JPS6135889B2 - - Google Patents

Info

Publication number
JPS6135889B2
JPS6135889B2 JP55081465A JP8146580A JPS6135889B2 JP S6135889 B2 JPS6135889 B2 JP S6135889B2 JP 55081465 A JP55081465 A JP 55081465A JP 8146580 A JP8146580 A JP 8146580A JP S6135889 B2 JPS6135889 B2 JP S6135889B2
Authority
JP
Japan
Prior art keywords
adsorption tower
adsorption
impurities
regeneration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55081465A
Other languages
Japanese (ja)
Other versions
JPS5710076A (en
Inventor
Kazuo Someya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8146580A priority Critical patent/JPS5710076A/en
Publication of JPS5710076A publication Critical patent/JPS5710076A/en
Publication of JPS6135889B2 publication Critical patent/JPS6135889B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、空気分離装置の原料空気の前処理装
置として、加圧下で吸着し、減圧下で吸着する減
圧式吸着法(プレツシヤー・スウイング・アドソ
ウプシヨン法、以下PSA法と呼ぶ)を用いた吸着
塔の再生方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used as a pretreatment device for feed air of an air separation device, using a vacuum adsorption method (pressure swing adsorption method, hereinafter referred to as PSA method) that adsorbs under pressure and adsorbs under reduced pressure. The present invention relates to a method for regenerating an adsorption tower using an adsorption tower.

空気分離装置の前処理として、大気中のCO2
H2Oの除去にPSA法による吸着塔を用いた場合、
吸着塔の再生時に十分に不純物を脱着することが
最も重要である。
As a pre-treatment for air separation equipment, CO2 and CO2 in the atmosphere are
When using an adsorption tower using the PSA method to remove H 2 O,
It is most important to sufficiently desorb impurities during regeneration of the adsorption tower.

従来技術によるPSA法を用いた吸着塔の吸着、
再生操作を第1図によつて説明する。空気圧縮機
(図示せず)で所定圧力に圧縮された原料空気を
弁3Aを通して吸着塔1に送り、ここでアルミナ
ゲル、合成ゼオライト等の吸着剤によりH2O,
CO2等不純物を除去された後、弁3Bを通して空
気分離装置(図示せず)に供給される。一方、空
気分離装置において製品酸素、製品窒素を採取し
た残りのほぼ大気圧の不純窒素ガスが、弁6Bを
通して吸着塔2に再生ガスとして送られ、吸着時
との圧力差により吸着剤から不純物を脱着して吸
着塔2の再生を行ない、弁6Aを通して大気中に
放出される。しかして、吸着塔2の再生終了後吸
着塔1,2は切換使用され、連続的に原料空気中
の不純物は除去される。
Adsorption in an adsorption column using the PSA method according to conventional technology,
The reproduction operation will be explained with reference to FIG. Raw air compressed to a predetermined pressure by an air compressor (not shown) is sent to the adsorption tower 1 through the valve 3A, where it is converted into H 2 O,
After removing impurities such as CO 2 , it is supplied to an air separation device (not shown) through valve 3B. On the other hand, the remaining impure nitrogen gas at approximately atmospheric pressure from which product oxygen and product nitrogen have been collected in the air separation device is sent as regeneration gas to the adsorption tower 2 through valve 6B, and impurities are removed from the adsorbent due to the pressure difference from the time of adsorption. The adsorption tower 2 is desorbed and regenerated, and then released into the atmosphere through the valve 6A. After the regeneration of the adsorption tower 2 is completed, the adsorption towers 1 and 2 are used alternately, and impurities in the raw air are continuously removed.

第2図に吸着塔1,2内における不純物の分布
を示す。すなわち、吸着時には実線まで吸着さ
れ、再生時には点線まで吸着される。したがつ
て、これらの差となる斜線の部分が吸着塔の処理
量となる。
FIG. 2 shows the distribution of impurities in the adsorption towers 1 and 2. That is, during adsorption, up to the solid line is adsorbed, and during regeneration, up to the dotted line is adsorbed. Therefore, the shaded area that is the difference between these amounts is the throughput of the adsorption tower.

PSA法の場合は、再生を十分に行うかどうかで
吸着能力が決まり、吸着剤の吸着量は、その吸着
される不純物の濃度の関数で、濃度が高ければ吸
着量は増加し、低くなれば減少する。したがつ
て、再生時には再生ガス中の不純物の濃度は低い
程よいことになる。すなわち、再生ガスの量が多
ければ不純物の濃度も下り、吸着塔の再生も十分
に行なえることになる。
In the case of the PSA method, the adsorption capacity is determined by whether sufficient regeneration is performed, and the adsorption amount of the adsorbent is a function of the concentration of the impurity being adsorbed.If the concentration is high, the adsorption amount increases, and if the concentration is low, Decrease. Therefore, during regeneration, the lower the concentration of impurities in the regeneration gas, the better. In other words, if the amount of regeneration gas is large, the concentration of impurities will be reduced, and the adsorption tower can be regenerated sufficiently.

