JPH04371209A - Regeneration method for pressure difference regeneration type adsorption tower - Google Patents

Regeneration method for pressure difference regeneration type adsorption tower

Info

Publication number
JPH04371209A
JPH04371209A JP3147098A JP14709891A JPH04371209A JP H04371209 A JPH04371209 A JP H04371209A JP 3147098 A JP3147098 A JP 3147098A JP 14709891 A JP14709891 A JP 14709891A JP H04371209 A JPH04371209 A JP H04371209A
Authority
JP
Japan
Prior art keywords
regeneration
adsorption tower
gas
preregeneration
waste gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3147098A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Furuya
充宏 古谷
Tadanao Kawatani
河谷 格尚
Shoji Koyama
小山 祥二
Yasuo Tasaka
田坂 靖夫
Toshiaki Yanagii
利昭 楊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP3147098A priority Critical patent/JPH04371209A/en
Publication of JPH04371209A publication Critical patent/JPH04371209A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To improve regeneration conditions of an adsorption tower, to decrease the required quantity of an adsorbent and to miniaturize the adsorbing tower by incorporating a preregeneration process using excess waste gas discharging to the atmosphere before a regeneration process in an adsorption tower changeover process. CONSTITUTION:After the greater part of waste gas is fed as regeneration gas for an adsorption tower 4 during the regeneration process through a regeneration gas inlet valve 19 to the adsorption tower 4 where moisture and carbon dioxide are adsorbed, it is discharged through a regeneration gas outlet valve 22 to the atmosphere. Here before a regeneration process, a preregeneration process is performed. The preregeneration is being previously regenerated extra by making flow excess waste gas discharged to the atmosphere when in the depressurized and pressurized states only for the time obtained by shortening the depressurization and pressurization time. That is to say, the depressurization and pressurization time in the adsorption tower changeover process is shortened to the utmost, causing the preregeneration time to be secured. And during the preregeneration, a discharge valve 29 discharging the excess waste gas is fully opened and the whole waste gas is used as regeneration gas and preregeneration gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鉄鋼,化学及び半導体
関連工場などに酸素や窒素などを供給する空気分離装置
の原料空気前処理装置に好適な圧力差再生方式吸着塔の
再生法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a pressure difference regeneration type adsorption tower suitable for a raw air pretreatment device of an air separation device that supplies oxygen, nitrogen, etc. to steel, chemical, and semiconductor related factories.

【0002】0002

【従来の技術】空気分離装置においては、極低温まで冷
却して空気中の酸素,窒素,アルゴン等を精留分離する
ため、低温で固化する水分と二酸化炭素を除去する必要
がある。この空気前処理方法として従来は可逆熱交換器
を用いる方式が主流であったが、近年では可逆熱交換器
の寿命の問題並びに、温度管理が困難なことや起動当初
においては清浄な空気が得られない等の問題から、吸着
剤を充填した吸着塔によって水分と二酸化炭素を吸着除
去する方式に切り替えられている。この吸着塔を用いた
空気前処理装置においても、その吸着剤再生方式により
温度差再生方式と圧力差再生方式とに大分されている。
2. Description of the Related Art In an air separation apparatus, since oxygen, nitrogen, argon, etc. in the air are separated by rectification by cooling the air to an extremely low temperature, it is necessary to remove moisture and carbon dioxide that solidify at low temperatures. Traditionally, the mainstream method for this air pretreatment has been to use a reversible heat exchanger, but in recent years there have been problems with the lifespan of the reversible heat exchanger, difficulties in temperature control, and the difficulty of obtaining clean air at the beginning of startup. Due to problems such as the inability to remove water and carbon dioxide, the system has been switched to a method in which moisture and carbon dioxide are adsorbed and removed using an adsorption tower filled with adsorbent. Air pretreatment devices using adsorption towers are also broadly divided into temperature difference regeneration methods and pressure difference regeneration methods, depending on the adsorbent regeneration method.

【0003】空気分離装置の空気前処理装置として利用
される圧力差再生方式吸着塔については、特公昭61−
29768号公報においても論じられており、また、同
公報の実施例(第5図)において3塔切替圧力差再生方
式吸着塔システムが述べられている。
Regarding the pressure difference regeneration type adsorption tower used as an air pretreatment device of an air separation device, Japanese Patent Publication No. 1986-
This is also discussed in Publication No. 29768, and a three-column switching pressure difference regeneration type adsorption tower system is described in an example (FIG. 5) of the same publication.

