JPS59210290A - Pre-treatment device for air separator - Google Patents

Pre-treatment device for air separator

Info

Publication number
JPS59210290A
JPS59210290A JP59080173A JP8017384A JPS59210290A JP S59210290 A JPS59210290 A JP S59210290A JP 59080173 A JP59080173 A JP 59080173A JP 8017384 A JP8017384 A JP 8017384A JP S59210290 A JPS59210290 A JP S59210290A
Authority
JP
Japan
Prior art keywords
adsorption tower
valve
sent
adsorption
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59080173A
Other languages
Japanese (ja)
Other versions
JPS6161854B2 (en
Inventor
染矢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59080173A priority Critical patent/JPS59210290A/en
Publication of JPS59210290A publication Critical patent/JPS59210290A/en
Publication of JPS6161854B2 publication Critical patent/JPS6161854B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気分離装置の前処理装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pretreatment device for an air separation device.

〔発明の背景〕[Background of the invention]

空気分離装置の前処理として温度再生方式(以下TSA
という)を使用した場合は、吸着塔の再生を高温で行な
うため予冷する時間が必要となり、その時間だけ吸着時
間が長4なり、一般に切換時間は約4hrという長時間
を要していた。
Temperature regeneration method (hereinafter referred to as TSA) is used as pre-treatment for air separation equipment.
In the case of using the adsorption tower, regeneration of the adsorption tower is performed at a high temperature, which requires time for pre-cooling, which increases the adsorption time by that time, and generally requires a long switching time of about 4 hours.

これに対し、圧力再生方式(以下PEAという)の場合
は、加圧減圧のみで吸着、再生を行なうので吸着剤の亀
が少なく、一般に切換時間が士数分と短い。しかし、再
生時間確保のうえで加圧減圧の時間が1〜2分と短いた
め、短時間の加圧減圧で生じる圧力変動が問題となる。
On the other hand, in the case of a pressure regeneration method (hereinafter referred to as PEA), adsorption and regeneration are performed only by pressurization and depressurization, so there is less adsorbent leakage, and the switching time is generally as short as a few minutes. However, since the time for pressurization and depressurization is as short as 1 to 2 minutes in order to ensure regeneration time, pressure fluctuations caused by short-time pressurization and depressurization pose a problem.

上記従来のPSA吸着塔の作用を第1図、第2図により
説明する。圧縮機で約6Kq/aaに昇圧された原料空
気は導管l、切換弁2を経て吸着塔4番こ送られ、ここ
において炭酸ガスと水分が吸着除去された精製空気は逆
上弁6.導管10を経て深冷分離装置に送られる。
The operation of the conventional PSA adsorption tower described above will be explained with reference to FIGS. 1 and 2. The raw air that has been pressurized to approximately 6 Kq/aa by the compressor is sent to adsorption tower No. 4 via conduit 1 and switching valve 2, where the purified air from which carbon dioxide and moisture have been adsorbed and removed is sent to reverse valve 6. It is sent via conduit 10 to a cryogenic separator.

一方、吸着塔の再生は、深冷分離装置で製品ガスを分離
した残りの不純窒素ガスを再生ガスとして、低圧で流す
ことにより行なわれる。すなわち、再生ガスは導管11
.逆止弁9を経て吸着塔5に送られ、吸着塔5を再生し
たのち切換弁3を経て大気に放出される。
On the other hand, the adsorption tower is regenerated by flowing the impure nitrogen gas remaining after separating the product gas in a cryogenic separator as a regeneration gas at low pressure. That is, the regeneration gas is transferred to the conduit 11.
.. It is sent to the adsorption tower 5 through the check valve 9, and after regenerating the adsorption tower 5, it is discharged to the atmosphere through the switching valve 3.

