JPH06264272A - Fine working method - Google Patents

Fine working method

Info

Publication number
JPH06264272A
JPH06264272A JP5054022A JP5402293A JPH06264272A JP H06264272 A JPH06264272 A JP H06264272A JP 5054022 A JP5054022 A JP 5054022A JP 5402293 A JP5402293 A JP 5402293A JP H06264272 A JPH06264272 A JP H06264272A
Authority
JP
Japan
Prior art keywords
mask
substrate
beams
irradiated
zone plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054022A
Other languages
Japanese (ja)
Inventor
Takuma Yamamoto
▲琢▼磨 山本
Sumuto Shimizu
澄人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5054022A priority Critical patent/JPH06264272A/en
Publication of JPH06264272A publication Critical patent/JPH06264272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Micromachines (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To easily execute fine working at arbitrarily and two-dimensionally changed depths by irradiating a material to be treated with beams from the transmission parts of a mask moving relatively with the material to be treated and generating the irradiation quantity distribution of the beams on the surface of the material to be irradiated. CONSTITUTION:The mask 2 partly provided with the transmission parts is irradiated with the beams 1 and a substrate 5 is irradiated with the transmitted beams 4 transmitted through apertures 3 having a triangular section. The mask 2 is moved along the base of the apertures 3 at this time. As a result, a two-dimensional distribution is generated in the irradiation quantity of the beams 4 in correspondence to the apertures having the triangular section. Further, the removal proportional to the irradiation quantity distribution is executed by relatively removing the mask 2, by which saw tooth-shaped grooves 5a are formed on the surface of the substrate 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被加工材を加工して回
折格子やゾーンプレート等の微細加工物を得るための微
細加工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microfabrication method for processing a work material to obtain a microfabricated product such as a diffraction grating and a zone plate.

【0002】[0002]

【従来の技術】従来、基板等の被加工材を所定のパター
ンに応じて深さ方向に加工する微細加工法として、フォ
トリソグラフィー法が知られている。このフォトリソグ
ラフィー法は、パターンが形成されたフォトマスクに光
を照明し、このパターン像を基板表面に形成されたフォ
トレジスト層に投影、露光してフォトマスクと同一・相
似のパターンをフォトレジストに形成する。この後、パ
ターンが形成されたフォトレジストをマスクにしてエッ
チング等を施すことにより基板の微細加工を行う。
2. Description of the Related Art Conventionally, a photolithography method has been known as a fine processing method for processing a workpiece such as a substrate in the depth direction according to a predetermined pattern. In this photolithography method, a photomask on which a pattern is formed is illuminated with light, and this pattern image is projected onto a photoresist layer formed on the substrate surface and exposed to light to form a pattern that is the same as or similar to the photomask on the photoresist. Form. After that, the substrate is finely processed by performing etching or the like using the photoresist having the pattern as a mask.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たフォトリソグラフィー法による微細加工法にあって
は、通常、エッチング時間等の条件を変化させても被加
工部の深さを一次元的にしか制御できず、つまり被加工
部の深さを一様な深さにしか制御できず、深さが二次元
的に任意に変化するような被加工部を得ることが困難で
あった。但し、従来のフォトリソグラフィー法において
は、シリコン基板の特定の面方位に沿ってエッチング面
が進行する異方性エッチングと呼ばれるものが用いられ
ることもあり、この異方性エッチングを用いればV字溝
等を形成することは可能であるが、エッチング面が特定
の面方位に沿ってのみ進行するため、深さが二次元的に
任意に変化するような被加工部を得ることはできない。
したがって、従来の微細加工法では、位相変調型ゾーン
プレートのように深さ方向のパターン形状に二次元的制
御を必要とする微細加工が困難であった。
However, in the above-described microfabrication method by the photolithography method, the depth of the processed portion is usually controlled only one-dimensionally even if the conditions such as the etching time are changed. This is impossible, that is, the depth of the processed portion can be controlled only to a uniform depth, and it has been difficult to obtain a processed portion in which the depth can be arbitrarily changed two-dimensionally. However, in the conventional photolithography method, what is called anisotropic etching in which an etching surface advances along a specific plane orientation of a silicon substrate is sometimes used. If this anisotropic etching is used, a V-shaped groove is formed. However, since the etching surface advances only along a specific plane orientation, it is not possible to obtain a processed portion having a two-dimensional arbitrary depth change.
Therefore, in the conventional fine processing method, it is difficult to perform fine processing that requires two-dimensional control of the pattern shape in the depth direction like the phase modulation type zone plate.