【0004】この3塔切替圧力差再生方式吸着塔システ
ムにおいては、図3のタイムチャートに示すように、各
塔がそれぞれ、吸着−脱圧−再生−加圧の工程を繰り返
すよう切替制御されており、また、いずれかの塔が必ず
吸着工程の状態で、他の2塔はその間に脱圧,再生,加
圧工程を順次行い、一定時間内に切り替えるよう制御さ
れていた。
[0004] In this three-column switching pressure differential regeneration adsorption column system, each column is switched and controlled to repeat the steps of adsorption, depressurization, regeneration, and pressurization, as shown in the time chart of FIG. In addition, one of the columns was always in the adsorption step, while the other two columns performed depressurization, regeneration, and pressurization steps in sequence, and were controlled to be switched within a certain period of time.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は、吸着剤再生工程時間はその吸着工程時間とほぼ同じ
となるよう制御されており、また、吸着時と再生時の圧
力の差を利用して再生を行う圧力差再生方式においては
、加熱した再生ガスによって再生を行う温度差再生方式
に較べると、単位吸着剤当りの吸着能力に限度があり、
吸着塔及び空気前処理装置自体が大きくなるという問題
があった。また、吸着剤再生ガス量を増加させることに
よって再生条件の向上を図り、吸着前の吸着能力を高め
ることはできるが、再生ガス流量を増加させることによ
って再生ガス(廃ガス)元圧が上昇するため、空気分離
装置本体の性能に影響を及ぼすことから限界があり、吸
着剤の再生に使用する再生ガス量以上の廃ガスは、大気
に放出(廃棄)させていた。
[Problems to be Solved by the Invention] In the above prior art, the adsorbent regeneration process time is controlled to be almost the same as the adsorption process time, and the difference in pressure during adsorption and regeneration is used. In the pressure difference regeneration method, which performs regeneration using heated regeneration gas, the adsorption capacity per unit adsorbent is limited compared to the temperature difference regeneration method, which performs regeneration using heated regeneration gas.
There was a problem that the adsorption tower and air pretreatment device themselves became large. In addition, by increasing the amount of adsorbent regeneration gas, it is possible to improve the regeneration conditions and increase the adsorption capacity before adsorption, but by increasing the regeneration gas flow rate, the source pressure of the regeneration gas (waste gas) increases. Therefore, there is a limit as it affects the performance of the air separation device itself, and waste gas exceeding the amount of regenerated gas used for regenerating the adsorbent is released (wasted) into the atmosphere.

【0006】本発明の目的は、従来の吸着塔再生条件を
より向上させて単位吸着剤当りの吸着能力を高め、これ
により吸着剤使用量の低減及び吸着塔の小型化を図るも
のである。
An object of the present invention is to further improve the conventional adsorption tower regeneration conditions to increase the adsorption capacity per unit adsorbent, thereby reducing the amount of adsorbent used and downsizing the adsorption tower.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、切替工程における再生工程の前に、従来は大気に放出
していた余剰廃ガスを用いた予再生工程を組み込む切替
制御方式とすることによって、従来の再生条件をより向
上させたものである。
[Means for solving the problem] In order to achieve the above object, a switching control method is adopted that incorporates a pre-regeneration process using surplus waste gas that was conventionally released into the atmosphere before the regeneration process in the switching process. This improves the conventional playback conditions.

【0008】[0008]

【作用】吸着塔切替工程における加圧,脱圧時間を極力
短くすることにより、予再生時間を確保する。そして、
予再生中は、余剰廃ガスを放出する放出弁は全閉となり
、廃ガスの全ては再生ガス及び予再生ガスとして使用さ
れる。
[Operation] Pre-regeneration time is ensured by minimizing the pressurization and depressurization time in the adsorption tower switching step. and,
During pre-regeneration, the release valve that releases excess waste gas is fully closed, and all of the waste gas is used as regeneration gas and pre-regeneration gas.

【0009】[0009]

【実施例】以下、本発明の一実施例を、図1,図2によ
って説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

【0010】図1は3塔切替圧力差再生方式吸着システ
ムの概略フローを示す。このフロー自体は本発明におい
ても従来と同様である。
FIG. 1 shows a schematic flowchart of a three-column switching pressure difference regeneration type adsorption system. This flow itself is the same in the present invention as in the prior art.

【0011】図1において、原料空気圧縮機1によって
所定の圧力まで昇圧された原料空気は、常温(約40℃
)で空気前処理装置に導かれ、入口弁11を経て吸着塔
2に挿入される。吸着塔2内で水分と二酸化炭素を吸着
除去された原料空気は、出口弁14を通り空気分離装置
の分離器本体に挿入される。
In FIG. 1, raw air compressed to a predetermined pressure by a raw air compressor 1 is kept at room temperature (approximately 40°C
) is led to the air pretreatment device and inserted into the adsorption tower 2 via the inlet valve 11. The raw air from which moisture and carbon dioxide have been adsorbed and removed in the adsorption tower 2 passes through the outlet valve 14 and is inserted into the separator body of the air separation device.

