JPS59213168A - Manufacture of vertical type field effect transistor - Google Patents

Manufacture of vertical type field effect transistor

Info

Publication number
JPS59213168A
JPS59213168A JP58088002A JP8800283A JPS59213168A JP S59213168 A JPS59213168 A JP S59213168A JP 58088002 A JP58088002 A JP 58088002A JP 8800283 A JP8800283 A JP 8800283A JP S59213168 A JPS59213168 A JP S59213168A
Authority
JP
Japan
Prior art keywords
impurity region
conductivity type
region
substrate
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58088002A
Other languages
Japanese (ja)
Inventor
Masanori Yamamoto
山本 正徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58088002A priority Critical patent/JPS59213168A/en
Publication of JPS59213168A publication Critical patent/JPS59213168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

PURPOSE:To enable to stabilize the threshold voltage by a method wherein the second impurity region of the same conductivity type a that of the semiconductor substrate is formed in the first semiconductor region by leaving an insulation film only on the side surface of a poly Si gate electrode. CONSTITUTION:The zero impurity region 3 of the conductivity type reverse to that of the substrate 1 and a gate oxide film 5 are formed. The poly Si gate electrodes 6a and 6b are formed, the first impurity region 7 of the condutivity type reverse to that of the substrate 1 is formed with said electrodes as a mask, and the insulation film 12 is grown and etched. Since this sputter etching has the ratio of vertical and transversal etching at several ten or more, the insulation films 12a and 12b on the side surface of the poly Si's remain. When the second impurity region 8 of the same conductivity type as that of the substrate 1 is formed with said electrodes 6a and 6b and insulation films 12a and 12b as a mask, the diffusion positions of the first impurity region 7 and the second one 8 become B and C, respectively, resulting in slippage by the thickness (t) of the insulation film. Therefore, the part of gentle profile of said region 7 intersects the second one 8, and accordingly the threshold voltage stabilizes.

Description

【発明の詳細な説明】 本発明はP−N成金部金具える縦型MO8電界効果トラ
ンジスタの電気的%註の同上に関Tるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the electrical characteristics of a vertical MO8 field effect transistor having a P-N metallization.

従来、プレーナ型縦型MO8S’Ii、界効果トランジ
スタ金形成するために、第1図(al〜(flに承丁↓
うに、第1の導電型基板lに、熱酸化膜2金成長させ、
フォトリングラフィ技術にニジ窓あけを行ない、基板と
反対の導電型の不純物のイオン注入もしくに、拡散′F
−エリ、第0不純物領域3を形成しく第1図(a))、
さらに全面熱酸化?を除去し、ゲート酸化5を約5 (
1(1〜20(1(IA収矢させ、さら(その上(ポリ
シリコンロ全約500〜60旧lA11liX長させ(
第1図(1)l ) 、フォトリングラフィ技術屹より
1ポリシリコンを例えばCl−14でドライ・エツチン
グしく第1図(C))、ポリシリコン(6a、6b)?
マスクにして、基板と反対の導′a型の不純物のイオン
注入もしくは拡散(より、第1不純物領域7全形成しざ
ら九、同じポリノリコン(6a、5b)をマスクにして
、基板と同じ導′亀型の不純物?イオン注入もしくは、
拡散によV第2不純物領域8全形成しく第1図(d))
、ポリシリコン(6bのみ)全除去し、その上に、例え
ばCVD酸化膜9を成長させ、さら(フォト・リングラ
フィ技術(より窓あけを行ない鹸化膜エツチングを行な
い、例えばアルミ蒸着を行ない、アルミ電極loを形成
してきた(第1図(eL (fl ) o Lかし、第
2図に示し几ように、ボロン拡散プロファイルHの濃度
プロファイルが、あまりなめらかでない領域でのソース
・リン拡散プロファイル■との交点Aのボロン濃度によ
りしきい値電圧が、決定している為、しきい値電圧のば
らつきが考えらねる。加えて、第1図(fl[示しfC
,ようにソース領域8とポリシリコン・ゲート電極領域
が重なっている為、ソース・ケート間に容量が発生し、
スイッチング・スピードが遅くなるという欠点があった
Conventionally, in order to form planar vertical MO8S'Ii field effect transistor gold,
First, a thermal oxide film of 2 gold is grown on the first conductivity type substrate l,
By making a rainbow window in the photolithography technique, ion implantation or diffusion of impurities of the opposite conductivity type to the substrate is performed.
- Eli, forming the 0th impurity region 3 (FIG. 1(a)),
More complete thermal oxidation? , and gate oxide 5 to approximately 5 (
1 (1 to 20 (1) IA is settled, and further (polysilicon is about 500 to 60 old lA11liX long (
Figure 1 (1)l), using photolithography technology, polysilicon (6a, 6b) is dry etched using, for example, Cl-14 (Figure 1(C)), polysilicon (6a, 6b)?
Using the same polygonal silicone (6a, 5b) as a mask, implant or diffuse ion implantation or diffusion of an impurity of the conductive type A on the opposite side of the substrate (after forming the entire first impurity region 7). Turtle-shaped impurity?Ion implantation or
The entire V second impurity region 8 is formed by diffusion (Fig. 1(d)).
, polysilicon (only 6b) is completely removed, for example a CVD oxide film 9 is grown on it, and then (photo phosphorography technique) apertures are made and saponified film etching is performed, for example aluminum evaporation is performed, aluminum As shown in Figure 2, the concentration profile of the boron diffusion profile H is not very smooth. Since the threshold voltage is determined by the boron concentration at the intersection point A with
, because the source region 8 and the polysilicon gate electrode region overlap, a capacitance is generated between the source and gate.
The drawback was that the switching speed was slow.

