JPS59210403A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPS59210403A
JPS59210403A JP8368183A JP8368183A JPS59210403A JP S59210403 A JPS59210403 A JP S59210403A JP 8368183 A JP8368183 A JP 8368183A JP 8368183 A JP8368183 A JP 8368183A JP S59210403 A JPS59210403 A JP S59210403A
Authority
JP
Japan
Prior art keywords
diffraction grating
mask
substrate
etched
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8368183A
Other languages
Japanese (ja)
Other versions
JPH0456284B2 (en
Inventor
Shigeo Toda
戸田 重郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP8368183A priority Critical patent/JPS59210403A/en
Publication of JPS59210403A publication Critical patent/JPS59210403A/en
Publication of JPH0456284B2 publication Critical patent/JPH0456284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain a precise saw-tooth wave type diffraction grating by forming a photoresist pattern on a glass or metallic substrate by an interference exposing method, etc. and forming recessed parts by etching, and forming a mask displaced to one side of the recessed parts by slanting vapor deposition and then carrying out etching again. CONSTITUTION:The photoesist layer 2 is formed on the glass or metallic substrte 1, and a latent image is formed on the layer 2 by the interference exposing method or electron beam lithography method and then developed to obtain a diffraction grating pattern 3 whose section is in a sine wave shape. The substrate is etched and the resist 4 is removed to form recesses 4 in the substrate 1 in the since wave shape. Then, Cr is vapor-deposited slantingly to form the mask 5 displaced to one side of the recesses 4. The substrate 1 is further etched in an HF solution until even the lower part of the part covered with the mask 5 is etched to further recess slanting surfaces which are not covered with the mask 5. Then, the mask 5 is removed to point peaks of projection parts 7, thus obtaining the saw-tooth type diffraction grating which has higher efficiency than before.

Description

【発明の詳細な説明】 従来、ガラス、金属等の基板上に回折格子を−設ける方
法としては、 Cイ)フォトレジストを塗布した基板上に干渉露光また
は電子ビーム描画を行ない、現像する方法、 (ロ)機械切削による方法、 (ハ)回折格子をレジストとしたエツチング等の手法に
よりガラス、金属等の基板上に作製する゛方法、 (ニ)レジスト上に、基板に対しである角度をもつ定常
波を用いて露光、現像する方法。
[Detailed Description of the Invention] Conventionally, methods for providing a diffraction grating on a substrate such as glass or metal include: C) a method of performing interference exposure or electron beam writing on a substrate coated with a photoresist and developing it; (b) A method using mechanical cutting; (c) A method in which a diffraction grating is fabricated on a substrate such as glass or metal by a method such as etching as a resist; (d) A method in which a grating is formed on a resist at a certain angle with respect to the substrate. A method of exposure and development using standing waves.

(ホ)イオンビームエツチング法 等がある。(e) Ion beam etching method etc.

これらのうち(イ)においてはポジ型フォトレジストを
塗布した基板をコヒーレントな2つの平面波または球面
波で照射すると、フォトレジスト中に干渉縞が記録され
、その後現像すると、記録された干渉縞の強度分布(正
弦波状)にほぼ比例して、フォトレジストが溶解し、格
子溝が形成される。この方法においては回折格子の溝の
断面形状は一般に正弦波状となり、機械切削の場合のよ
うに鋸波状断面の溝を自由につくることができないため
高い回折効率を有する回折格子が得られない。
In (a), when a substrate coated with a positive photoresist is irradiated with two coherent plane waves or spherical waves, interference fringes are recorded in the photoresist, and when it is subsequently developed, the intensity of the recorded interference fringes is The photoresist is dissolved approximately in proportion to the distribution (sinusoidal), and grating grooves are formed. In this method, the cross-sectional shape of the grooves of the diffraction grating is generally sinusoidal, and it is not possible to freely create grooves with a sawtooth cross-section as in the case of mechanical cutting, so a diffraction grating with high diffraction efficiency cannot be obtained.