【0012】一方、吸着塔4は再生工程中になっている
。分離器本体において原料空気は精留分離され、製品と
して取り出される以外のガスは廃ガスとして配管41よ
り取り出される。この廃ガスの大半は、吸着塔再生ガス
として再生ガス入口弁19を通して吸着塔4に送入され
、水分と二酸化炭素の吸着を行った後、再生ガス出口弁
22を経て大気に排出される。尚、この吸着塔4の再生
に必要な再生ガス量以外の廃ガスは、放出弁29より配
管42を経て大気に放出され、再生ガス(廃ガス)圧力
を一定に保っている。
On the other hand, the adsorption tower 4 is in the process of regeneration. The raw air is subjected to rectification separation in the separator body, and gases other than those to be taken out as products are taken out from the pipe 41 as waste gas. Most of this waste gas is fed into the adsorption tower 4 as adsorption tower regeneration gas through the regeneration gas inlet valve 19, and after adsorbing moisture and carbon dioxide, is discharged to the atmosphere through the regeneration gas outlet valve 22. Incidentally, the waste gas other than the amount of regeneration gas necessary for regenerating the adsorption tower 4 is released to the atmosphere from the release valve 29 through the pipe 42, and the pressure of the regeneration gas (waste gas) is kept constant.

【0013】更に、この状態において吸着塔3は、次回
吸着工程に備えて加圧弁24より正常な空気が供給され
加圧工程が進行中である。
Further, in this state, the adsorption tower 3 is supplied with normal air from the pressurizing valve 24 in preparation for the next adsorption step, and the pressurizing step is in progress.

【0014】次に、図2によって本発明による切替制御
方法を述べる。従来の3塔切替圧力差再生方式吸着塔シ
ステムにおいては、図3で示すように、各塔がそれぞれ
吸着−脱圧−再生−加圧の工程を繰り返すよう切替制御
されており、本発明では上記再生工程の前に予再生を行
うことにある。ここで言う予再生とは、脱圧,加圧時間
を短縮することで得られた時間だけ、脱圧,加圧状態の
ときに大気中に排出されていた余剰ガス(廃ガス)を流
すことで余分に再生することを指すものである。
Next, the switching control method according to the present invention will be described with reference to FIG. In the conventional three-column switching pressure difference regeneration adsorption tower system, as shown in FIG. 3, each column is switched and controlled to repeat the steps of adsorption, depressurization, regeneration, and pressurization. The purpose is to perform pre-regeneration before the regeneration process. Pre-regeneration referred to here refers to the flow of surplus gas (waste gas) that was discharged into the atmosphere during depressurization and pressurization for the time obtained by shortening the depressurization and pressurization time. This refers to extra regeneration.

【0015】[0015]

【発明の効果】本発明により、吸着塔再生条件の向上が
図れ、必要吸着剤量の低減及び吸着塔の小型化ができる
According to the present invention, it is possible to improve the regeneration conditions of the adsorption tower, reduce the required amount of adsorbent, and downsize the adsorption tower.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明が適用される空気分離装置のフロー図で
ある。
FIG. 1 is a flow diagram of an air separation device to which the present invention is applied.

【図2】本発明方法の実施例のタイムチャートである。FIG. 2 is a time chart of an embodiment of the method of the present invention.

【図3】従来方法のタイムチャートである。FIG. 3 is a time chart of a conventional method.

【符号の説明】[Explanation of symbols]

1…原料空気圧縮機、2〜4…吸着塔、5…保冷槽、1
1〜13…吸着塔入口弁、14〜16…吸着塔出口弁、
17〜19…再生ガス入口弁、20〜22…再生ガス出
口弁、23〜25…加圧弁、26〜28…脱圧弁、29
…放出弁、41,42…配管、51…流量計。
1... Raw material air compressor, 2-4... Adsorption tower, 5... Cold storage tank, 1
1-13... Adsorption tower inlet valve, 14-16... Adsorption tower outlet valve,
17-19... Regeneration gas inlet valve, 20-22... Regeneration gas outlet valve, 23-25... Pressurization valve, 26-28... Depressurization valve, 29
...Discharge valve, 41, 42...Piping, 51...Flowmeter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空気分離装置の原料空気前処理などに複数
塔切替式で使用される圧力差再生方式吸着塔において、
再生工程に入る前に、予再生工程を加えるようにしたこ
とを特徴とする圧力差再生方式吸着塔の再生法。
Claim 1: In a pressure difference regeneration type adsorption tower used in a multi-column switching type for pre-treatment of raw air in an air separation device,
A method for regenerating a pressure difference regeneration type adsorption tower, characterized in that a pre-regeneration step is added before entering the regeneration step.
JP3147098A 1991-06-19 1991-06-19 Regeneration method for pressure difference regeneration type adsorption tower Pending JPH04371209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147098A JPH04371209A (en) 1991-06-19 1991-06-19 Regeneration method for pressure difference regeneration type adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147098A JPH04371209A (en) 1991-06-19 1991-06-19 Regeneration method for pressure difference regeneration type adsorption tower