一定時間後、切換弁2,3を切換え、原料空気を吸着塔
5に送り、炭酸ガスと水分を吸着除去し、逆止弁7.導
管10を経て深冷分離装置に送る。一方、再生ガスは導
管11.逆th弁8を経て吸着塔4に送られ、吸着塔の
再生を行なって切換弁3を経て大気に放出される。以下
この操作を繰り返し、連続的に吸着塔を働かせる。
After a certain period of time, the switching valves 2 and 3 are switched, the raw air is sent to the adsorption tower 5, where carbon dioxide and moisture are adsorbed and removed, and the check valve 7. It is sent via conduit 10 to a cryogenic separator. On the other hand, the regeneration gas is supplied to conduit 11. It is sent to the adsorption tower 4 through the reverse th valve 8, the adsorption tower is regenerated, and then it is discharged to the atmosphere through the switching valve 3. This operation is then repeated to make the adsorption tower work continuously.

PSA吸着塔4,5の操作サイクルを第2図に示す。吸
着塔4は約6Ky/clの加圧状態で炭酸ガスと水分の
吸着を行ない、切換前に同じく約6に9/cdに加圧さ
れている吸着塔5に切換えて吸着を行なう。この吸着塔
5の吸着中に、吸着塔4は大気圧まで減圧され、再生ガ
スにより再生を行ない、次の吸着のために約6 Kg/
cdまで加圧された後、吸着塔5と切換えられる。
The operating cycle of the PSA adsorption towers 4 and 5 is shown in FIG. Adsorption tower 4 adsorbs carbon dioxide and water under a pressurized state of about 6 Ky/cl, and before switching, adsorption is performed by switching to adsorption tower 5, which is also pressurized at about 6 to 9/cd. During the adsorption in the adsorption tower 5, the adsorption tower 4 is depressurized to atmospheric pressure, regenerated with regeneration gas, and approximately 6 Kg/
After being pressurized to cd, it is switched to the adsorption tower 5.

前述のPEA吸着塔の再生時間は、切換時間のうち加圧
減圧時間を除いた時間であるため、加圧減圧は短時間で
行なう必要がある。このため、短時間で大気圧から約6
KylcI&まで加圧を行なうので、原料空気はこの加
圧に要する空気を除いた分のみが精製空気として深冷分
離装置に送られる。
Since the regeneration time of the PEA adsorption tower described above is the switching time excluding the pressurization and depressurization time, the pressurization and depressurization must be performed in a short time. For this reason, in a short period of time, the atmospheric pressure
Since pressurization is performed up to KylcI&, only the raw air excluding the air required for this pressurization is sent to the cryogenic separator as purified air.

したがって、吸着塔加圧時の精製空気量の大巾な減少に
よる深冷分離装置の圧力低下が生じ、製品ガス圧力の低
下その他の問題が生じていた。
Therefore, when the adsorption tower is pressurized, the amount of purified air is greatly reduced, resulting in a pressure drop in the cryogenic separator, resulting in a drop in product gas pressure and other problems.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点にかんがみ、圧力変動を小さくして空
気分離装置全体の性能を向上することを目的としたもの
である。
In view of the above points, the present invention aims to improve the performance of the entire air separation device by reducing pressure fluctuations.

〔発明の概要〕[Summary of the invention]

本発明は、PSA吸着塔全体を加圧減圧すると圧力変化
が太き(なるので、これを分割して行なうことにより、
加圧に必要な空気量を減らし、圧力変動を小さ鳴したも
のである。
In the present invention, if the entire PSA adsorption tower is pressurized and depressurized, the pressure changes will be large, so by dividing this into
This reduces the amount of air required for pressurization and reduces pressure fluctuations.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第3図、第4図により説明する。圧縮
機で約61’g/dに昇圧された原料空気を導管l、切
換弁2を経て、吸着塔4に送った後、バルブ6を経て吸
着塔10に送る。この2個の吸着塔4.10において、
炭酸ガスと水分が吸着除去された精製空気を逆止弁12
.導管16を経て深冷分離装置に送る1゜ 一方、この際再生ガスは、導管17.逆止弁15を経て
吸着塔11に、さらにバルブ9を経て吸着塔5に送られ
、2個の吸着塔11.5の再生を行なった後切換弁3よ
り大気に放出される。
An embodiment of the present invention will be explained with reference to FIGS. 3 and 4. The raw air, which has been pressurized to about 61 g/d by the compressor, is sent to the adsorption tower 4 via the conduit 1 and the switching valve 2, and then sent to the adsorption tower 10 via the valve 6. In these two adsorption towers 4.10,
The purified air from which carbon dioxide and moisture have been adsorbed and removed is passed through the check valve 12.
.. 1° is sent to the cryogenic separator via conduit 16, while at this time the regeneration gas is sent to the cryogenic separator through conduit 17. It is sent to the adsorption tower 11 through the check valve 15, and then to the adsorption tower 5 through the valve 9, and after regenerating the two adsorption towers 11.5, is discharged to the atmosphere through the switching valve 3.