【0004】本発明の目的は、深さを二次元的に任意に
変化させた微細加工を容易に行うことの可能な微細加工
法を提供することにある。
An object of the present invention is to provide a microfabrication method capable of easily performing microfabrication in which the depth is arbitrarily changed two-dimensionally.

【0005】[0005]

【課題を解決するための手段】一実施例を示す図1に対
応付けて説明すると、本発明は、透過部3を一部に有す
るマスク2をビーム1で照射し、前記透過部3を透過し
たビーム4により被加工材5を加工する微細加工法に適
用される。そして、上述の目的は、前記被加工材5の表
面において前記ビーム4の照射量分布が生じるように前
記マスク2と前記被加工材5とを相対的に移動させるこ
とにより達成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be described with reference to FIG. 1 showing an embodiment. According to the present invention, a mask 2 having a transparent portion 3 as a part thereof is irradiated with a beam 1 and the transparent portion 3 is transmitted. It is applied to a fine processing method for processing the workpiece 5 with the beam 4. Then, the above-mentioned object is achieved by moving the mask 2 and the workpiece 5 relative to each other so that a dose distribution of the beam 4 is generated on the surface of the workpiece 5.

【0006】[0006]

【作用】図1および図2に示すように、断面三角形の開
口部(透過部)3が形成されたマスク2を、この開口部
3の底辺3aが延在する方向(図中に矢印Aで示す)に
沿って連続的あるいは断続的に移動させつつ、マスク2
の上方から所定時間だけビーム1を照射した場合を考え
る。
As shown in FIGS. 1 and 2, a mask 2 having an opening (transmission part) 3 having a triangular cross section is formed in a direction in which a bottom side 3a of the opening 3 extends (indicated by an arrow A in the drawings). 2) while moving continuously or intermittently along the mask 2
Consider a case in which the beam 1 is irradiated for a predetermined time from above.

【0007】開口部3を通過したビーム4は被加工材た
る基板5に照射されるが、開口部3が断面三角形に形成
されかつマスク2が開口部3の底辺3aに沿って移動さ
れているので、基板5上におけるビーム4のドーズ量
(ビーム4が照射されている時間)に開口部3の開口幅
に対応した二次元分布が生じる。ここに、開口幅は底辺
3aの延在方向(これはマスク2の移動方向に等しい)
に沿って測定する。
The beam 4 which has passed through the opening 3 is irradiated onto the substrate 5 which is a workpiece, and the opening 3 is formed in a triangular cross section and the mask 2 is moved along the bottom side 3a of the opening 3. Therefore, a two-dimensional distribution corresponding to the opening width of the opening 3 is generated in the dose amount of the beam 4 (time when the beam 4 is irradiated) on the substrate 5. Here, the opening width is the extending direction of the base 3a (this is equal to the moving direction of the mask 2).
Measure along.

【0008】例えば、基板5の幅bがこの底辺3aの長
さaに略等しければ、底辺3aにおける開口部3の開口
幅は底辺3aの長さaに等しいことから底辺3aに対応
する部分の基板5上においてビーム4は常に照射されて
おり、その照射時間はビーム1の照射時間と等しい、す
なわち100%になる。逆に、頂点3bにおける開口部
3の開口幅は0であり、頂点3bに対応する部分の基板
5上においてビーム4はほとんど照射されずにその照射
時間はビーム1の照射時間の0%になる。開口部3の略
中央部における幅はa/2であり、これに対応する部分
の基板5においては、ビーム4の照射時間がビーム1の
照射時間の50%になる。なお、図2では作用の説明を
明確にするためマスク2を平面図、基板5を側面図で図
示している。
For example, if the width b of the substrate 5 is substantially equal to the length a of the bottom side 3a, the opening width of the opening 3 at the bottom side 3a is equal to the length a of the bottom side 3a. The beam 4 is always irradiated on the substrate 5, and the irradiation time is equal to the irradiation time of the beam 1, that is, 100%. On the contrary, the opening width of the opening 3 at the apex 3b is 0, and the beam 4 is hardly irradiated on the portion of the substrate 5 corresponding to the apex 3b, and the irradiation time becomes 0% of the irradiation time of the beam 1. . The width of the central portion of the opening 3 is a / 2, and the irradiation time of the beam 4 is 50% of the irradiation time of the beam 1 in the portion of the substrate 5 corresponding to this width. In FIG. 2, the mask 2 is shown in a plan view and the substrate 5 is shown in a side view in order to clarify the explanation of the operation.