PSA法を空気分離装置の原料空気の前処理に使
用する場合、原料空気から製品ガスを採取した残
りのガス、原料空気の60〜70%のガスを再生ガス
として使用可能であるが、実際には再生ガスライ
ンの圧力損失を小さくするために、原料空気の40
%程度を再生に使用している。このため再生ガス
中の不純物の濃度が高く、吸着塔の特に下部の方
に残留する不純物の量が多いため、吸着塔として
の処理量が少くなり、非常に多くの吸着剤が必要
になる。
When using the PSA method to pre-treat feed air for air separation equipment, it is possible to use the remaining gas after extracting the product gas from the feed air, or 60-70% of the feed air, as regeneration gas, but in reality In order to reduce the pressure loss in the regeneration gas line, the feed air is
Approximately % is used for playback. For this reason, the concentration of impurities in the regeneration gas is high, and the amount of impurities remaining in the adsorption tower, especially in the lower part, is large, so the throughput of the adsorption tower is reduced, and a very large amount of adsorbent is required.

本発明は、PSA法による吸着塔の能力を決定す
る再生を効果的に行うことにより、吸着剤の必要
量を少なくし、より高性能な吸着塔を得ることを
目的としたものである。
The present invention aims to reduce the required amount of adsorbent and obtain a higher performance adsorption tower by effectively carrying out regeneration that determines the capacity of the adsorption tower using the PSA method.

本発明は、吸着塔を低濃度領域と高濃度領域に
分割して再生することにより、吸着塔の有効な処
理量を増加させるようにしたものである。
The present invention increases the effective throughput of the adsorption tower by dividing the adsorption tower into a low concentration region and a high concentration region for regeneration.

以下、本発明の一実施例を第3図によつて説明
する。第3図において、第1図と同部分は同符号
で示す。所定圧力に圧縮された原料空気は、弁3
Aを通して高濃度吸着塔9に送られ、吸着剤によ
り不純物を除去され、更に弁7Aを通して低濃度
吸着塔11にて残存する不純物を除去された後、
弁3Bを通して空気分離装置に供給される。一
方、空気分離装置からの再生ガスを弁6Bを通し
て低濃度吸着塔12に送ると同時に弁8Bを通し
て高濃度吸着塔10に送り、それぞれ吸着剤から
不純物を脱着して再生を行ない、弁6Aを通して
大気に放出される。しかして、高濃度吸着塔1
0、低濃度吸着塔12の再生終了後、高濃度吸着
塔9、低濃度吸着塔11と高濃度吸着塔10、高
濃度吸着塔12とは切換使用され、連続的に原料
空気中の不純物は除去される。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 3, the same parts as in FIG. 1 are indicated by the same symbols. The raw air compressed to a predetermined pressure is passed through the valve 3.
A is sent to the high concentration adsorption tower 9, where impurities are removed by an adsorbent, and remaining impurities are removed at the low concentration adsorption tower 11 through the valve 7A.
It is fed to the air separation device through valve 3B. On the other hand, the regeneration gas from the air separation device is sent to the low concentration adsorption tower 12 through valve 6B, and simultaneously sent to the high concentration adsorption tower 10 through valve 8B, where impurities are desorbed from the adsorbent and regenerated. is released. However, high concentration adsorption tower 1
0. After the regeneration of the low concentration adsorption tower 12 is completed, the high concentration adsorption tower 9, low concentration adsorption tower 11, high concentration adsorption tower 10, and high concentration adsorption tower 12 are switched and used, and impurities in the raw air are continuously removed. removed.

この場合、低濃度吸着塔11,12と高濃度吸
着塔9,10の再生時には、それぞれ並列に再生
ガスが送入されるため、不純物濃度が高い高濃度
吸着塔9,10の再生をより効果的に行なうこと
ができる。
In this case, when regenerating the low-concentration adsorption towers 11 and 12 and the high-concentration adsorption towers 9 and 10, the regeneration gas is fed in parallel, so that the regeneration of the high-concentration adsorption towers 9 and 10, which have high impurity concentrations, can be performed more effectively. It can be done.

第4図は高濃度吸着塔9,10と低濃度吸着塔
11,12内における不純物の分布を示したもの
で、吸着時には実線まで吸着され、再生時には点
線まで脱着される。したがつて、斜線で示す如く
高濃度吸着塔9,10の処理量が飛躍的に増大す
る。
FIG. 4 shows the distribution of impurities in the high concentration adsorption towers 9, 10 and the low concentration adsorption towers 11, 12. During adsorption, impurities are adsorbed up to the solid line, and during regeneration, the impurities are desorbed up to the dotted line. Therefore, the throughput of the high concentration adsorption towers 9 and 10 increases dramatically as shown by diagonal lines.

本発明は以上述べたように、吸着塔を高濃度吸
着塔、低濃度吸着塔に分割し、再生ガスを並列に
通して再生するようにしたものであるから、吸着
塔の処理量を増大させることができ、吸着剤の充
てん量を少なくして吸着塔を小型化することがで
きる。また、再生ガスを分割して並列に流すこと
により、圧力損失を少なくして、空気分離装置全
体としての性能を改善することができる。
As described above, in the present invention, the adsorption tower is divided into a high concentration adsorption tower and a low concentration adsorption tower, and the regeneration gas is passed through them in parallel for regeneration, so that the throughput of the adsorption tower can be increased. This allows the adsorption tower to be made smaller by reducing the amount of adsorbent packed. Furthermore, by dividing the regeneration gas and flowing it in parallel, pressure loss can be reduced and the performance of the air separation device as a whole can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による減圧式吸着法を用いた
吸着塔の系統図、第2図は同じく吸着塔内におけ
る不純物の分布図、第3図は本発明の実施した吸
着塔の一例を示す系統図、第4図は同じく吸着塔
内における不純物の分布図である。 1,2……吸着塔、3A,3B,4A,4B,
5A,5B,6A,6B,7A,7B,8A,8
B……弁、9,10……高濃度吸着塔、11,1
2……低濃度吸着塔。
Fig. 1 is a system diagram of an adsorption tower using a vacuum adsorption method according to the prior art, Fig. 2 is a distribution diagram of impurities in the adsorption tower, and Fig. 3 is a system diagram showing an example of an adsorption tower implemented in the present invention. Similarly, FIG. 4 is a distribution diagram of impurities in the adsorption tower. 1, 2...Adsorption tower, 3A, 3B, 4A, 4B,
5A, 5B, 6A, 6B, 7A, 7B, 8A, 8
B...Valve, 9,10...High concentration adsorption tower, 11,1
2...Low concentration adsorption tower.

Claims (1)

【特許請求の範囲】[Claims] 1 空気分離装置の原料空気の前処理装置とし
て、加圧下で原料空気中の不純物を吸着し、減圧
下で再生ガスにより不純物を脱着する減圧式吸着
法を用いた吸着塔において、吸着時高濃度吸着塔
と低濃度吸着塔に原料空気を直列に送入し、脱着
時前記高濃度吸着塔と低濃度吸着塔に再生ガスを
並列に送入することを特徴とする吸着塔の再生方
法。
1 As a pre-treatment device for the feed air of an air separation device, an adsorption tower using a vacuum adsorption method that adsorbs impurities in the feed air under pressure and desorbs them with regeneration gas under reduced pressure is used to prevent high concentrations during adsorption. A method for regenerating an adsorption tower, characterized in that feed air is fed in series to an adsorption tower and a low concentration adsorption tower, and regeneration gas is fed in parallel to the high concentration adsorption tower and the low concentration adsorption tower during desorption.
JP8146580A 1980-06-18 1980-06-18 Regenerator of adsorption tower Granted JPS5710076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8146580A JPS5710076A (en) 1980-06-18 1980-06-18 Regenerator of adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8146580A JPS5710076A (en) 1980-06-18 1980-06-18 Regenerator of adsorption tower

Publications (2)

Publication Number Publication Date
JPS5710076A JPS5710076A (en) 1982-01-19
JPS6135889B2 true JPS6135889B2 (en) 1986-08-15

Family

ID=13747141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8146580A Granted JPS5710076A (en) 1980-06-18 1980-06-18 Regenerator of adsorption tower

Country Status (1)

Country Link
JP (1) JPS5710076A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607920A (en) * 1983-06-29 1985-01-16 Hitachi Ltd Separation of mixed gas and its apparatus
JPH01246787A (en) * 1988-03-28 1989-10-02 Toshiba Corp Cooking apparatus
JPH01302688A (en) * 1988-05-30 1989-12-06 Toshiba Corp Cooking apparatus
JPH05221A (en) * 1991-06-24 1993-01-08 Kanebo Ltd Separator for gaseous mixture

Also Published As

Publication number Publication date
JPS5710076A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US4129424A (en) Gas separation
EP0699467B1 (en) Simultaneous step pressure swing adsorption process
JP3902416B2 (en) Gas separation method
US6017382A (en) Method of processing semiconductor manufacturing exhaust gases
JPS6245315A (en) Pressure swing adsorbing method
JPH0490819A (en) Air separation method
JPS6135889B2 (en)
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
JPH10272332A (en) Gas separation device and its operation method
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JPH0624603B2 (en) Method for separating and recovering nitrogen and oxygen in air
JPS6161854B2 (en)
JPS621767B2 (en)
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPS62273025A (en) Separation of gaseous mixture
JP3025653B2 (en) Improved pressure swing adsorption method
JPS63232819A (en) Multilayer adsorptive separation
JPH0693968B2 (en) Pressure swing adsorption device for carbon dioxide recovery from source gas containing nitrogen oxides
JPS6259041B2 (en)
JPS6129769B2 (en)
JPH1157375A (en) Separation of gas
JPH0226610A (en) Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JPH0240366B2 (en)
JPH10277343A (en) Gas separation method