次の工程では、バルブ6.9を全閉、バルブ7゜8を全
開とし、原料空気は吸着塔4からバルブ8を経て吸着塔
11に送り、炭酸ガスと水分を吸着して逆止弁13.導
管16を経て深冷分離装置に送る。
In the next step, the valve 6.9 is fully closed and the valve 7.8 is fully opened, and the raw air is sent from the adsorption tower 4 through the valve 8 to the adsorption tower 11, where carbon dioxide and moisture are adsorbed and the air is passed through the check valve 13. .. It is sent via conduit 16 to a cryogenic separator.

この際再生ガスは、導管17.逆止弁14を経て吸着塔
10に、さらにバルブ7、吸着塔5.切換弁3を経て放
出される。
At this time, the regeneration gas is supplied to the conduit 17. The adsorption tower 10 passes through the check valve 14, and then the valve 7 and the adsorption tower 5. It is discharged via the switching valve 3.

次ノ工程では、バルブ6.9を全開、バルブ7゜8を全
閉とし、切換弁2と切換弁3を切換える。
In the next step, valve 6.9 is fully opened, valve 7.8 is fully closed, and switching valve 2 and switching valve 3 are switched.

原料空気は吸着塔5.バルブ9.吸着塔11と流れ、再
生ガスは、吸着塔10.バルブ6、吸着塔4を流れる。
The raw air is sent to the adsorption tower 5. Valve 9. The regeneration gas flows into the adsorption tower 10. It flows through the valve 6 and the adsorption tower 4.

さらに次の工程では、バルブ6、バルブ9は全閉、バル
ブ7.8を全開とし、原料空気は吸着塔5、バルブ7、
吸着塔10と流れ、再生ガスは吸着塔11.バルブ8.
吸着塔4と流れる。次の工程では、バルブ6.9は全開
、バルブ7.8を全閉として最初の工程に戻る。
Furthermore, in the next step, valves 6 and 9 are fully closed, valves 7.8 are fully opened, and the raw air is supplied to the adsorption tower 5, valve 7,
The regeneration gas flows into the adsorption tower 11. Valve 8.
It flows with the adsorption tower 4. In the next step, valve 6.9 is fully opened, valve 7.8 is fully closed, and the process returns to the first step.

上記吸着塔4. 5.10.11の操作サイクルな第4
図に示す。
The above adsorption tower 4. 5.10.11 operation cycle 4th
As shown in the figure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸着塔を分割して加圧減圧を行なうこ
とにより、個々の吸着塔の容量を減少できてそれに応じ
た空気量でよゆなり、したがって、深冷分離装置への精
製空気量の変動を小さくすることができる。
According to the present invention, by dividing the adsorption tower and performing pressurization and depressurization, it is possible to reduce the capacity of each adsorption tower and increase the amount of air accordingly. Fluctuations in quantity can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のPSA吸着塔のフローを示す系統図、第
2図はその操作サイクルを示す説明図、第3図は本発明
の前処理装置によるフローを示す系統図、第4図はその
操作サイクルを示す説明図である。 1、16.17・・・・・・導管、2,3・・・・・・
切換弁、4゜5.10.11・・・・・・吸着塔、6.
 7. 8. 9・・・・・・バルブ、12.13. 
14. 15・・・・・・逆止弁才1図 千2目 3r′3図 戚蔦塔5 F’F Nt (&in) 戚着堪n tかPjW (Mグに)
Fig. 1 is a system diagram showing the flow of a conventional PSA adsorption tower, Fig. 2 is an explanatory diagram showing its operation cycle, Fig. 3 is a system diagram showing the flow by the pretreatment device of the present invention, and Fig. 4 is a system diagram showing its operation cycle. It is an explanatory diagram showing an operation cycle. 1, 16.17... Conduit, 2, 3...
Switching valve, 4゜5.10.11... Adsorption tower, 6.
7. 8. 9...Valve, 12.13.
14. 15... Check valve 1 figure 1,000 2nd figure 3 r'3 figure Qi vine tower 5 F'F Nt (&in) Qi wear n t or PjW (to Mgu)