【0009】このようにして基板5の表面においてビー
ム4の照射時間(ドーズ量)に二次元分布が形成される
ので、ビーム4の照射時間に比例して基板5がその表面
から除去されるようなビーム源と基板5を用いれば、例
えば開口幅a/2に対応する部分の基板5は、底辺3a
に対応する部分の基板5の除去深さに対して50%の深
さだけ除去される。より一般的には、移動方向に沿った
開口部3の開口幅に対応して基板5上におけるビーム4
の照射時間が定まり、この基板5上の任意の部分でビー
ム4の当たっている時間がビーム1の照射時間全体のa
%(0≦a≦100)であったとすると、この部分は、
ビーム4が常に照射された部分(つまり底辺3aに対応
する部分)が除去される深さのa%だけ表面から除去さ
れる。開口部3の開口幅は、基板5の長手方向(図1、
図2の左右方向)に沿って直線的に変化するため、基板
5の除去深さも直線的に変化し、これにより、基板5に
は図1に示すような鋸歯状の溝5aが形成される。ビー
ム4の照射時間に対する基板5の除去量が2次以上の高
次関数、あるいはそれ以外の関数で表される場合でも、
これを考慮してマスク2の開口部3の形状を定めればよ
い。また、直線運動のみならずマスク2を円運動させて
もよいが、この場合、半径方向の位置によって基板5と
の相対速度が異なるため、これを考慮してマスク2の開
口部3の形状を定めればよい。
In this way, a two-dimensional distribution is formed in the irradiation time (dose amount) of the beam 4 on the surface of the substrate 5, so that the substrate 5 is removed from the surface in proportion to the irradiation time of the beam 4. If a different beam source and substrate 5 are used, for example, the portion of the substrate 5 corresponding to the opening width a / 2 will have a base 3a.
Is removed by a depth of 50% with respect to the removal depth of the substrate 5 in the portion corresponding to. More generally, the beam 4 on the substrate 5 corresponds to the opening width of the opening 3 along the moving direction.
Irradiation time is determined, and the irradiation time of the beam 4 at an arbitrary portion on the substrate 5 is a of the entire irradiation time of the beam 1.
% (0 ≦ a ≦ 100), this part is
The portion where the beam 4 is constantly irradiated (that is, the portion corresponding to the bottom side 3a) is removed from the surface by a% of the depth to be removed. The opening width of the opening 3 is set in the longitudinal direction of the substrate 5 (see FIG. 1,
Since it linearly changes along the left-right direction of FIG. 2, the removal depth of the substrate 5 also changes linearly, and as a result, a sawtooth-shaped groove 5a as shown in FIG. 1 is formed on the substrate 5. . Even when the removal amount of the substrate 5 with respect to the irradiation time of the beam 4 is expressed by a higher-order function of a second order or higher, or another function,
In consideration of this, the shape of the opening 3 of the mask 2 may be determined. Further, not only the linear movement but also the circular movement of the mask 2 may be performed. In this case, since the relative speed with the substrate 5 is different depending on the radial position, the shape of the opening 3 of the mask 2 is considered in consideration of this. You can set it.

【0010】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for the purpose of making the present invention easy to understand. It is not limited to.

【0011】[0011]

【実施例】図3〜図6により本発明による微細加工法の
一実施例を説明する。本実施例の微細加工法は、X線用
位相変調型ゾーンプレートの製造に適用されたものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the fine processing method according to the present invention will be described with reference to FIGS. The fine processing method of this embodiment is applied to the manufacture of a phase modulation type zone plate for X-rays.

