various aberrations at the closest shooting distance in the telephoto end state.
As is clear from the aberration diagrams, in the present embodiment, various aberrations are favorably corrected in each focal length state and each shooting distance state.
[0038]
【The invention's effect】
As described above, according to the present invention, in a four-unit zoom in which the zoom method is configured as negative, positive, negative, and positive, the inner angle having a maximum angle of view exceeding 84 ° and a zoom ratio of 2.5 times or more is provided. A focus-type wide-angle zoom lens can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a lens configuration of a zoom lens according to a first embodiment of the present invention and a state of movement of each lens unit from a wide-angle end state (W) to a telephoto end state (T).
2A is a diagram showing various aberrations of the first embodiment in the infinity in-focus condition in the wide-angle end state, and FIG. 2B is a diagram showing various aberrations in the infinity-focus condition of the telephoto end state.
3A is a diagram illustrating various aberrations at a close photographing distance in a wide-angle end state of the first embodiment, and FIG. 3B is a diagram illustrating various aberrations at a close photographing distance in a telephoto end state.
FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to a second embodiment of the present invention and a state of movement of each lens unit from a wide-angle end state (W) to a telephoto end state (T).
5A is a diagram illustrating various aberrations of the second embodiment in the infinity in-focus condition at the wide-angle end, and FIG. 5B is a diagram illustrating various aberrations in the infinity-focus condition of the telephoto end.
FIG. 6A is a diagram illustrating various aberrations at the closest photographing distance in the wide-angle end state of the second embodiment, and FIG. 6B is a diagram illustrating various aberrations at a close photographing distance in the telephoto end state.
[Explanation of symbols]
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G2a Second lens group front group G2b Second lens group rear group S Aperture I Image plane

Claims (4)

物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成され、すべての前記レンズ群を光軸に沿って移動させることによって変倍を行い、以下の条件式を満足することを特徴とするズームレンズ。
(1) 0.8<|f1/f3|<1
(2) 0.9<│f4/f1│<1.2
ここで、f1:前記第1レンズ群G1の焦点距離,
f3:前記第3レンズ群G3の焦点距離,
f4:前記第4レンズ群G4の焦点距離.
In order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a positive refractive power A zoom lens, comprising a fourth lens group G4, performing zooming by moving all the lens groups along the optical axis, and satisfying the following conditional expression.
(1) 0.8 <| f1 / f3 | <1
(2) 0.9 <| f4 / f1 | <1.2
Here, f1: the focal length of the first lens group G1,
f3: focal length of the third lens group G3,
f4: focal length of the fourth lens group G4.
前記第1レンズ群G1と前記第2レンズ群G2と前記第4レンズ群G4との各レンズ群は少なくとも1枚の非球面を含み、以下の条件式を満たすことを特徴とする請求項1に記載のズームレンズ。
(3) 1.4<│(dw1−dt1)/fw│<1.6
ここで、
dw1:前記ズームレンズの広角端状態における前記第1レンズ群G1と前記第2レンズ群G2との空気間隔,
dt1:前記ズームレンズの望遠端状態における前記第1レンズ群G1と前記第2レンズ群G2との空気間隔,
fw:前記ズームレンズの広角端状態における焦点距離.
2. The lens system according to claim 1, wherein each of the first lens group G1, the second lens group G2, and the fourth lens group G4 includes at least one aspheric surface and satisfies the following conditional expression. The zoom lens described.
(3) 1.4 <│ (dw1-dt1) / fw│ <1.6
here,
dw1: an air gap between the first lens group G1 and the second lens group G2 in the wide-angle end state of the zoom lens;
dt1: an air gap between the first lens group G1 and the second lens group G2 in a telephoto end state of the zoom lens;
fw: focal length of the zoom lens in the wide-angle end state.
前記第2レンズ群G2は、物体側から順に、正の屈折力を有する第2レンズ群前群G2aと、正の屈折力を有する第2レンズ群後群G2bを有し、
前記第2レンズ群前群G2aを光軸に沿って移動することによって合焦を行ない、以下の条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ
(4) 6<|f2/d|<7
ここで、
f2:前記第2レンズ群G2の焦点距離,
d:前記第2レンズ群前群G2aと前記第2レンズ群後群G2bの無限遠状態での空気間隔.
The second lens group G2 includes, in order from the object side, a second lens group front group G2a having a positive refractive power, and a second lens group rear group G2b having a positive refractive power,
The zoom lens (4) according to claim 1 or 2, wherein focusing is performed by moving the front group G2a of the second lens group along the optical axis, and the following conditional expression is satisfied. | F2 / d | <7
here,
f2: focal length of the second lens group G2,
d: Air gap between the front group G2a of the second lens group and the rear group G2b of the second lens group at infinity.
前記ズームレンズは、84度以上の画角を有し、2.5倍以上のズーム比を有することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。The zoom lens according to any one of claims 1 to 3, wherein the zoom lens has an angle of view of 84 degrees or more and a zoom ratio of 2.5 times or more.
JP2002380668A 2002-12-27 2002-12-27 Zoom lens Expired - Fee Related JP4360086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380668A JP4360086B2 (en) 2002-12-27 2002-12-27 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380668A JP4360086B2 (en) 2002-12-27 2002-12-27 Zoom lens