(ロ)は、機械的に基板を切削する方法であり、回折格
子の断面形状を鋸波状にした溝を自由に作ることができ
るため、回折効率を高めること自体は可能である。しか
し、基板表面の形状、即ち平面、球面、非球面かどうか
により制約を受ける上、振動の影響をうけやすいので完
全に均一な周期で回折格子を作製することはできないし
、溝を曲線状に設けたり、或いは不等間隔にすることに
よって、種々の結像特性をもたせることができない等の
欠点を有している。
(b) is a method of mechanically cutting the substrate, and since it is possible to freely create grooves with a sawtooth cross-sectional shape of the diffraction grating, it is possible to increase the diffraction efficiency itself. However, it is limited by the shape of the substrate surface, i.e., whether it is flat, spherical, or aspherical, and it is also easily affected by vibration, so it is impossible to create a diffraction grating with a completely uniform period, and it is difficult to create a diffraction grating with a completely uniform period. It has a drawback that it is not possible to provide various imaging characteristics by providing or arranging them at unequal intervals.

(ハ)は、回折格子の断面形状が正弦波に近い形か若し
くは矩型になるため溝深さが浅い時には回折効率の高い
回折格子は得られない。
In (c), since the cross-sectional shape of the diffraction grating is close to a sine wave or rectangular, a diffraction grating with high diffraction efficiency cannot be obtained when the groove depth is shallow.

(ニ)C二おいては、フォトレジストを塗布した平面ガ
ラス基板等の基板の両側からコヒーレントな平行光線を
入射させると、フォトレジスト中音:定在波が生じ、基
板表面とある角度θをなして筒面こ生ずる。これを現像
すると、フォトレジストの溶解は筒面でとまり、傾き角
(ブレーズ角)θの三角形の断面を有する溝が形成され
る。しかし、この手法では、回折格子のブレーズ波長は
入射角のいかんによらず一定となる。
(d) In C2, when a coherent parallel light beam is incident from both sides of a substrate such as a flat glass substrate coated with a photoresist, a standing wave is generated in the photoresist, and a certain angle θ is formed with the substrate surface. This results in a cylindrical surface. When this is developed, the dissolution of the photoresist stops at the cylindrical surface, and a groove having a triangular cross section with an inclination angle (blaze angle) θ is formed. However, with this method, the blaze wavelength of the diffraction grating remains constant regardless of the incident angle.

従って、種々のブレーズ波長を持つ平面回折格子を作る
ためには、レーザ波長を変えるしかないが、フォトレジ
ストは長波長の光に感光しにくいため可視部で高回折効
率を得ることは困難で、ある。
Therefore, the only way to create planar diffraction gratings with various blaze wavelengths is to change the laser wavelength, but since photoresist is not sensitive to long wavelength light, it is difficult to obtain high diffraction efficiency in the visible region. be.

(ホ)は例えばイオン源室と加工室とからなる装置を用
い、通常、アルゴンイオンを用いぞエツチング後行なう
方法であり、試料に対するイオンの入射角を調整できる
ことが回折格子の断面形状を鋸波状にする上で重要であ
る。イオンビームエツチングの方法は、電気的にコント
ロー。
For example, (e) is a method that uses a device consisting of an ion source chamber and a processing chamber, and is usually carried out after etching using argon ions. It is important to The ion beam etching method is electrically controlled.

ルしやすいイオンを用いて溝を加工形成するため、溝の
形のコントロールは極めて容易であり、また任意の溝間
隔の回折格子を任意の角度の鋸波状にできる長所がある
。しかし、この方法においては試料基板としては、マス
クとして用いる回折格子より十分速いエッチ速度をもつ
材料を用いなければならず、フォトレジストをマスクと
してエッチ速度の遅い石英やガラスに直接ブレーズをき
ざむことはむずかしいという欠点を有している。
Since the grooves are processed and formed using ions that are easily detected, it is extremely easy to control the shape of the grooves, and there is also the advantage that the diffraction grating with any groove spacing can be made into a sawtooth shape with any angle. However, in this method, the sample substrate must be made of a material with a sufficiently faster etch rate than the diffraction grating used as a mask, and it is not possible to directly blaze quartz or glass, which has a slow etch rate, using a photoresist as a mask. It has the disadvantage of being difficult.