Publications (1)

Publication Number Publication Date
JPH04371209A true JPH04371209A (en) 1992-12-24

Family

ID=15422449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147098A Pending JPH04371209A (en) 1991-06-19 1991-06-19 Regeneration method for pressure difference regeneration type adsorption tower

Country Status (1)

Country Link
JP (1) JPH04371209A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740956A3 (en) * 1995-05-04 1997-01-02 Graeff Roderich Wilhelm Process and apparatus for treatment of an adsorbent containing an agent, particularly moisture
KR100292555B1 (en) * 1999-01-21 2001-06-01 손재익 Pressure swing adsorption process for hydrogen purification with high productivity
US8454133B2 (en) 2011-03-18 2013-06-04 Ricoh Company, Ltd. Inkjet head, inkjet recording apparatus, liquid droplet ejecting apparatus, and image forming apparatus
US8602530B2 (en) 2011-02-22 2013-12-10 Ricoh Company, Ltd. Ink-jet head and ink-jet recording apparatus
US8777382B2 (en) 2011-02-10 2014-07-15 Ricoh Company, Ltd. Inkjet head and image forming device
US8919926B2 (en) 2011-03-07 2014-12-30 Ricoh Company, Ltd. Inkjet head and inkjet plotter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740956A3 (en) * 1995-05-04 1997-01-02 Graeff Roderich Wilhelm Process and apparatus for treatment of an adsorbent containing an agent, particularly moisture
US5659974A (en) * 1995-05-04 1997-08-26 Graeff; Roderich Wilhelm Method for regeneration of an adsorbent material containing moisture and apparatus therefor
KR100292555B1 (en) * 1999-01-21 2001-06-01 손재익 Pressure swing adsorption process for hydrogen purification with high productivity
US8777382B2 (en) 2011-02-10 2014-07-15 Ricoh Company, Ltd. Inkjet head and image forming device
US8602530B2 (en) 2011-02-22 2013-12-10 Ricoh Company, Ltd. Ink-jet head and ink-jet recording apparatus
US8919926B2 (en) 2011-03-07 2014-12-30 Ricoh Company, Ltd. Inkjet head and inkjet plotter
US8454133B2 (en) 2011-03-18 2013-06-04 Ricoh Company, Ltd. Inkjet head, inkjet recording apparatus, liquid droplet ejecting apparatus, and image forming apparatus

Similar Documents

Publication Publication Date Title
KR100192697B1 (en) Purification of gases using solid absorbents
US4026680A (en) Air separation by adsorption
KR101317618B1 (en) Improvements in cyclical swing adsorption processes
EP3352884B1 (en) Adsorbent regeneration method in a combined pressure and temperature swing adsorption process
US3973931A (en) Air separation by adsorption
EP1358924A2 (en) Purification of gas streams by adsorption
JP2000317244A (en) Method and device for purifying gas
EP2004306A1 (en) Compressed air producing method and producing plant
US10427090B2 (en) Control of swing adsorption process cycle time with ambient CO2 monitoring
JPH04371209A (en) Regeneration method for pressure difference regeneration type adsorption tower
JP4839114B2 (en) Liquefied carbon dioxide purification equipment
JP2691991B2 (en) Gas separation method
US20050229781A1 (en) Separation method and separation apparatus of isotopes from gaseous substances
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPH0584418A (en) Pretreatment of air separator and equipment therefor
JPS621767B2 (en)
JPS5895181A (en) Pre-treatment method for air separator
JPH09122432A (en) Gas separator using pressure swing adsorption process
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JP3369424B2 (en) Mixed gas separation method
JPS60139311A (en) Regeneration of adsorbing tower
JPS587329B2 (en) gas congo butsu no bunbetsu sochi
JPS63182016A (en) Separation of multi-component mixed gas
JPS6244973Y2 (en)