本発明の第1の目的は縦型M(Jf9・FETのしきい
値電圧會さらに安定化することにある。
The first object of the present invention is to further stabilize the threshold voltage of the vertical M (Jf9 FET).

第2の目的は、ゲート・ソース間のオーバー・ラップ?
小さくシ、ゲート・ソース間の容量を減少しスイッチン
グ・スピードの速い縦型MO8・FET1提供すること
にある。
The second purpose is overlap between gate and source?
The object of the present invention is to provide a vertical MO8 FET 1 that is small in size, has reduced gate-source capacitance, and has high switching speed.

本発明の特徴は、縦型MO8−FETrcおいてポリシ
リコンゲート電極形成後半導体基鈑と反対の導電型を有
する第1不純物領域全形成し、この上に絶縁膜(例えば
CVD 81(J2もしくは窒化膜)全成長させ、こわ
をスパッタ・エッチにニジエツチングを行ない前記ポリ
シリコンゲート電極側面のみに絶縁膜全残し、前述第1
半導体領域円に半導体基板と同じ導電型の第2の不純物
領域を形式することVCある。
The feature of the present invention is that after forming the polysilicon gate electrode in the vertical MO8-FETrc, the entire first impurity region having a conductivity type opposite to that of the semiconductor substrate is formed, and an insulating film (for example, CVD 81 (J2 or nitride film) After the entire insulating film is grown, the stiffness is removed by sputter etching, leaving the entire insulating film only on the side surface of the polysilicon gate electrode.
VC is to form a second impurity region of the same conductivity type as the semiconductor substrate in the semiconductor region circle.

本発明(工わば、ゲート電極(例えばポリシリコン)下
のチャンネル形式tCおいて、ゲート電極側面に絶縁膜
が形成されているため、拡散位置が絶縁膜厚だけすわる
ので、第1不純物領域の濃度      ′プロファイ
ルの平たんな領域に@2不純物領域が形式されるため、
【7さい値電圧の安定化が計わる。
In the present invention (in other words, in the channel type tC under the gate electrode (for example, polysilicon)), since an insulating film is formed on the side surface of the gate electrode, the diffusion position is spread by the thickness of the insulating film, so that the first impurity region Since the @2 impurity region is formed in the flat region of the concentration profile,
[7 The stabilization of the minimum voltage is measured.

その上、ゲート電極と、第2不純物領域とのオーバーラ
ツプ長が短かくなるため、ゲート・ソース間の容量が減
少する。従って全体81kが減少し、スイッチング・ス
ピードの同上となる。
Furthermore, since the overlap length between the gate electrode and the second impurity region is shortened, the capacitance between the gate and source is reduced. Therefore, the total 81k is reduced and the switching speed is the same.

本発明を、図を用いて詳細に説明する。The present invention will be explained in detail using figures.

従来は、第1図に示す10セスを用いているが、本発明
では第3図(a)〜(h)に示すように第1の導電型基
板1(熱酸化膜を成長させ、フォト・リングラフィ技術
vCより窓あけを行ない、基板と反対の導電型の不純物
イオン注入もしくニ、拡散により1第0不純物領域3t
−形成しく第3図(a) ) 、さらに全面酸化膜を除
去し、ゲート酸化膜5約500〜2000A成長させ、
ざら(その上に例えばポリシリコンロを約500〜60
00 AFy、長させ(第3図(b))、フォト・リソ
グラフィ技術vc↓9、パターンを形成し、ポリシリコ
ンを例えば、CF4でドライ・エツチングを行ない、ポ
リシリコン、ゲート電極(5a、5b)を形式する(第
3図(C))。ポリシリコン(6a、6b)t−マスク
にとし基板と反対の導電型の不純物のイオン注入もしく
ハ、拡散により第1不純物領域7を形成する(第3図(
d) ) oさらrcそo上c絶縁膜例えば、CVD 
8rOz etc 12全約500A〜数pmFf、長
させ(第3図(e))、その後スパッタエツチングf−
より絶縁膜を例えばCF4f用いてエツチング全行なう
。このスパッタ・エツチングは縦方向と横方向のエツチ
ング比率(二縦万同エツチング/横方向エッチングフ数
10以上あるので第3図(f)(示したようにポリシリ
コン側面の絶縁膜(12a、12b)が残る。そこで、
ポリシリコン・ゲートを極(6a、6b)と絶縁膜(1
2a、  12b ) 全マスクとして基板と同じ導電
型の不純物をイオン注入もしくは、拡散(工り第2不純
物領域8(ソース領域)を形成する(第3図(gl、 
(hl ) oこのようにして形式すると、第3図(h
)(示すようVC第1不純物領域7と第2不純物領域8
との拡散位置が各々BとCとなり絶縁膜厚tの長さだけ
ずれる。従って、第1不純物領域7の拡散プロファイル
のなだらかな部分と、第2不純物領域8が交わる為、し
きい値電圧が安定化する。さら(加えて、ゲート(6a
)とソース領域(8)のオーバーラツプが短かくなる為
容量が減少する。さらにポリS1及び絶縁膜(6a、 
12b) Th除去し、その上に、例えばCVD酸化膜
9を成長させ、さらに、フォトリソグラフィ技術にエフ
窓あけ全行ない、酸化膜エツチングを行ない例えばアル
ぐ蒸着を行ない、アルミ電極10全形成する。
Conventionally, 10 cells shown in FIG. 1 are used, but in the present invention, as shown in FIGS. A window is opened using phosphorography technology vC, and impurity ions of a conductivity type opposite to that of the substrate are implanted or diffused to form the 10th impurity region 3t.
- After the formation (Fig. 3(a)), the entire oxide film is removed, and a gate oxide film of about 500 to 2000 A is grown.
Coarse (approximately 500 to 60
00 AFy, lengthen (Fig. 3(b)), form a pattern using photolithography technique vc↓9, dry-etch the polysilicon with, for example, CF4, and form the polysilicon and gate electrodes (5a, 5b). (Figure 3 (C)). A first impurity region 7 is formed by ion implantation or diffusion of an impurity of a conductivity type opposite to that of the substrate using a polysilicon (6a, 6b) T-mask (see FIG. 3).
d)) Insulating film on rc, for example, CVD
8rOz etc. 12 total length of about 500A to several pmFf (Fig. 3(e)), then sputter etching f-
The entire etching process is then carried out using, for example, CF4f as the insulating film. This sputter etching has a vertical and horizontal etching ratio (two vertical etching/horizontal etching ratios of 10 or more), as shown in Figure 3(f). ) remains.Therefore,
The polysilicon gate is connected to the poles (6a, 6b) and the insulating film (1
2a, 12b) A second impurity region 8 (source region) is formed by ion implantation or diffusion (processing) with an impurity of the same conductivity type as the substrate as a whole mask (see Fig. 3 (gl, 12b).
(hl) o When formatted in this way, Figure 3 (h
) (As shown, VC first impurity region 7 and second impurity region 8
The diffusion positions of B and C are respectively shifted by the length of the insulating film thickness t. Therefore, since the gentle portion of the diffusion profile of the first impurity region 7 intersects with the second impurity region 8, the threshold voltage is stabilized. Sara (in addition, gate (6a
) and the source region (8) becomes shorter, the capacitance decreases. Further, poly S1 and insulating film (6a,
12b) After removing Th, for example, a CVD oxide film 9 is grown thereon, and further, an F window is completely opened using photolithography, the oxide film is etched, and, for example, Al is evaporated to form an aluminum electrode 10.

本発明によれば、縦形MO8−FETにおいて、第2ゲ
ート形成(第1不純物領域)とソース領域(第2不純物
領域)を形成する時に絶縁膜をスパッタエッチによりゲ
ート電極側面に残り拡散位置をずらすことVC工、0第
2不純物領域の濃度ズロファイルのなだらかな部分(第
3不純物領域が形成される為しきい値電圧の安定化が計
れる。加えて、ゲート電極とソース領域のオーバー・ラ
ップが短かくなる為容量減少し、スイッチング・スピー
ドの同上が針引る。
According to the present invention, in a vertical MO8-FET, when forming the second gate (first impurity region) and source region (second impurity region), the insulating film is left on the side surface of the gate electrode by sputter etching and the diffusion position is shifted. Also known as VC engineering, the gradual part of the concentration slope profile of the second impurity region (because the third impurity region is formed, the threshold voltage can be stabilized.In addition, the overlap between the gate electrode and the source region is short). As a result, the capacity decreases and the switching speed increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は各々従来の製造工程ケ示す断面
図、M2図に第2,3不純物領域の拡散クロファイル、
第3図(a)〜(h)[各々本発明実施例の製造工程全
示す断圓図、でめる。 なお図(おいて、l・・・−導電型基板、2・・・酸化
膜、3・・・基板と反対の導電型の第0不純物領域、5
・・・ゲート酸化膜、6・・・ゲート・ポリシリコン(
ゲート電極)、(6a、6b)  7・・・基板と反対
の導電型の第1不純物領域(第2ゲート領域ン、8・・
・基板と同じ導電型の第2不純物領域(ソース領域2.
9・・・CVD 8i02(絶縁膜]、10・・・アル
ミニウム電極(ソース電極)、11・・・ドレイン電極
、12−・・絶縁膜、(12a、12b) L−・・チ
ャンネル長、m・・・第2不純物領域拡散長、X・・・
横方向拡散距離、B・・・第1不純物領域拡散窓、C・
・・第2不純物領域拡散窓、である。 予冷)、 代理人 弁理士  内 原   音(1,−、、、、“
)(b) 笛f+ 21         (ナノ (θ)(d) (f!L。 第3
Figures 1 (a) to (f) are cross-sectional views showing the conventional manufacturing process, and Figure M2 shows the diffusion profiles of the second and third impurity regions.
FIGS. 3(a) to 3(h) are cross-sectional views showing the entire manufacturing process of the embodiments of the present invention. In addition, in the figure (l... - conductivity type substrate, 2... oxide film, 3... 0th impurity region of conductivity type opposite to the substrate, 5
...Gate oxide film, 6...Gate polysilicon (
gate electrode), (6a, 6b) 7... first impurity region (second gate region) of the conductivity type opposite to that of the substrate, 8...
- A second impurity region (source region 2.
9...CVD 8i02 (insulating film), 10...aluminum electrode (source electrode), 11...drain electrode, 12-...insulating film, (12a, 12b) L-...channel length, m. ...Second impurity region diffusion length, X...
Lateral diffusion distance, B...first impurity region diffusion window, C...
...Second impurity region diffusion window. Pre-cooling), Agent Patent Attorney Uchihara Oto (1,-,,,,“
)(b) Whistle f+ 21 (nano(θ)(d) (f!L. 3rd

Claims (1)

【特許請求の範囲】 一導電型?有する半導体基板【ゲート酸化膜を成長きせ
、前述ゲート酸化膜上にポリシリコンを成長させ、該ポ
リシリコンをエツチングして制御電極?形成し、該エツ
チングしてポリシリコンの除去された部分に逆導電型不
純物を導入して第1の半導体領域を形成し、さらにこの
上Yこ、第1の絶縁物を成長させ、さらにスパッタ・エ
ツチングを行ないH記ポリ・シリコンの側面のみに前記
第1の絶縁物を残しさら(前記illの半導体領域内に
一導電型の第2の不純物領域?形成することを特徴とす
る縦型電界効果トランジスタの製造方法。
[Claims] One conductivity type? [Grow a gate oxide film, grow polysilicon on the gate oxide film, and etch the polysilicon to form a control electrode.] A first semiconductor region is formed by introducing impurities of opposite conductivity into the portion where the polysilicon is removed by etching, and then a first insulator is grown on top of the first semiconductor region. A vertical field effect characterized by etching, leaving the first insulator only on the side surfaces of the polysilicon (H), and forming a second impurity region of one conductivity type in the semiconductor region of the ill. Method of manufacturing transistors.
JP58088002A 1983-05-19 1983-05-19 Manufacture of vertical type field effect transistor Pending JPS59213168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088002A JPS59213168A (en) 1983-05-19 1983-05-19 Manufacture of vertical type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088002A JPS59213168A (en) 1983-05-19 1983-05-19 Manufacture of vertical type field effect transistor

Publications (1)

Publication Number Publication Date
JPS59213168A true JPS59213168A (en) 1984-12-03

Family

ID=13930570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088002A Pending JPS59213168A (en) 1983-05-19 1983-05-19 Manufacture of vertical type field effect transistor

Country Status (1)

Country Link
JP (1) JPS59213168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225164A (en) * 1988-03-03 1989-09-08 Fuji Electric Co Ltd Manufacture of insulated gate mosfet
JPH01270359A (en) * 1988-04-22 1989-10-27 Nec Corp Manufacture of vertical type field-effect transistor
JP2004207476A (en) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp Power semiconductor device, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225164A (en) * 1988-03-03 1989-09-08 Fuji Electric Co Ltd Manufacture of insulated gate mosfet
JPH01270359A (en) * 1988-04-22 1989-10-27 Nec Corp Manufacture of vertical type field-effect transistor
JP2004207476A (en) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp Power semiconductor device, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS63255967A (en) Manufacture of field effect transistor
JPS5910275A (en) Vertical insulated gate field effect transistor device
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
JPS59213168A (en) Manufacture of vertical type field effect transistor
KR0183785B1 (en) Method of manufacturing mos transistor
JP2000294782A (en) Manufacture of semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPH02130852A (en) Semiconductor device
KR100236063B1 (en) Method of etching gate polysilicon
KR100223795B1 (en) Manufacturing method of semiconductor memory device
JP3179216B2 (en) Method for manufacturing semiconductor device
KR930001893B1 (en) Cmos transistor manufacturing method
KR930008902B1 (en) Manufacturing method of semiconductor device without sidewall
KR930001565B1 (en) Manufacturing method of c-mos transistor
KR0172815B1 (en) Method of manufacturing trench type cmos inverter
JPS588590B2 (en) Method for manufacturing Schottky barrier gate field effect transistor
JPS60136377A (en) Manufacture of semiconductor device with insulated gate
KR0142875B1 (en) Fabrication method of mosfet
JPH02181970A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH01226176A (en) Manufacture of semiconductor device
JPH01223768A (en) Semiconductor device and its manufacture
JPH01278777A (en) Manufacture of mosfet
JPH01225158A (en) Manufacture of semiconductor device
KR950021262A (en) Gate electrode formation method of semiconductor device