以上のように、ガラス、金属等の基板上に、直接回折格
子を作製する方法としては、(ロ)及び(ハ)があり、
このうち(t7)は機械切削のため回折格子の周期を精
度よくすることができない。またe’)は、回折格子の
周期を非常に精度よく作製することはできるが、断面形
状を制御することができないため回折効率を高めること
ができない。
As mentioned above, there are methods (b) and (c) for directly producing a diffraction grating on a substrate such as glass or metal.
Of these, (t7) is machine cut, so the period of the diffraction grating cannot be made accurate. In e'), although the period of the diffraction grating can be manufactured with very high precision, the cross-sectional shape cannot be controlled, so the diffraction efficiency cannot be increased.

また(ホ)は、回折効率も周期の精度も良好な回折格子
を作製できるが、直接、上記基板上に作製することがで
きない。
Further, in (e), although a diffraction grating with good diffraction efficiency and period accuracy can be produced, it cannot be produced directly on the substrate.

以上のように、回折格子の周期を精度よくするには、干
渉露光法を用いた方法が最適であり、また、回折効率を
高めるためには回折格子の断面形状を鋸波状にすればよ
し【が、従来の方法では周期の精度と好ましい断面形状
を同時に満足することは困難で弗る。
As mentioned above, in order to improve the precision of the period of the diffraction grating, the best method is to use the interference exposure method, and in order to increase the diffraction efficiency, the cross-sectional shape of the diffraction grating should be made into a sawtooth shape [ However, with conventional methods, it is difficult to simultaneously satisfy period accuracy and desirable cross-sectional shape.

本発明は上記した従来技術の欠点を解消するものであっ
て、本発明の回折格子の作製法はガラス若しくは金属の
基板上に硬化したフォトレジストからなる回折格子パタ
ーンを形成し、次いでエツチングを行なって前記パター
ンに応じた四部を形成させ、その後、斜方蒸若を行なっ
て、前記凹部の片側に偏在したマスクを形成させ、続い
て前記マスクをレジストとしてエツチングを行ない、し
かる後、前記マスクを除去することを特徴とするもので
ある。
The present invention solves the above-mentioned drawbacks of the prior art, and the method for manufacturing a diffraction grating of the present invention involves forming a diffraction grating pattern made of hardened photoresist on a glass or metal substrate, and then etching it. Then, oblique evaporation is performed to form a mask unevenly distributed on one side of the recess, and then etching is performed using the mask as a resist. It is characterized by removal.

まず、ガラス若しくは金属の基板1上に硬化したフォト
レジストからなる回折パターンを形成するには、例えば
、第1図(alに示すように基板1上にフォトレジスト
層2を塗布して設け、フォトレジスト層2に干渉露光若
しくは電子ビーム描画法により露光して潜像を生じさせ
、その後、所定の現像液を用いて現像することにより、
第1図(blに示すように硬化したフォトレジストから
なる回折格子パターン3を形成する。
First, in order to form a diffraction pattern made of a hardened photoresist on a glass or metal substrate 1, for example, as shown in FIG. By exposing the resist layer 2 to light by interference exposure or electron beam lithography to generate a latent image, and then developing it using a predetermined developer,
As shown in FIG. 1 (bl), a diffraction grating pattern 3 made of hardened photoresist is formed.

次いで、回折格子パターン6をレジストとして用いてエ
ツチングし、エツチング後、レジストを除去すると第1
図(0)に示すように1表面に断面が正弦波状の形状の
前記回折格子パターン6に応じた凹部4を形成させる。
Next, etching is performed using the diffraction grating pattern 6 as a resist, and after etching, when the resist is removed, the first
As shown in FIG. 0, a recess 4 corresponding to the diffraction grating pattern 6 having a sinusoidal cross section is formed on one surface.

このような凹部4の形成された基板1の表面に第1図f
dlに示すように斜方蒸着により、四部の一方向の斜面
のみにCr等の金R薄膜からなるマスク5を形成させる
。このマスク5の材料は、次工程のエツチングの際に基
板1のレジストとなるよう選択する。
FIG.
As shown in dl, a mask 5 made of a gold R thin film such as Cr is formed only on the slopes in one direction of the four parts by oblique evaporation. The material of this mask 5 is selected so that it will serve as a resist for the substrate 1 during the next etching process.

次に、形成されたマスク5をレジストとしてエツチング
を行ない、好ましくは、サイドエッチによりマンノ5で
覆われた部分にもエツチングを行ない、第1図(elに
示すように凹部4のマスクにより被覆されていない側の
斜面6をより凹ませる。この後、マスク5をエツチング
等により除去することにより、第1図+f+で示すよう
な、凸部7の頂上が尖った断面形状を有する回折格子が
得られる。
Next, etching is performed using the formed mask 5 as a resist. Preferably, side etching is also performed on the portions covered with the manno 5, and as shown in FIG. Then, by removing the mask 5 by etching or the like, a diffraction grating having a cross-sectional shape where the top of the convex portion 7 is pointed as shown by +f+ in FIG. 1 is obtained. It will be done.

本発明の方法によれば、各工程自体は既存の装置を利用
して行なえ、回折格子の周期は最初の露光によって決ま
るので精度が良い。特に、干渉露光の際には極めて精度
がすぐれている。
According to the method of the present invention, each step itself can be performed using existing equipment, and the period of the diffraction grating is determined by the first exposure, so accuracy is high. In particular, the accuracy is extremely high during interference exposure.

グの操作により凸部の頂上が尖った断面形状が鋸波状の
断面形状を有する回折格子が得られる利点がある。
There is an advantage in that a diffraction grating having a sawtooth cross-sectional shape with the peaks of the convex portions being pointed can be obtained by the grating operation.

実施例 ガラス基板上に、干渉露光法によりフォトレジストパタ
ーンを形成した後、HF水溶液でエツチングを行ない、
正弦波状の断面の回折格子を作製し、次に、斜め蒸着法
を用いてOr薄膜を上記基板上に形成した。更に、上記
Or薄膜をレジストマスクとして基板をHF水溶液でエ
ツチングを行ない、その後、Or薄膜を剥離させ、鋸波
状回折格子を得た。
Example A photoresist pattern was formed on a glass substrate by interference exposure method, and then etched with an HF aqueous solution.
A diffraction grating with a sinusoidal cross section was fabricated, and then an Or thin film was formed on the substrate using an oblique evaporation method. Furthermore, the substrate was etched with an HF aqueous solution using the above Or thin film as a resist mask, and then the Or thin film was peeled off to obtain a sawtooth diffraction grating.

この回折格子の周期は3μmであり、波長665nmの
入射光に対して、回折効率45〜50チが得られた。通
常の薄い位相型回折格子の最大回折効率は理論値として
66.9%であり、木考案はこの値を十分越えるもので
ある。
The period of this diffraction grating was 3 μm, and a diffraction efficiency of 45 to 50 cm was obtained for incident light with a wavelength of 665 nm. The maximum diffraction efficiency of a normal thin phase-type diffraction grating is 66.9% as a theoretical value, and the wooden design sufficiently exceeds this value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図6)〜(flは本発明の各工程を示すための断面
図である。 1・・・・・・・・・・−・・・・・・・基板2・・・
・・・・・・・・・・・・・・・フォトレジスト層3・
・・・・・・・・・・・・・・・・・回折格子パターン
4・・・・・・・・・・・・・・・・・・凹部5・・・
・・・・・・・・・・・・・・・マスク6・・・・・・
・・・・・・・・・・・・マスクされていない側の斜面
7・・・・・・・・・・・・・・・・・・凸部牙 1 
図 才1図
FIG. 16) to (fl are cross-sectional views for showing each step of the present invention. 1.........--...Substrate 2...
・・・・・・・・・・・・Photoresist layer 3・
・・・・・・・・・・・・・・・・・・Diffraction grating pattern 4・・・・・・・・・・・・・・・・・・Concavity 5...
・・・・・・・・・・・・Mask 6・・・・・・
・・・・・・・・・・・・Slope 7 on the unmasked side ・・・・・・・・・・・・・・・Convex fangs 1
Figure 1

Claims (1)

【特許請求の範囲】[Claims] ガラス若しくは金属の基板上に硬化したフォトレジスト
からなる回折格子パターンを形成し、次いで、エツチン
グを行なって前記パターンに応じた凹部を形成させ、そ
の後、斜方蒸着を行なって、前記凹部の片側に偏在した
マスクを形成させ、続いて前記マスクをレジストとして
エツチングを行ない、しかる後、前記マスクを除去する
ことを特徴とする回折格子の作製法。
A diffraction grating pattern made of hardened photoresist is formed on a glass or metal substrate, then etched to form a recess corresponding to the pattern, and then oblique evaporation is performed to form a recess on one side of the recess. 1. A method for producing a diffraction grating, which comprises forming a unevenly distributed mask, etching the mask using the mask as a resist, and then removing the mask.
JP8368183A 1983-05-13 1983-05-13 Manufacture of diffraction grating Granted JPS59210403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8368183A JPS59210403A (en) 1983-05-13 1983-05-13 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8368183A JPS59210403A (en) 1983-05-13 1983-05-13 Manufacture of diffraction grating

Publications (2)

Publication Number Publication Date
JPS59210403A true JPS59210403A (en) 1984-11-29
JPH0456284B2 JPH0456284B2 (en) 1992-09-08

Family

ID=13809227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8368183A Granted JPS59210403A (en) 1983-05-13 1983-05-13 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPS59210403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343101A (en) * 1986-08-08 1988-02-24 Toyo Commun Equip Co Ltd Transmission type diffraction grating
JPH01161302A (en) * 1987-12-18 1989-06-26 Shimadzu Corp Manufacture of holographic rating
CN1306286C (en) * 2003-10-09 2007-03-21 国际商业机器公司 Dispersive element, diffraction grating, color display device, demultiplexer, and diffraction grating manufacture
JP2018036324A (en) * 2016-08-29 2018-03-08 凸版印刷株式会社 Optical element and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343101A (en) * 1986-08-08 1988-02-24 Toyo Commun Equip Co Ltd Transmission type diffraction grating
JPH01161302A (en) * 1987-12-18 1989-06-26 Shimadzu Corp Manufacture of holographic rating
CN1306286C (en) * 2003-10-09 2007-03-21 国际商业机器公司 Dispersive element, diffraction grating, color display device, demultiplexer, and diffraction grating manufacture
JP2018036324A (en) * 2016-08-29 2018-03-08 凸版印刷株式会社 Optical element and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0456284B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
US10422934B2 (en) Diffraction gratings and the manufacture thereof
EP2752691A1 (en) Variable-efficiency diffraction grating
GB2509536A (en) Diffraction grating
EP0110184B1 (en) Process for fabricating integrated optics
JP2001042114A (en) Production of optical element
JPS59210403A (en) Manufacture of diffraction grating
JPH1172606A (en) Pattern etching method for sic
JPH06148861A (en) Photomask and its production
JP2004268331A (en) Mold for molding optical element and method for manufacturing mold
JPS59116602A (en) Production of chirped-grating
CA1269748A (en) Method of forming a variable width channel
JP3029524B2 (en) Manufacturing method of diffraction grating
JP2506967B2 (en) Optical disc master manufacturing method
JP2000105307A (en) Manufacture of digital braze diffraction grating
JPS63187202A (en) Blazed holographic diffraction grating
JPH06264272A (en) Fine working method
JP2942825B1 (en) Method of manufacturing optical integrated circuit having out-of-plane branch mirror
JPH0830764B2 (en) Method of manufacturing diffraction grating
JPH07193044A (en) Pattern etching method for sic
JP2001005168A (en) Mask for near field exposure and its manufacture
JPS6218559A (en) Mask for exposure
JPH0620940A (en) Manufacture of resist pattern
JP2003121619A (en) Optical element and method for manufacturing the same
JPH04186829A (en) Manufacture of semiconductor device
JPH06100693B2 (en) Optical waveguide lens