【0012】まず、本実施例で製造されるX線用位相変
調型ゾーンプレートについて説明する。X線用位相変調
型ゾーンプレート20は、図5に示すように、断面形状
が鋸歯状の突起20a〜20eが同心円状に形成されて
なる部材であり、これを透過したX線の位相が0〜2π
ラジアンまで半径方向に放物線状に変化するようにそれ
ぞれの突起20a〜20eの形状が定められている。X
線用位相変調型ゾーンプレートの突起20a〜20eの
形状は、使用材料の屈折率を1−δ、X線の波長をλと
すると、透過したX線が焦点で同一位相、もしくは2π
ラジアンの整数倍の位相差となる条件から与えられ、中
心Oからの平面距離rにおけるゾーンプレートの高さを
t(r)とすれば、
First, the X-ray phase modulation type zone plate manufactured in this embodiment will be described. As shown in FIG. 5, the X-ray phase modulation type zone plate 20 is a member in which projections 20a to 20e each having a saw-tooth cross section are formed concentrically, and the phase of the X-ray transmitted therethrough is 0. ~ 2π
The shapes of the respective protrusions 20a to 20e are determined so as to change in a parabolic shape in the radial direction up to radians. X
The shapes of the projections 20a to 20e of the line phase modulation type zone plate are such that, when the refractive index of the material used is 1-δ and the wavelength of X-rays is λ, the transmitted X-rays have the same phase at the focal point or 2π.
Given the condition that the phase difference is an integral multiple of radians, and the height of the zone plate at the plane distance r from the center O is t (r),

【数1】t(r)={(r/r1)2−(M−1)}λ/δ (rM-1≦r<rM) ・・・(1) ただしMは自然数、r1は一番内側の突起20aの半
径、rM-1、rMはそれぞれ内側からM−1番目、M番目
の突起20の半径である。ここで、rMとr1には
## EQU1 ## t (r) = {(r / r 1 ) 2- (M-1)} λ / δ (r M-1 ≤r <r M ) ... (1) where M is a natural number and r 1 is the radius of the innermost protrusion 20a, and r M−1 , r M are the radius of the M−1th and Mth protrusions 20 from the inside, respectively. Where r M and r 1 are

【数2】rM 2=Mr1 2 ・・・(2) の関係があるので、これを(1)式に代入するとSince there is a relationship of r M 2 = Mr 1 2 (2), substituting this into equation (1)

【数3】t(rM)=λ/δ ・・・(3) t(rM-1)=0 ・・・(4)## EQU3 ## t (r M ) = λ / δ (3) t (r M-1 ) = 0 (4)

【0013】よって、中心Oから距離rの位置において
円板状の部材の表面から除去すべき深さをs(r)とする
と、
Therefore, if the depth to be removed from the surface of the disk-shaped member at a position r from the center O is s (r),

【数4】 s(r)/(λ/δ)=(rM 2−r2)/r1 2 ・・・(5) が成立し、これは、0から1までの間で変化する。Equation 4] s (r) / (λ / δ) = (r M 2 -r 2) / r 1 2 ··· (5) is established, which varies between 0 and 1.

【0014】図3は、本実施例の微細加工法で使用され
る位相変調型ゾーンプレート製造装置を示す概略図であ
る。マスク13には所望のゾーンプレートのパターンに
応じた光透過部21a〜21e(図3において不図示、
詳細は後述)が形成されており、光源11からの光がコ
ンデンサレンズ12で集光されてマスク13が照明さ
れ、このマスク13の光透過部21a〜21eを透過し
た光が縮小投影レンズ14を介してウエハー15上に投
影され、マスクのパターン像がウエハー15上に露光さ
れる。
FIG. 3 is a schematic view showing a phase modulation type zone plate manufacturing apparatus used in the fine processing method of this embodiment. The mask 13 has light transmitting portions 21a to 21e (not shown in FIG. 3, which correspond to a desired zone plate pattern).
(Details will be described later), the light from the light source 11 is condensed by the condenser lens 12 to illuminate the mask 13, and the light transmitted through the light transmitting portions 21 a to 21 e of the mask 13 passes through the reduction projection lens 14. The pattern image of the mask is projected onto the wafer 15 through the wafer 15 and is exposed on the wafer 15.

【0015】ウエハー15には、ゾーンプレートを形成
する金属等の物質層と、マスク13のパターンを転写す
るレジストなどの感光層(ともに不図示)とがあらかじ
め形成されている。本実施例の感光層は、光の照射時間
に比例して現像後に物質層上に残る感光層の厚さが薄く
なる(通常、残膜率と称する)、すなわちその表面から
除去される深さが深くなる性質を有するポジ型の物質か
らなる。ウエハー15は回転ステージ16上に載置され
ており、回転ステージ16の回転軸17を中心として回
転された状態でマスク13のパターンが露光される。
On the wafer 15, a material layer such as a metal forming the zone plate and a photosensitive layer such as a resist (not shown) for transferring the pattern of the mask 13 are formed in advance. In the photosensitive layer of this embodiment, the thickness of the photosensitive layer remaining on the material layer after development becomes thin in proportion to the light irradiation time (usually referred to as residual film rate), that is, the depth removed from the surface. It consists of a positive-type substance that has the property of deepening. The wafer 15 is placed on a rotary stage 16, and the pattern of the mask 13 is exposed while being rotated around a rotary shaft 17 of the rotary stage 16.

【0016】マスク13には、図4に示すような形状の
光透過部21a〜21eが形成されている。各々の光透
過部21a〜21eの形状は、ウエハー15が回転され
た状態で露光されることを考慮して、光透過部21a〜
21eの開口角を半径方向に変化させることにより感光
層上における光照射時間に同心円状の二次元分布を与
え、中心Oからの平面距離rにおいて上述した感光層を
除去すべき深さs(r)だけ現像後に感光層が除去される
ように定められる。具体的には、図6に示すように
The mask 13 is provided with light transmitting portions 21a to 21e having a shape as shown in FIG. The shapes of the light transmitting portions 21a to 21e are the same as those of the light transmitting portions 21a to 21e in consideration that the wafer 15 is exposed while being rotated.
By changing the aperture angle of 21e in the radial direction, a concentric two-dimensional distribution is given to the light irradiation time on the photosensitive layer, and at the plane distance r from the center O, the depth s (r ) Is defined so that the photosensitive layer is removed only after development. Specifically, as shown in FIG.

【数5】θ(r)=α(rM 2−r2)/r1 2 (rM-1≦r<rM) ・・・(6) の開口角を有するようにそれぞれの光透過部21a〜2
1eの形状を定めればよい。ここに、αはマスク13の
光透過部21a〜21eの最大開口角である。
Equation 5] θ (r) = α (r M 2 -r 2) / r 1 2 (r M-1 ≦ r <r M) ··· each to have an aperture angle of (6) Light transmission Parts 21a-2
The shape of 1e may be determined. Here, α is the maximum opening angle of the light transmitting portions 21 a to 21 e of the mask 13.

【0017】回転軸17を中心にしてウエハー15を回
転テーブル16上で回転させつつ、図4に示すような形
状のマスク13を用いて感光層の露光を行うと、図5に
示すような光照射時間の同心円状分布(図5の縦軸を光
照射時間とすればよい)が感光層上に形成される。した
がって、この照射光により感光層を露光して不要部分を
除去すれば、図5に示すような断面形状を有する感光層
を形成することができる。この後は、図5のような感光
層をマスクとしてRIE(反応性イオンエッチング)法
等の異方性エッチングにより物質層をエッチングする
と、感光層に相似の断面形状を有する図5のようなX線
用位相変調型ゾーンプレート20を製造することができ
る。
When the photosensitive layer is exposed by using the mask 13 having the shape shown in FIG. 4 while rotating the wafer 15 on the rotary table 16 about the rotation axis 17, the light shown in FIG. A concentric distribution of irradiation time (the vertical axis in FIG. 5 may be the light irradiation time) is formed on the photosensitive layer. Therefore, by exposing the photosensitive layer with this irradiation light to remove unnecessary portions, a photosensitive layer having a cross-sectional shape as shown in FIG. 5 can be formed. After that, when the material layer is etched by anisotropic etching such as RIE (Reactive Ion Etching) using the photosensitive layer as shown in FIG. 5 as a mask, a cross-section X similar to that of the photosensitive layer as shown in FIG. The line phase modulation type zone plate 20 can be manufactured.

【0018】したがって本実施例によれば、従来実現が
困難であった深さを二次元的に任意に変化させた微細加
工を容易に行うことができ、これにより位相変調型ゾー
ンプレート20を容易に製作することが可能になる。こ
の位相変調型ゾーンプレート20をX線光学素子をして
用いた場合の集光効率は、振幅型ゾーンプレートや位相
反転型ゾーンプレートをも上回る事ができるため、非常
に明るい光学系を提供することができる。一例として、
振幅型ゾーンプレートの理論集光効率は約10%、位相
反転型ゾーンプレートの理論集光効率は約40%である
が、位相変調型ゾーンプレートの理論集光効率は、物質
層のX線振幅透過率を60%とすると約60%にも至
る。また、本実施例の微細加工法は、マスク13を複数
枚に分割してそれぞれのマスク13を用いて露光しても
同様の効果を奏することができるため、1回の露光工程
でマスクが入りきらない大口径のゾーンプレートの製作
も可能である。
Therefore, according to the present embodiment, it is possible to easily perform fine processing in which the depth is arbitrarily changed in a two-dimensional manner, which has been difficult to realize conventionally, and thus the phase modulation type zone plate 20 can be easily manufactured. It becomes possible to manufacture it. When the phase modulation type zone plate 20 is used as an X-ray optical element, the light-collecting efficiency can exceed that of the amplitude type zone plate or the phase inversion type zone plate, so that a very bright optical system is provided. be able to. As an example,
The theoretical light collection efficiency of the amplitude type zone plate is about 10% and the theoretical light collection efficiency of the phase inversion type zone plate is about 40%, but the theoretical light collection efficiency of the phase modulation type zone plate is the X-ray amplitude of the material layer. When the transmittance is 60%, it reaches about 60%. Further, in the fine processing method of the present embodiment, the same effect can be obtained even if the mask 13 is divided into a plurality of sheets and each of the masks 13 is used for exposure, so that the mask can be inserted in one exposure step. It is also possible to manufacture large-diameter zone plates that cannot be cut.

【0019】なお、本発明の微細加工法は、その細部が
上述の一実施例に限定されず、種々の変形が可能であ
る。一例として、一実施例においては光を用いた縮小投
影露光によるX線用位相変調型ゾーンプレートの製造方
法について説明したが、これに限らず、紫外光や可視光
用の回折格子等の光学素子の製造方法、あるいはマイク
ロマシーニング用、半導体センサの加工法などにも適用
可能である。また、マスクを照射するビームは可視光だ
けでなく、γ線から赤外線の光ビーム、電子線イオンビ
ーム、原子ビームのどれであってもよい。イオンビーム
を用いると、直接X線吸収体やX線位相反転材をミリン
グ加工することができる。パターン転写の方法も縮小に
限らず等倍転写であってもよい。さらに、一実施例では
被加工材側を回転させていたが、被加工材を連続的ある
いは断続的に直線運動、往復運動させてもよく、かつ、
マスク側を移動させてもよい。被加工材、マスクの移動
方向等に応じて透過部の形状は定められる。そして、一
実施例ではビームの照射時間に比例して残膜率が大きく
なる感光層を用いていたが、これに限らず、ビームの照
射時間と残膜率との間に非線形な関係が成立するような
感光膜、基板等を用いてもよい。この場合、マスクの透
過部の形状は、照射時間−残膜率の関係をも考慮して定
められる。
The fine processing method of the present invention is not limited in details to the above-described embodiment, and various modifications can be made. As one example, in one embodiment, the method of manufacturing the X-ray phase modulation zone plate by reduction projection exposure using light has been described, but the present invention is not limited to this, and an optical element such as a diffraction grating for ultraviolet light or visible light. Can also be applied to the manufacturing method of, or for micromachining, processing method of semiconductor sensor, and the like. The beam for irradiating the mask is not limited to visible light, and may be a light beam of γ rays to infrared rays, an electron beam ion beam, or an atom beam. By using the ion beam, the X-ray absorber and the X-ray phase inversion material can be directly milled. The pattern transfer method is not limited to reduction, and may be equal size transfer. Further, although the workpiece side is rotated in one embodiment, the workpiece may be linearly moved or reciprocated continuously or intermittently, and
The mask side may be moved. The shape of the transmission part is determined according to the material to be processed, the moving direction of the mask, and the like. Then, in one embodiment, the photosensitive layer in which the residual film ratio increases in proportion to the beam irradiation time is used, but the present invention is not limited to this, and a nonlinear relationship is established between the beam irradiation time and the residual film ratio. Such a photosensitive film, substrate, etc. may be used. In this case, the shape of the transparent portion of the mask is determined in consideration of the relationship between irradiation time and residual film rate.

【0020】[0020]

【発明の効果】以上詳細に説明したように、本発明によ
れば、被加工材表面においてビームの照射量分布が生じ
るようにマスクと被加工材とを相対的に移動させたの
で、このビームの照射量に比例して被加工材の加工深さ
を制御することができる。これにより、従来実現が困難
であった深さを二次元的に任意に変化させた微細加工を
容易に行うことができる。
As described in detail above, according to the present invention, since the mask and the workpiece are moved relative to each other so that the irradiation dose distribution of the beam is generated on the surface of the workpiece, this beam It is possible to control the working depth of the work material in proportion to the irradiation amount of. As a result, it is possible to easily perform fine processing in which the depth, which has been difficult to realize in the past, is arbitrarily changed two-dimensionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するための斜視図である。FIG. 1 is a perspective view for explaining the operation of the present invention.

【図2】本発明の作用を説明するための概略図である。FIG. 2 is a schematic diagram for explaining the operation of the present invention.

【図3】本発明の一実施例である微細加工法に用いられ
るゾーンプレート製作装置を示す図である。
FIG. 3 is a diagram showing a zone plate manufacturing apparatus used in a microfabrication method according to an embodiment of the present invention.

【図4】一実施例に用いられるX線用位相変調型ゾーン
プレート製作用のマスクを示す平面図である。
FIG. 4 is a plan view showing a mask for manufacturing a phase modulation type zone plate for X-ray used in one embodiment.

【図5】一実施例で製造されるX線用位相変調型ゾーン
プレートを示す断面図である。
FIG. 5 is a cross-sectional view showing an X-ray phase modulation zone plate manufactured in one example.

【図6】図4に示すマスクの1つの透過部の形状を示す
平面図である。
FIG. 6 is a plan view showing the shape of one transmission part of the mask shown in FIG.

【符号の説明】[Explanation of symbols]

1 ビーム 2 マスク 3 開口部 4 透過ビーム 5 基板 11 光源 12 コンデンサレンズ 13 マスク 14 縮小投影レンズ 15 ウエハ 16 回転ステージ 17 回転軸 20 X線用位相変調型ゾーンプレート 21 光透過部 1 Beam 2 Mask 3 Aperture 4 Transmitted Beam 5 Substrate 11 Light Source 12 Condenser Lens 13 Mask 14 Reduced Projection Lens 15 Wafer 16 Rotating Stage 17 Rotation Axis 20 Phase Modulating Zone Plate for X-ray 21 Light Transmitting Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透過部を一部に有するマスクをビームで
照射し、前記透過部を透過したビームにより被加工材を
加工する微細加工法において、 前記被加工材表面において前記ビームの照射量分布が生
じるように前記マスクと前記被加工材とを相対的に移動
させることを特徴とする微細加工法。
1. A microfabrication method for irradiating a mask partially having a transparent portion with a beam, and processing a workpiece with the beam transmitted through the transparent portion, wherein a dose distribution of the beam on the surface of the workpiece. A microfabrication method characterized in that the mask and the material to be processed are moved relative to each other so that the above phenomenon occurs.
JP5054022A 1993-03-15 1993-03-15 Fine working method Pending JPH06264272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054022A JPH06264272A (en) 1993-03-15 1993-03-15 Fine working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054022A JPH06264272A (en) 1993-03-15 1993-03-15 Fine working method

Publications (1)

Publication Number Publication Date
JPH06264272A true JPH06264272A (en) 1994-09-20

Family

ID=12958967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054022A Pending JPH06264272A (en) 1993-03-15 1993-03-15 Fine working method

Country Status (1)

Country Link
JP (1) JPH06264272A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018585A (en) * 1999-12-23 2002-01-22 Matsushita Electric Ind Co Ltd Method and device for drilling holes at pitch smaller than wave length by using laser beam
JP2003080524A (en) * 2001-09-12 2003-03-19 Nitto Denko Corp Method for manufacturing optical film and liquid crystal display device
US6694503B2 (en) 2000-02-03 2004-02-17 Gakkohojin Ritsumeikan Processing device and method of processing material with ultraviolet light or light of shorter wavelength than ultraviolet light
JP2004514285A (en) * 2000-11-17 2004-05-13 エムコア・コーポレイション Laser isolation die with tapered sidewalls to improve light extraction
EP1429368A2 (en) 2002-11-21 2004-06-16 FEI Company Fabrication of three dimensional structures
JP2015060134A (en) * 2013-09-20 2015-03-30 住友ベークライト株式会社 Manufacturing method of optical waveguide, optical waveguide, and reflection surface forming method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018585A (en) * 1999-12-23 2002-01-22 Matsushita Electric Ind Co Ltd Method and device for drilling holes at pitch smaller than wave length by using laser beam
US6694503B2 (en) 2000-02-03 2004-02-17 Gakkohojin Ritsumeikan Processing device and method of processing material with ultraviolet light or light of shorter wavelength than ultraviolet light
JP2004514285A (en) * 2000-11-17 2004-05-13 エムコア・コーポレイション Laser isolation die with tapered sidewalls to improve light extraction
JP2003080524A (en) * 2001-09-12 2003-03-19 Nitto Denko Corp Method for manufacturing optical film and liquid crystal display device
EP1429368A2 (en) 2002-11-21 2004-06-16 FEI Company Fabrication of three dimensional structures
US7160475B2 (en) * 2002-11-21 2007-01-09 Fei Company Fabrication of three dimensional structures
EP1429368A3 (en) * 2002-11-21 2009-09-02 FEI Company Fabrication of three dimensional structures
JP2015060134A (en) * 2013-09-20 2015-03-30 住友ベークライト株式会社 Manufacturing method of optical waveguide, optical waveguide, and reflection surface forming method

Similar Documents

Publication Publication Date Title
US4686162A (en) Optically structured filter and process for its production
US6262845B1 (en) Apparatus and method for generating partially coherent illumination for photolithography
KR101060324B1 (en) Systems and methods for fabricating optical microstructures using cylindrical platforms and scanned radiation beams
CN103080843B (en) For printing the method and apparatus of the periodic pattern with large depth of focus
EP2157480B1 (en) Exposure method and apparatus, and device manufacturing method
JP3399949B2 (en) Latent image detection by alignment device
TWI280460B (en) Apparatus for providing a pattern of polarization
David et al. Line width control using a defocused low voltage electron beam
JP3558296B2 (en) Method and apparatus for forming a dose profile for forming a structured surface
JP3442004B2 (en) Optical element manufacturing method
JP2986098B2 (en) Multiphase photomask using subwavelength structure
JP2001318217A (en) Blazed phase diffraction optical device using effective refractive index method and method for manufacturing the same
JPH06264272A (en) Fine working method
EP1517356B1 (en) Electron-beam lithography method and device
EP0309990B1 (en) Hologon and method of manufacturing a hologon
JP2002244273A (en) Distributed density mask and method for producing the same
JPH10113780A (en) Laser beam machine, laser beam machining method and diffraction grating
JPH06260383A (en) Exposure method
US9411249B2 (en) Differential dose and focus monitor
JPH05224398A (en) Photomask having variable transmissivity and production of optical parts using the same
JPS63187202A (en) Blazed holographic diffraction grating
US6507389B1 (en) Photolithography system having a frequency domain filtering mask
Khan Malek A review of microfabrication technologies: Application to X-ray optics
JPS59210403A (en) Manufacture of diffraction grating
JPH05326365A (en) Projection aligner