Claims (1)

【特許請求の範囲】[Claims] 1、 深冷で固化する大気中の炭酸ガスと水分を除去す
るための圧力再生方式の吸着塔を用いた装置において、
一系列の吸着塔を複数に分割し、各吸着塔間にバルブを
設けたことを特徴とする空気分離装置の前処理装置。
1. In an apparatus using a pressure regeneration type adsorption tower to remove carbon dioxide and moisture from the atmosphere that solidify by deep cooling,
A pretreatment device for an air separation device, characterized in that a series of adsorption towers is divided into a plurality of parts, and a valve is provided between each adsorption tower.
JP59080173A 1984-04-23 1984-04-23 Pre-treatment device for air separator Granted JPS59210290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080173A JPS59210290A (en) 1984-04-23 1984-04-23 Pre-treatment device for air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080173A JPS59210290A (en) 1984-04-23 1984-04-23 Pre-treatment device for air separator

Publications (2)

Publication Number Publication Date
JPS59210290A true JPS59210290A (en) 1984-11-28
JPS6161854B2 JPS6161854B2 (en) 1986-12-27

Family

ID=13710943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080173A Granted JPS59210290A (en) 1984-04-23 1984-04-23 Pre-treatment device for air separator

Country Status (1)

Country Link
JP (1) JPS59210290A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432773Y2 (en) * 1986-10-08 1992-08-06
JPH01110454U (en) * 1988-01-19 1989-07-26
JPH0277805U (en) * 1988-12-01 1990-06-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252268A (en) * 1963-04-01 1966-05-24 Exxon Research Engineering Co Gas separation by adsorption process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252268A (en) * 1963-04-01 1966-05-24 Exxon Research Engineering Co Gas separation by adsorption process

Also Published As

Publication number Publication date
JPS6161854B2 (en) 1986-12-27

Similar Documents

Publication Publication Date Title
EP0042159B1 (en) Air fractionation by pressure swing adsorption
US4233038A (en) Reactivation system for water-carbon dioxide adsorbers
JP2833595B2 (en) Pressure swing adsorption method
EP0266745A2 (en) Process for separating components of a gas stream
US3221476A (en) Adsorption-desorption method
US20090272264A1 (en) Compressed air producing method and producing plant
US3718006A (en) Process for selective absorption
CA1268716A (en) Enhanced pressure swing adsorption process and system
EP0756143B1 (en) Adsorption process with high and low pressure feed streams
CN113184850B (en) High-purity carbon dioxide gas purification method and device thereof
EP0004465A2 (en) Method of regenerating adsorbents
JPS59210290A (en) Pre-treatment device for air separator
CN215161044U (en) High-purity carbon dioxide gas purification device
US4522637A (en) Integrated adsorption system for the purification of separate crude gases
JPS6129768B2 (en)
JPH039392B2 (en)
JPH04371209A (en) Regeneration method for pressure difference regeneration type adsorption tower
JPS5998715A (en) Recovery of pressure in pressure swing adsorbing method
JPS6135889B2 (en)
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JPS638395B2 (en)
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPH0569566B2 (en)
JPS63143481A (en) Air separator using psa type adsorption tower
JPH0517135Y2 (en)