Publications (2)

Publication Number Publication Date
JP2004212541A true JP2004212541A (en) 2004-07-29
JP4360086B2 JP4360086B2 (en) 2009-11-11

Family

ID=32816821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380668A Expired - Fee Related JP4360086B2 (en) 2002-12-27 2002-12-27 Zoom lens

Country Status (1)

Country Link
JP (1) JP4360086B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014761A (en) * 2007-06-29 2009-01-22 Nikon Corp Variable power optical zoom lens system, optical apparatus, and method for zooming zoom lens system
JP2009042527A (en) * 2007-08-09 2009-02-26 Canon Inc Zoom lens and imaging apparatus with the same
US7508592B2 (en) 2005-09-28 2009-03-24 Nikon Corporation Zoom lens system
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065406A (en) * 2017-03-21 2017-08-18 北京和光科技有限公司 A kind of universal short focus projection optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508592B2 (en) 2005-09-28 2009-03-24 Nikon Corporation Zoom lens system
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
JP2009014761A (en) * 2007-06-29 2009-01-22 Nikon Corp Variable power optical zoom lens system, optical apparatus, and method for zooming zoom lens system
US7961409B2 (en) 2007-06-29 2011-06-14 Nikon Corporation Zoom lens system, optical apparatus, and method for zooming
JP2009042527A (en) * 2007-08-09 2009-02-26 Canon Inc Zoom lens and imaging apparatus with the same

Also Published As

Publication number Publication date
JP4360086B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP3584107B2 (en) Zoom lens
JPH05173071A (en) Wide angle zoom lens
JPH08327907A (en) Zoom lens
JPH05188294A (en) Inverse telephoto type large-aperture wide-angle lens
JP2004258240A (en) Variable focal length lens system
JPH11305124A (en) Zoom lens and optical instrument using the zoom lens
JP3849129B2 (en) Zoom lens
JPH08201695A (en) Rear focus type zoom lens
JP3119403B2 (en) Small variable power lens
JPH0642017B2 (en) Compact zoom lens
JP2002267930A (en) Zoom lens
JPH0627373A (en) Telephoto zoom lens
JPH1164732A (en) Zoom lens
JP3184581B2 (en) Zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JP4380158B2 (en) Zoom lens
JPH09218346A (en) Optical system
JPH11160621A (en) Zoom lens
JPH0727975A (en) Rear conversion lens provided with vibration proof function
JP4337363B2 (en) Zoom lens
JPH05119260A (en) High-power zoom lens
JP4817551B2 (en) Zoom lens
JPH0727979A (en) Zoom lens
JP4360088B2 (en) Zoom lens
JP3593400B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees