JP4380158B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4380158B2
JP4380158B2 JP2002381629A JP2002381629A JP4380158B2 JP 4380158 B2 JP4380158 B2 JP 4380158B2 JP 2002381629 A JP2002381629 A JP 2002381629A JP 2002381629 A JP2002381629 A JP 2002381629A JP 4380158 B2 JP4380158 B2 JP 4380158B2
Authority
JP
Japan
Prior art keywords
lens
lens group
end state
zoom
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002381629A
Other languages
Japanese (ja)
Other versions
JP2004212612A (en
Inventor
正幸 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002381629A priority Critical patent/JP4380158B2/en
Publication of JP2004212612A publication Critical patent/JP2004212612A/en
Application granted granted Critical
Publication of JP4380158B2 publication Critical patent/JP4380158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、写真やビデオ等用のズームレンズに関し、詳細には該ズームレンズのフォーカシング方式に関する。
【0002】
【従来の技術】
一般に、ズームレンズのフォーカシング方式として、第1レンズ群を物体側へ繰り出す方式、いわゆる前玉繰り出し方式が用いられる。これは、全変倍域にわたり、同一撮影距離にある物体に対して、ほぼ同一の繰り出し量で合焦が可能であるという利点があるためである。
【0003】
【発明が解決しようとする課題】
しかし、上述の前玉繰り出し方式は、一般に大きく重い第1レンズ群を移動させるため、保持機構と駆動機構が大型化し、消費電力量が増大してしまうという問題がある。
【0004】
そこで本発明は上記問題点に鑑みてなされたものであり、いわゆるインナーフォーカス方式を採用することによって高性能でコンパクトなズームレンズを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は、
物体側より順に、
貼り合わせレンズを含み正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、
負の屈折力を有する第4レンズ群と、
正の屈折力を有する第5レンズ群と、
負の屈折力を有する第6レンズ群とからなり、
広角端状態から望遠端状態へのズーミングの際に、隣接する前記各レンズ群の間隔が全て変化するズームレンズにおいて、
無限遠物体から至近撮影距離物体へのフォーカシングの際に、前記第4レンズ群と前記第5レンズ群とがそれぞれ独立に物体側へ移動し、
以下の条件式を満足することを特徴とするズームレンズを提供する。
0.560≦ |f2|/fW <1.2
但し、
f2:前記第2レンズ群の焦点距離,
fW:広角端状態における前記ズームレンズ全系の合成焦点距離.
【0006】
【発明の実施の形態】
まず、本発明によるズームレンズの構成について説明する。
本発明によるズームレンズは、6つのレンズ群から構成される多群移動ズームタイプである。これによってズーミングの際に、6つのレンズ群のうちの4つのレンズ群が可動である。
【0007】
6つのレンズ群は、正の屈折力を有するレンズ群と負の屈折力を有するレンズ群とを一組(いわゆるテレフォトタイプ)とし、三組を物体側より順に配置する。従って、本発明によるズームレンズは物体側より順に、正、負、正、負、正、負の6群構成となる。これにより、ズームレンズ全長の短縮が実現される。特に、広角端状態における小型化が図られる。また、ズーミングの際に変倍を担うレンズ群が多いため、高倍率化を図ることが比較的容易となる。さらに、可動レンズ群が多いため、収差補正の点で有利であり、全ズーム領域にわたって高い結像性能を有することが可能となる。
【0008】
次に、本発明によるズームレンズのフォーカシング方式について説明する。
上述のように、一般にズームレンズには、いわゆる前玉繰り出し方式が用いられる。この方式は、大きく重い第1レンズ群を移動させるため、保持機構と駆動機構の大型化、消費電力量の増大を招いてしまう。これは、本発明によるズームレンズにおいても、第1レンズ群が大きく重いため、同様に不利である。
【0009】
そこで本発明によるズームレンズは、フォーカシングの際に、第4レンズ群と第5レンズ群が移動する、いわゆるインナーフォーカス方式を採用している。そして、無限遠物体から至近撮影距離物体へのフォーカシングの際に第4レンズ群と第5レンズ群とは、それぞれ独立に物体側へ移動する構成としている。これによって、高い結像性能を保持しつつ、小型軽量化を図ることが可能となる。
【0010】
さらに、フォーカシングの際のレンズ群の移動量をできるだけ少なくするために、レンズ群は比較的大きいパワーを有することが必要である。また、フォーカシングの際の光学性能の劣化を抑えるために、軸外光束ができるだけ光軸近傍を通るレンズ群を合焦レンズ群とすることが望ましい。
本発明によるズームレンズにおいて、これらの条件を満足させるため、第5レンズ群を物体側へ移動させることによって主に倍率を稼ぐことが望ましい。また、このとき発生する収差変動をできるだけ抑えるため、第5レンズ群の移動と同時に第4レンズ群を独立して物体側へ移動させることが望ましい。
【0011】
本発明の好ましい態様によれば、本発明の効果をより高めるために以下の条件式(1),(2)を満足することが望ましい。
0.2<|X5W/X4W|<1.0 (1)
0.4<|X5T/X4T|<2.0 (2)
但し、
X4W:広角端状態における前記第4レンズ群のフォーカシング移動量,
X5W:広角端状態における前記第5レンズ群のフォーカシング移動量,
X4T:望遠端状態における前記第4レンズ群のフォーカシング移動量,
X5T:望遠端状態における前記第5レンズ群のフォーカシング移動量.
【0012】
条件式(1)は、広角端状態におけるフォーカシングの際に移動する第4レンズ群と第5レンズ群とのフォーカシング移動量の適切な比率を規定するものである。条件式(1)の上限値を上回ると、像面湾曲がマイナスに増大してしまうため好ましくない。逆に条件式(1)の下限値を下回ると、球面収差の補正が過剰となってしまうため好ましくない。
【0013】
条件式(2)は、望遠端状態におけるフォーカシングの際に移動する第4レンズ群と第5レンズ群とのフォーカシング移動量の適切な比率を規定するものである。条件式(2)の上限値を上回ると、球面収差の補正が不足してしまうため好ましくない。逆に条件式(2)の下限値を下回ると、球面収差の補正が過剰となってしまうため好ましくない。
【0014】
本発明の好ましい態様によれば、高性能かつコンパクトなズームレンズを実現するため、以下の条件式(3)又は(4)又は(5)を満足することが望ましい。
1.7<FT・f1/fT<3.7 (3)
0.3< |f2|/fW <1.2 (4)
0.6< f5/|f6| <1.5 (5)
但し、
fW:広角端状態におけるズームレンズ全系の合成焦点距離,
fT:望遠端状態におけるズームレンズ全系の合成焦点距離,
f1:第1レンズ群の焦点距離,
f2:第2レンズ群の焦点距離,
f5:第5レンズ群の焦点距離,
f6:第6レンズ群の焦点距離,
FT:望遠端状態におけるズームレンズ全系のF値.
【0015】
条件式(3)は、望遠端状態における第1レンズ群の明るさ(見掛けのF値)の適切な値を規定するものである。条件式(3)の上限値を上回ると、第1レンズ群の焦点距離が長くなり過ぎる。このため、広角端状態から望遠端状態へのズーミングの際に、第1レンズ群の移動量が増大し、小型軽量化を達成できなくなってしまう。逆に条件式(3)の下限値を下回ると、第1レンズ群の焦点距離が短くなり過ぎる。このため、ズーミングによる諸収差の変動が抑えられなくなり、結像性能が低下してしまう。
【0016】
条件式(4)は、第2レンズ群の焦点距離と、広角端状態におけるズームレンズ全系の合成焦点距離との適切な比率を規定するものである。条件式(4)の上限値を上回ると、必要とされる十分なバックフォーカスを広角端状態において確保することが難しくなってしまう。逆に条件式(4)の下限値を下回ると、第2レンズ群よりも像側に位置する各レンズ群のレンズ径が大きくなる。このため、小型軽量化が困難となってしまう。
【0017】
条件式(5)は、第5レンズ群の焦点距離と第6レンズ群の焦点距離との適切な比率を規定するものである。条件式(5)の上限値を上回ると、第6レンズ群の焦点距離が短くなり過ぎる。このため、ペッツバール和がマイナスに行き過ぎることとなり、良好な結像性能が得られなくなってしまう。逆に条件式(5)の下限値を下回ると、第5レンズ群の焦点距離が短くなり過ぎる。このため、全ズーム領域にわたって球面収差とコマ収差の変動が大きくなり、結像性能の低下を招いてしまう。
【0018】
さらに、本発明によるズームレンズは、非球面レンズを使用することによって、さらなる高性能化とコンパクト化を図ることができる。
また、本発明によるズームレンズは、像ブレを補正するための補正光学系として一部のレンズ群を使用することによって、防振機能を有するズームレンズとすることもできる。
尚、本発明の実施例及び参考例に係るズームレンズには、屈折型レンズのみを使用している。しかし、回折光学素子や屈折率分布型レンズ等を使用することも可能である。
【0019】
【実施例】
以下、本発明の実施例及び参考例に係るズームレンズを添付図面に基づいて説明する。
実施例及び参考例に係るズームレンズは、物体側から順に、貼り合わせレンズを含み正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成される。
【0020】
そして、広角端状態から望遠端状態への変倍(ズーミング)の際に、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が変化し、第5レンズ群G5と第6レンズ群G6との間隔が減少する。
また、第4レンズ群G4と第5レンズ群G5とは、無限遠物体から近距離物体への合焦(フォーカシング)の際に、それぞれ独立して光軸方向物体側に移動する。
【0021】
(第1実施例)
図1は本発明の第1実施例に係るズームレンズのレンズ構成を示す図である。また図には、広角端状態(W)から望遠端状態(T)へのズーム軌跡と、無限遠物体から至近撮影距離物体へのフォーカシング方向を矢印で示す。尚、以下の実施例も同様である。
本実施例に係るズームレンズにおいて、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との貼り合わせレンズと、両凸形状の正レンズL13とから構成される。
第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との貼り合わせレンズとから構成される。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との貼り合わせレンズと、開口絞りASとから構成され、開口絞りASは前記両凹形状の負レンズL33の像側面に隣接して配置されている。
【0022】
第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41で構成される。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との貼り合わせレンズと、両凸形状の正レンズL53とから構成される。
第6レンズ群G6は、物体側から順に、両凹形状の負レンズL61と物体側に凸面を向けた正メニスカスレンズL62との貼り合わせレンズで構成される。
【0023】
以下の表1に、本発明の第1実施例に係るズームレンズの諸元の値を掲げる。
(全体諸元)において、fは焦点距離、FNOはFナンバー、2wは画角の最大値(単位:度)をそれぞれ示す。
(レンズデータ)において、面番号は物体側からのレンズ面の順序、Rはレンズ面の曲率半径、Dはレンズ面の間隔をそれぞれ示す。Vd,Ndはそれぞれアッベ数,屈折率を示す。また、これらのアッベ数と屈折率はd線(λ=587.6nm)に対する値である。さらに、Bfはバックフォーカスを示す。
尚、以下に示す参考例の諸元値においても、本実施例と同様の符号を用いる。
【0024】
ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径R、面間隔d、その他長さの単位は一般に「mm」が使われる。しかし光学系は、比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
【0025】
【表1】

Figure 0004380158
Figure 0004380158
Figure 0004380158
【0026】
図2,図3は、第1実施例に係るズームレンズのd線(λ=587.6nm)に対する諸収差図である。
図2(a),(b)はそれぞれ、広角端状態,望遠端状態における無限遠合焦時の諸収差図を示す。
図3(a),(b)はそれぞれ、物体面から像面までの距離をRDとすると、広角端状態,望遠端状態における至近撮影距離(RD=1.3mを採用する)合焦時の諸収差図を示す。
【0027】
各収差図において、FNOはFナンバー、wは半画角をそれぞれ示し、値はその最大値を示す。また、非点収差図において、実線Sはサジタル像面を示し、破線Mはメリディオナル像面を示す。
尚、以下に示す参考例の諸収差図において、本実施例と同様の符号を用いる。
【0028】
各諸収差図より本実施例に係るズームレンズは、広角端状態及び望遠端状態において、特に至近撮影距離合焦時にも、諸収差を良好に補正し、優れた結像性能を有することがわかる。
【0029】
参考例
図4は本発明の参考例に係るズームレンズのレンズ構成を示す図である。
参考例に係るズームレンズにおいて、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との貼り合わせレンズと、両凸形状の正レンズL13とから構成される。
第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹形状の負レンズL22との貼り合わせレンズと、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との貼り合わせレンズと、両凹形状の負レンズL25とから構成される。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と物体側に凹面を向けた負メニスカスレンズL33との貼り合わせレンズと、開口絞りASとから構成され、開口絞りASは前記物体側に凹面を向けた負メニスカスレンズL33の像側面に隣接して配置されている。
【0030】
第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41で構成される。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との貼り合わせレンズと、物体側に凸面を向けた正メニスカスレンズL53とから構成される。
第6レンズ群G6は、物体側から順に、両凹形状の負レンズL61と物体側に凸面を向けた正メニスカスレンズL62との貼り合わせレンズで構成される。
以下の表2に、本発明の参考例に係るズームレンズの諸元の値を掲げる。
【0031】
【表2】
Figure 0004380158
Figure 0004380158
Figure 0004380158
【0032】
図5,図6は、参考例に係るズームレンズのd線(λ=587.6nm)に対する諸収差図である。
図5(a),(b)はそれぞれ、広角端状態,望遠端状態における無限遠合焦時の諸収差図を示す。
図6(a),(b)はそれぞれ、広角端状態,望遠端状態における至近撮影距離(RD=2.3mを採用する)合焦時の諸収差図を示す。
【0033】
各諸収差図より本参考例に係るズームレンズは、広角端状態及び望遠端状態において、特に至近撮影距離合焦時にも、諸収差を良好に補正し、優れた結像性能を有することがわかる。
【0034】
【発明の効果】
本発明によれば、いわゆるインナーフォーカス方式を採用することによって高性能でコンパクトなズームレンズを実現することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係るズームレンズのレンズ構成を示す図である。
【図2】 (a),(b)はそれぞれ、本発明の第1実施例に係るズームレンズの広角端状態,望遠端状態における無限遠合焦時の諸収差図を示す。
【図3】 (a),(b)はそれぞれ、本発明の第1実施例に係るズームレンズの広角端状態,望遠端状態における至近撮影距離(RD=1.3mを採用する)合焦時の諸収差図を示す。
【図4】 本発明の参考例に係るズームレンズのレンズ構成を示す図である。
【図5】 (a),(b)はそれぞれ、本発明の参考例に係るズームレンズの広角端状態,望遠端状態における無限遠合焦時の諸収差図を示す。
【図6】 (a),(b)はそれぞれ、本発明の参考例に係るズームレンズの広角端状態,望遠端状態における至近撮影距離(RD=2.3mを採用する)合焦時の諸収差図を示す。
【符号の説明】
第1レンズ群
第2レンズ群
第3レンズ群
第4レンズ群
第5レンズ群
第6レンズ群
開口絞り
像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens for photography, video, and the like, and more particularly, to a focusing system for the zoom lens.
[0002]
[Prior art]
Generally, as a zoom lens focusing method, a method in which the first lens group is extended toward the object side, a so-called front lens extension method is used. This is because there is an advantage that it is possible to focus on an object at the same shooting distance with almost the same amount of extension over the entire zoom range.
[0003]
[Problems to be solved by the invention]
However, the above-described front lens payout method generally has a problem that the holding mechanism and the driving mechanism are increased in size and the power consumption is increased because the first and second large lens group is moved.
[0004]
Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide a high-performance and compact zoom lens by adopting a so-called inner focus system.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
From the object side,
A first lens group including a cemented lens and having a positive refractive power;
A second lens group having negative refractive power;
A third lens group having positive refractive power;
A fourth lens group having negative refractive power;
A fifth lens group having positive refractive power;
A sixth lens unit having negative refractive power,
In zoom lenses in which the distance between the adjacent lens groups changes during zooming from the wide-angle end state to the telephoto end state,
When focusing from an object at infinity to an object at a close shooting distance, the fourth lens group and the fifth lens group independently move to the object side ,
Provided is a zoom lens that satisfies the following conditional expression .
0.560 ≦ | f2 | / fW <1.2
However,
f2: focal length of the second lens group,
fW: Composite focal length of the entire zoom lens system in the wide-angle end state.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
First, the configuration of the zoom lens according to the present invention will be described.
The zoom lens according to the present invention is a multi-group moving zoom type composed of six lens groups. As a result, during zooming, four lens groups out of the six lens groups are movable.
[0007]
The six lens groups include a lens group having a positive refractive power and a lens group having a negative refractive power as one set (so-called telephoto type), and three groups are arranged in order from the object side. Accordingly, the zoom lens according to the present invention has six groups of positive, negative, positive, negative, positive, and negative in order from the object side. As a result, the overall length of the zoom lens can be shortened. In particular, downsizing in the wide-angle end state is achieved. In addition, since there are many lens groups responsible for zooming during zooming, it is relatively easy to increase the magnification. Furthermore, since there are many movable lens groups, it is advantageous in terms of aberration correction, and it is possible to have high imaging performance over the entire zoom region.
[0008]
Next, the focusing method of the zoom lens according to the present invention will be described.
As described above, a so-called front lens pay-out method is generally used for a zoom lens. Since this method moves the large and heavy first lens group, the holding mechanism and the drive mechanism are increased in size and the power consumption is increased. This is also disadvantageous in the zoom lens according to the present invention because the first lens group is large and heavy.
[0009]
Therefore, the zoom lens according to the present invention employs a so-called inner focus system in which the fourth lens group and the fifth lens group move during focusing. The fourth lens unit and the fifth lens unit are configured to move independently to the object side during focusing from an object at infinity to an object at a close shooting distance. As a result, it is possible to reduce the size and weight while maintaining high imaging performance.
[0010]
Furthermore, in order to minimize the amount of movement of the lens group during focusing, the lens group needs to have a relatively large power. In order to suppress deterioration of optical performance during focusing, it is desirable that a lens group in which an off-axis light beam passes as close to the optical axis as possible is a focusing lens group.
In the zoom lens according to the present invention, in order to satisfy these conditions, it is desirable to mainly increase the magnification by moving the fifth lens group to the object side. In order to suppress aberration fluctuations that occur at this time as much as possible, it is desirable to move the fourth lens group independently to the object side simultaneously with the movement of the fifth lens group.
[0011]
According to a preferred aspect of the present invention, it is desirable to satisfy the following conditional expressions (1) and (2) in order to further enhance the effects of the present invention.
0.2 <| X5W / X4W | <1.0 (1)
0.4 <| X5T / X4T | <2.0 (2)
However,
X4W: the amount of focusing movement of the fourth lens group in the wide-angle end state,
X5W: the amount of focusing movement of the fifth lens group in the wide-angle end state;
X4T: the amount of focusing movement of the fourth lens group in the telephoto end state,
X5T: A focusing movement amount of the fifth lens group in the telephoto end state.
[0012]
Conditional expression (1) defines an appropriate ratio of the amount of focusing movement between the fourth lens group and the fifth lens group that moves during focusing in the wide-angle end state. Exceeding the upper limit value of conditional expression (1) is not preferable because the curvature of field increases negatively. On the other hand, if the lower limit of conditional expression (1) is not reached, correction of spherical aberration becomes excessive, which is not preferable.
[0013]
Conditional expression (2) defines an appropriate ratio of the amount of focusing movement between the fourth lens group and the fifth lens group that moves during focusing in the telephoto end state. Exceeding the upper limit value of conditional expression (2) is not preferable because correction of spherical aberration is insufficient. On the other hand, if the lower limit of conditional expression (2) is not reached, correction of spherical aberration becomes excessive, which is not preferable.
[0014]
According to a preferable aspect of the present invention, in order to realize a high-performance and compact zoom lens, it is desirable that the following conditional expression (3), (4), or (5) is satisfied.
1.7 <FT · f1 / fT <3.7 (3)
0.3 <| f2 | / fW <1.2 (4)
0.6 <f5 / | f6 | <1.5 (5)
However,
fW: the combined focal length of the entire zoom lens system in the wide-angle end state,
fT: Composite focal length of the entire zoom lens system in the telephoto end state,
f1: Focal length of the first lens group,
f2: focal length of the second lens group,
f5: focal length of the fifth lens group,
f6: focal length of the sixth lens group,
FT: F value of the entire zoom lens system in the telephoto end state.
[0015]
Conditional expression (3) defines an appropriate value of the brightness (apparent F value) of the first lens group in the telephoto end state. If the upper limit value of conditional expression (3) is exceeded, the focal length of the first lens group becomes too long. For this reason, during zooming from the wide-angle end state to the telephoto end state, the amount of movement of the first lens group increases, making it impossible to achieve a reduction in size and weight. On the other hand, if the lower limit of conditional expression (3) is not reached, the focal length of the first lens group becomes too short. For this reason, fluctuations in various aberrations due to zooming cannot be suppressed, and imaging performance deteriorates.
[0016]
Conditional expression (4) defines an appropriate ratio between the focal length of the second lens group and the combined focal length of the entire zoom lens system in the wide-angle end state. If the upper limit of conditional expression (4) is exceeded, it will be difficult to ensure the required sufficient back focus in the wide-angle end state. Conversely, if the lower limit value of conditional expression (4) is not reached, the lens diameter of each lens group located on the image side with respect to the second lens group becomes larger. For this reason, it is difficult to reduce the size and weight.
[0017]
Conditional expression (5) defines an appropriate ratio between the focal length of the fifth lens group and the focal length of the sixth lens group. If the upper limit of conditional expression (5) is exceeded, the focal length of the sixth lens group becomes too short. For this reason, the Petzval sum goes too negative, and good imaging performance cannot be obtained. Conversely, if the lower limit of conditional expression (5) is not reached, the focal length of the fifth lens group will be too short. For this reason, variations in spherical aberration and coma increase over the entire zoom region, leading to a reduction in imaging performance.
[0018]
Furthermore, the zoom lens according to the present invention can achieve higher performance and compactness by using an aspheric lens.
In addition, the zoom lens according to the present invention can be a zoom lens having an image stabilization function by using a part of a lens group as a correction optical system for correcting image blur.
In addition, only the refractive lens is used for the zoom lens according to the embodiment and the reference example of the present invention. However, it is also possible to use a diffractive optical element, a gradient index lens, or the like.
[0019]
【Example】
Hereinafter, zoom lenses according to embodiments and reference examples of the present invention will be described with reference to the accompanying drawings.
The zoom lens according to the example and the reference example includes, in order from the object side, a first lens group G1 including a cemented lens and having positive refractive power, a second lens group G2 having negative refractive power, and positive refraction. A third lens group G3 having power, a fourth lens group G4 having negative refractive power, a fifth lens group G5 having positive refractive power, and a sixth lens group G6 having negative refractive power Is done.
[0020]
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group G3 , The distance between the third lens group G3 and the fourth lens group G4 increases, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens group G5 and the sixth lens group G5 change. The distance from the lens group G6 decreases.
The fourth lens group G4 and the fifth lens group G5 move independently to the object side in the optical axis direction during focusing from an object at infinity to an object at a short distance.
[0021]
(First embodiment)
FIG. 1 is a diagram showing the lens configuration of a zoom lens according to the first embodiment of the present invention. In the drawing, the zoom locus from the wide-angle end state (W) to the telephoto end state (T) and the focusing direction from the object at infinity to the object at the closest shooting distance are indicated by arrows. The same applies to the following embodiments.
In the zoom lens according to the present embodiment, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. And a biconvex positive lens L13.
The second lens group G2 includes, in order from the object side, a cemented lens including a biconcave negative lens L21, a biconcave negative lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. .
The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33, and an aperture stop AS. The aperture stop AS is disposed adjacent to the image side surface of the biconcave negative lens L33.
[0022]
The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side.
The fifth lens group G5 includes, in order from the object side, a cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, and a biconvex positive lens L53. .
The sixth lens group G6 includes, in order from the object side, a cemented lens including a biconcave negative lens L61 and a positive meniscus lens L62 having a convex surface directed toward the object side.
[0023]
Table 1 below lists values of specifications of the zoom lens according to the first example of the present invention.
In (Overall specifications), f represents a focal length, FNO represents an F number, and 2w represents a maximum value (unit: degree) of an angle of view.
In (lens data), the surface number indicates the order of the lens surfaces from the object side, R indicates the radius of curvature of the lens surfaces, and D indicates the distance between the lens surfaces. Vd and Nd represent the Abbe number and the refractive index, respectively. The Abbe number and refractive index are values for the d-line (λ = 587.6 nm). Further, Bf indicates back focus.
In addition, also in the specification value of the reference example shown below, the code | symbol similar to a present Example is used.
[0024]
Here, “mm” is generally used as a unit of focal length f, radius of curvature R, surface interval d, and other lengths listed in all the following specification values. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
[0025]
[Table 1]
Figure 0004380158
Figure 0004380158
Figure 0004380158
[0026]
2 and 3 are graphs showing various aberrations with respect to the d-line (λ = 587.6 nm) of the zoom lens according to the first example.
FIGS. 2A and 2B are graphs showing various aberrations when focusing at infinity in the wide-angle end state and the telephoto end state, respectively.
3A and 3B, when the distance from the object plane to the image plane is RD, the close-up shooting distance (in which RD = 1.3 m is adopted) in the wide-angle end state and the telephoto end state is in focus. Various aberration diagrams are shown.
[0027]
In each aberration diagram, FNO represents the F number, w represents the half angle of view, and the value represents the maximum value. In the astigmatism diagram, a solid line S indicates a sagittal image plane, and a broken line M indicates a meridional image plane.
In the various aberration diagrams of the reference example shown below, the same symbols as in this example are used.
[0028]
From the various aberration diagrams, it can be seen that the zoom lens according to the present embodiment corrects various aberrations well and has excellent imaging performance in the wide-angle end state and the telephoto end state, particularly at the close focus distance. .
[0029]
( Reference example )
FIG. 4 is a diagram showing a lens configuration of a zoom lens according to a reference example of the present invention.
In the zoom lens according to the present reference example , the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a biconvex shape. Positive lens L13.
The second lens group G2 includes, in order from the object side, a cemented lens of a positive meniscus lens L21 having a concave surface facing the object side and a biconcave negative lens L22, a biconcave negative lens L23, and a convex surface on the object side. Is composed of a cemented lens with a positive meniscus lens L24 facing and a negative biconcave lens L25.
The third lens group G3 includes, in order from the object side, a cemented lens of a biconvex positive lens L31, a biconvex positive lens L32, and a negative meniscus lens L33 having a concave surface facing the object side, and an aperture stop AS. The aperture stop AS is disposed adjacent to the image side surface of the negative meniscus lens L33 having a concave surface facing the object side.
[0030]
The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side.
The fifth lens group G5 includes, in order from the object side, a cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, and a positive meniscus lens L53 having a convex surface facing the object side. Consists of
The sixth lens group G6 includes, in order from the object side, a cemented lens including a biconcave negative lens L61 and a positive meniscus lens L62 having a convex surface directed toward the object side.
Table 2 below lists values of specifications of the zoom lens according to the reference example of the present invention.
[0031]
[Table 2]
Figure 0004380158
Figure 0004380158
Figure 0004380158
[0032]
5 and 6 are graphs showing various aberrations of the zoom lens according to the reference example with respect to the d-line (λ = 587.6 nm).
FIGS. 5A and 5B are graphs showing various aberrations when focusing at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 6A and 6B are graphs showing various aberrations at the time of focusing on the close-up shooting distance (in which RD = 2.3 m is adopted) in the wide-angle end state and the telephoto end state, respectively.
[0033]
From the various aberration diagrams, it can be seen that the zoom lens according to this reference example corrects various aberrations well and has excellent imaging performance in the wide-angle end state and the telephoto end state, particularly at the close focus distance. .
[0034]
【The invention's effect】
According to the present invention, a high-performance and compact zoom lens can be realized by adopting a so-called inner focus system.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a lens configuration of a zoom lens according to a first example of the present invention.
FIGS. 2A and 2B are graphs showing various aberrations when the zoom lens according to Example 1 of the present invention is in focus at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 3A and 3B are diagrams when focusing on a close-up shooting distance (in which RD = 1.3 m is employed) in the wide-angle end state and the telephoto end state of the zoom lens according to the first embodiment of the present invention, respectively; The aberration diagrams of are shown.
FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to a reference example of the present invention.
FIGS. 5A and 5B are graphs showing various aberrations when the zoom lens according to the reference example of the present invention is focused at infinity in the wide-angle end state and the telephoto end state, respectively.
FIGS. 6A and 6B are diagrams illustrating various zooming distances when a zoom lens according to a reference example of the present invention is in a wide-angle end state and a telephoto end state, respectively (when RD = 2.3 m is employed). An aberration diagram is shown.
[Explanation of symbols]
1st lens group 2nd lens group 3rd lens group 4th lens group 5th lens group 6th lens group Aperture stop Image surface

Claims (6)

物体側より順に、
貼り合わせレンズを含み正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、
負の屈折力を有する第4レンズ群と、
正の屈折力を有する第5レンズ群と、
負の屈折力を有する第6レンズ群とからなり、
広角端状態から望遠端状態へのズーミングの際に、隣接する前記各レンズ群の間隔が全て変化するズームレンズにおいて、
無限遠物体から至近撮影距離物体へのフォーカシングの際に、前記第4レンズ群と前記第5レンズ群とがそれぞれ独立に物体側へ移動し、
以下の条件式を満足することを特徴とするズームレンズ。
0.560≦ |f2|/fW <1.2
但し、
f2:前記第2レンズ群の焦点距離,
fW:広角端状態における前記ズームレンズ全系の合成焦点距離.
From the object side,
A first lens group including a cemented lens and having a positive refractive power;
A second lens group having negative refractive power;
A third lens group having positive refractive power;
A fourth lens group having negative refractive power;
A fifth lens group having positive refractive power;
A sixth lens unit having negative refractive power,
In zoom lenses in which the distance between the adjacent lens groups changes during zooming from the wide-angle end state to the telephoto end state,
When focusing from an object at infinity to an object at a close shooting distance, the fourth lens group and the fifth lens group independently move to the object side,
A zoom lens satisfying the following conditional expression:
0.560 ≦ | f2 | / fW <1.2
However,
f2: focal length of the second lens group,
fW: Composite focal length of the entire zoom lens system in the wide-angle end state.
フォーカシングの際に、以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
0.2<|X5W/X4W|<1.0
0.4<|X5T/X4T|<2.0
但し、
X4W:広角端状態における前記第4レンズ群のフォーカシング移動量,
X5W:広角端状態における前記第5レンズ群のフォーカシング移動量,
X4T:望遠端状態における前記第4レンズ群のフォーカシング移動量,
X5T:望遠端状態における前記第5レンズ群のフォーカシング移動量.
The zoom lens according to claim 1, wherein the following conditional expression is satisfied at the time of focusing.
0.2 <| X5W / X4W | <1.0
0.4 <| X5T / X4T | <2.0
However,
X4W: the amount of focusing movement of the fourth lens group in the wide-angle end state,
X5W: the amount of focusing movement of the fifth lens group in the wide-angle end state;
X4T: the amount of focusing movement of the fourth lens group in the telephoto end state,
X5T: A focusing movement amount of the fifth lens group in the telephoto end state.
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載のズームレンズ。
1.7<FT・f1/fT<3.7
但し、
FT:望遠端状態における前記ズームレンズ全系のF値,
f1:前記第1レンズ群の焦点距離.
fT:望遠端状態における前記ズームレンズ全系の合成焦点距離.
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.7 <FT · f1 / fT <3.7
However,
FT: F value of the entire zoom lens system in the telephoto end state,
f1: Focal length of the first lens group.
fT: the combined focal length of the entire zoom lens system in the telephoto end state.
以下の条件式を満足することを特徴とする請求項1乃至請求項3のいずれか1項に記載のズームレンズ。
0.6< f5/|f6| <1.5
但し、
f5:第5レンズ群の焦点距離,
f6:第6レンズ群の焦点距離.
The zoom lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.6 <f5 / | f6 | <1.5
However,
f5: focal length of the fifth lens group,
f6: Focal length of the sixth lens group.
広角端状態から望遠端状態へのズーミングの際に、前記第2レンズ群は像面に対する位置を固定されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載のズームレンズ。  5. The zoom according to claim 1, wherein the position of the second lens group relative to the image plane is fixed during zooming from the wide-angle end state to the telephoto end state. lens. 広角端状態から望遠端状態へのズーミングの際に、前記第4レンズ群は像面に対する位置を固定されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載のズームレンズ。  The zoom according to any one of claims 1 to 5, wherein the position of the fourth lens group relative to the image plane is fixed during zooming from the wide-angle end state to the telephoto end state. lens.
JP2002381629A 2002-12-27 2002-12-27 Zoom lens Expired - Fee Related JP4380158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381629A JP4380158B2 (en) 2002-12-27 2002-12-27 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381629A JP4380158B2 (en) 2002-12-27 2002-12-27 Zoom lens

Publications (2)

Publication Number Publication Date
JP2004212612A JP2004212612A (en) 2004-07-29
JP4380158B2 true JP4380158B2 (en) 2009-12-09

Family

ID=32817497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381629A Expired - Fee Related JP4380158B2 (en) 2002-12-27 2002-12-27 Zoom lens

Country Status (1)

Country Link
JP (1) JP4380158B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115848B2 (en) * 2008-01-30 2013-01-09 株式会社ニコン Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5168641B2 (en) 2008-05-21 2013-03-21 株式会社ニコン Magnification optical system, optical apparatus having the same and magnifying method
JP5608986B2 (en) * 2009-02-26 2014-10-22 株式会社ニコン Variable magnification optical system, optical equipment
JP5605675B2 (en) * 2009-02-26 2014-10-15 株式会社ニコン Variable magnification optical system, optical equipment
US8405915B2 (en) 2009-02-26 2013-03-26 Nikon Corporation Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP5608987B2 (en) * 2009-02-26 2014-10-22 株式会社ニコン Variable magnification optical system, optical equipment
US8503097B2 (en) 2009-05-27 2013-08-06 Nikon Corporation Lens system, optical apparatus and manufacturing method
JP7146522B2 (en) * 2018-08-10 2022-10-04 キヤノン株式会社 ZOOM LENS AND IMAGING DEVICE HAVING THE SAME
US20210349293A1 (en) * 2018-11-20 2021-11-11 Nikon Corporation Zoom optical system, optical device, and method for manufacturing zoom optical system
US11668914B2 (en) 2019-11-01 2023-06-06 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, and lens barrel, image capture device, and camera system including the zoom lens system

Also Published As

Publication number Publication date
JP2004212612A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4626135B2 (en) Large aperture ratio internal focusing telephoto zoom lens
JP3167069B2 (en) Zoom lens
JP2000284177A (en) Three-group zoom lens
JP2012181525A (en) Zoom lens
JP2000258688A (en) Zoom lens
JP2003015035A (en) Zoom lens
JPH1020193A (en) Zoom lens
JPH10133115A (en) Compact zoom lens
JP4380158B2 (en) Zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JP2000121942A (en) Zoom lens
JP3368099B2 (en) Rear focus zoom lens
JPH11352402A (en) Zoom lens
JPH11160621A (en) Zoom lens
JPH116958A (en) Zoom lens
JP4337363B2 (en) Zoom lens
JPH112762A (en) Zoom lens
JP4360088B2 (en) Zoom lens
JPH10197794A (en) Zoom lens
JP3743362B2 (en) Variable focal length lens
JP3219574B2 (en) Zoom lens
JP3593400B2 (en) Rear focus zoom lens
JPH0915500A (en) Zoom lens
JP4333151B2 (en) Zoom lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151002

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees