JPH1157375A - Separation of gas - Google Patents

Separation of gas

Info

Publication number
JPH1157375A
JPH1157375A JP9218761A JP21876197A JPH1157375A JP H1157375 A JPH1157375 A JP H1157375A JP 9218761 A JP9218761 A JP 9218761A JP 21876197 A JP21876197 A JP 21876197A JP H1157375 A JPH1157375 A JP H1157375A
Authority
JP
Japan
Prior art keywords
gas
tower
pressure
column
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9218761A
Other languages
Japanese (ja)
Other versions
JP3889125B2 (en
Inventor
Masahito Kawai
雅人 川井
Teruji Kaneko
輝二 金子
Kazuhiro Hishinuma
一弘 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP21876197A priority Critical patent/JP3889125B2/en
Publication of JPH1157375A publication Critical patent/JPH1157375A/en
Application granted granted Critical
Publication of JP3889125B2 publication Critical patent/JP3889125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of gas separation by improving a process of a PSA method and particularly to efficiently generate an oxygen enriched gas by air separation. SOLUTION: The adsorption process in an adsorption column A and a purge operation of an adsorption column B are carried out. Next, an upper part pressure uniformalizing operation and an evacuating and exhausting operation of the adsorption column A are carried out. A low pressure regenerating operation of the adsorption column A and a product pressurizing and raw material pressurizing in the adsorption column B are carried out and at the same time, a low pressure regenerating operation of the adsorption column A and a raw material pressurizing in the adsorption column B are carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス分離方法に関
し、詳しくは、酸素と窒素とを含む原料ガス、特に空気
を原料ガスとして窒素を吸着分離することにより、酸素
に富むガスを製品ガスとして得る方法に好適に適用でき
るガス分離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas separation method and, more particularly, to a raw material gas containing oxygen and nitrogen, in particular, an oxygen-rich gas as a product gas by adsorbing and separating nitrogen using air as a raw material gas. The present invention relates to a gas separation method suitably applicable to a method for obtaining the gas.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】圧力変
動吸着式ガス分離方法(PSA法)による酸素に富むガ
スの製造は、例えば、空気等の酸素含有ガスから、酸素
以外の成分を優先的に吸着する吸着剤を用いて、酸素を
濃縮分離する方法であって、工業的に広く行われてい
る。
2. Description of the Related Art In the production of an oxygen-rich gas by a pressure fluctuation adsorption type gas separation method (PSA method), for example, components other than oxygen are preferentially produced from an oxygen-containing gas such as air. This is a method for concentrating and separating oxygen by using an adsorbent that adsorbs on water, and is widely used industrially.

【0003】PSA法は、酸素を含有する原料ガスを相
対的に高い圧力で吸着剤と接触させ、主として酸素以外
の成分を優先的に吸着させて、比較的吸着し難いガスで
ある酸素を製品ガスとして取出す吸着工程と、主として
酸素以外の成分を吸着した吸着剤の雰囲気を吸着圧力よ
り相対的に低い圧力(大気圧あるいは大気圧以下)に減
圧し、酸素以外の成分を吸着剤から脱着させて吸着剤を
再生する再生工程とを主要な工程として繰返す方法であ
る。一般的には、この吸着工程及び再生工程に、低い圧
力にある吸着塔内の圧力を吸着圧力近くまで回復させる
加圧工程が追加される。PSA法における操作は、この
ように、2乃至3の主要な工程で成立っているため、複
数の吸着塔を用いて製品ガスを連続的に発生することが
普通である。
[0003] In the PSA method, a raw material gas containing oxygen is brought into contact with an adsorbent at a relatively high pressure, and components other than oxygen are mainly adsorbed preferentially. In the adsorption step of extracting as a gas, the atmosphere of the adsorbent that mainly adsorbs components other than oxygen is reduced to a pressure lower than the adsorption pressure (atmospheric pressure or below atmospheric pressure) to desorb components other than oxygen from the adsorbent. And a regeneration step of regenerating the adsorbent as a main step. In general, a pressure step for restoring the pressure in the adsorption tower at a low pressure to near the adsorption pressure is added to the adsorption step and the regeneration step. Since the operation in the PSA method is performed in two or three main steps as described above, it is usual that the product gas is continuously generated using a plurality of adsorption towers.

【0004】また、PSA法により酸素を発生させる場
合は、窒素を優先的に吸着する吸着剤として、Ca−A
型,Na−X型,Ca−X型、あるいはモルデナイト等
のゼオライトが広く使用されている。
When oxygen is generated by the PSA method, Ca-A is used as an adsorbent for preferentially adsorbing nitrogen.
Zeolites of the type, Na-X type, Ca-X type, or mordenite are widely used.

【0005】上述のようなPSA法の性能を向上させる
ため、従来から様々な提案がなされている。例えば、そ
の一つとして、吸着工程終了時の吸着塔内に残る比較的
濃縮された製品ガスを、再生工程を終了した吸着塔に回
収して製品回収率を向上させる均圧操作がある。特開平
5−192527号公報には、均圧操作を2段階に分
け、吸着塔の上部同士を連結して行う均圧と、吸着塔の
上部と他の吸着塔の下部とを連結して行う均圧とを連続
的に行う方法が開示されている。しかし、そこで示され
た実施例は、いずれも再生を大気圧で行う、いわゆる大
気圧再生法であって、近年広く行われるようになった、
いわゆる真空再生法については述べられていない。
Various proposals have been made in the past to improve the performance of the PSA method as described above. For example, as one of them, there is a pressure equalizing operation for recovering the relatively concentrated product gas remaining in the adsorption tower at the end of the adsorption step to the adsorption tower after the regeneration step and improving the product recovery rate. Japanese Patent Application Laid-Open No. 5-192527 discloses that the equalizing operation is divided into two stages and the equalizing operation is performed by connecting the upper parts of the adsorption towers, and the equalizing operation is performed by connecting the upper part of the adsorption tower and the lower part of another adsorption tower. A method of continuously performing equalization is disclosed. However, the embodiments shown therein are all so-called atmospheric pressure regeneration methods in which regeneration is performed at atmospheric pressure, and have been widely performed in recent years.
No mention is made of the so-called vacuum regeneration method.

【0006】また、特開平1−236914号公報は、
真空再生方法に関するものであり、吸着工程終了時に塔
内に残留したガスを、主として他の吸着塔の再生工程時
にパージガスとして用いる方法を開示している。この方
法では、他の吸着塔からのガス回収を短時間行った後、
原料ガスの供給と製品ガスの逆戻しとにより再加圧を行
うようにしている。しかし、製品ガスを再加圧に使用す
る場合は、製品ガスの圧力が変動するので、それを防ぐ
ために製品槽の大型化を招くものと推察される。また、
原料空気による加圧は、比較的低い圧力にある吸着塔に
対して行われるため、空気が急激に流入して不純物成分
である窒素が吸着塔の製品出口端方向に流れ込むおそれ
がある。このような操作は、吸着装置の性能を低下させ
る要因となる。
[0006] Japanese Patent Application Laid-Open No. 1-236914 discloses that
It relates to a vacuum regeneration method, and discloses a method in which a gas remaining in a column at the end of an adsorption step is mainly used as a purge gas during a regeneration step of another adsorption column. In this method, after recovering gas from other adsorption towers for a short time,
Re-pressurization is performed by supplying the raw material gas and returning the product gas back. However, when the product gas is used for re-pressurization, the pressure of the product gas fluctuates, and it is presumed that the product tank is enlarged in order to prevent the fluctuation. Also,
Since the pressurization with the raw air is performed on the adsorption tower at a relatively low pressure, there is a possibility that air may rapidly flow in and nitrogen, which is an impurity component, may flow toward the product outlet end of the adsorption tower. Such an operation causes a decrease in the performance of the adsorption device.

【0007】PSA法の性能を向上させるために、様々
な工夫がなされており、それなりの効果はあるが、それ
らは必ずしも十分に満足できるものではなく、なお一層
の改善が強く望まれている。
Various attempts have been made to improve the performance of the PSA method, and although there are some effects, they are not always sufficiently satisfactory, and further improvement is strongly desired.

【0008】そこで本発明は、上記事情に鑑み、PSA
法のプロセスを改善し、ガス分離の効率を向上させるこ
と、なかでも、空気を分離して酸素に富むガスを効率よ
く発生させるのに好適なガス分離方法を提供することを
目的としている。
In view of the above circumstances, the present invention provides a PSA
It is an object of the present invention to improve the process of the method and improve the efficiency of gas separation, and in particular, to provide a gas separation method suitable for separating air to efficiently generate an oxygen-rich gas.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のガス分離方法における第1の構成は、酸素
と窒素とを含む原料ガス中の窒素を優先的に吸着する吸
着剤を充填した2塔の吸着塔を用いて圧力変動吸着分離
法により酸素富化ガスを製品ガスとして回収するガス分
離方法であって、原料供給端から原料ガスが供給されて
吸着工程を行っている第1の塔の製品出口端から製品ガ
スを導出して製品ガス貯槽に供給しながら、該製品ガス
の一部を第2の塔の製品出口端から塔内に導入しつつ原
料供給端から塔内のガスを放出するパージ排気を行うこ
とにより吸着剤の再生工程を行う工程と、上記工程終了
後の第1の塔と第2の塔とを製品出口端で連通させ、吸
着工程を終了して塔内に圧力を保持した第1の塔から再
生工程を終了して低い圧力にある第2の塔へガスを回収
するとともに、第1の塔の原料供給端から系外へガスを
放出する工程と、上記工程終了後の第1の塔から引続き
ガスを系外に放出して塔内の圧力を下げることにより、
窒素を吸着した吸着剤から窒素ガスを脱着させるととも
に、第2の塔においては、製品ガス貯槽に貯えられた製
品ガスを第2の塔の製品出口端から導入しながら、同時
に原料供給端から原料ガスを供給して塔内の圧力を上昇
させる工程と、上記工程終了後の第1の塔から引続きガ
スを系外に放出して塔内の圧力を更に下げることによ
り、窒素を吸着した吸着剤から窒素ガスを脱着させると
ともに、第2の塔においては、原料供給端から原料ガス
を供給して塔内の圧力を上昇させる工程と、の各工程
を、第1及び第2の吸着塔を順次切換えて連続的に行う
ことにより、製品ガスを継続して発生することを特徴と
している。
Means for Solving the Problems To achieve the above object, a first configuration of the gas separation method of the present invention is a method of charging an adsorbent which preferentially adsorbs nitrogen in a source gas containing oxygen and nitrogen. A gas separation method for recovering an oxygen-enriched gas as a product gas by a pressure fluctuation adsorption separation method using the two adsorption towers described above, wherein a raw material gas is supplied from a raw material supply end to perform an adsorption step. While the product gas is led out from the product outlet end of the second tower and supplied to the product gas storage tank, a part of the product gas is introduced into the tower from the product outlet end of the second tower while the product gas is introduced into the tower from the raw material supply end. A step of performing a regeneration step of the adsorbent by performing a purge evacuation for releasing gas, and communicating the first tower and the second tower after the above-mentioned step at the product outlet end. When the regeneration step is completed from the first tower with the pressure Recovering the gas into the second column at a pressure and releasing the gas from the raw material supply end of the first column to the outside of the system, and continuously releasing the gas from the first column after the above process to the outside of the system By lowering the pressure inside the tower
In the second tower, the product gas stored in the product gas storage tank is introduced from the product outlet end of the second tower while the nitrogen gas is desorbed from the adsorbent that has adsorbed nitrogen. A step of supplying gas to increase the pressure in the column, and further releasing gas from the first column after the above step to further lower the pressure in the column, thereby adsorbing the nitrogen. In the second tower, a step of supplying a raw material gas from the raw material supply end to increase the pressure in the tower is performed in the second column, and the first and second adsorption towers are sequentially performed. It is characterized in that the product gas is continuously generated by performing the switching continuously.

【0010】また、第2の構成は、酸素と窒素とを含む
原料ガス中の窒素を優先的に吸着する吸着剤を充填した
2塔の吸着塔を用いて圧力変動吸着分離法により酸素富
化ガスを製品ガスとして回収するガス分離方法であっ
て、原料供給端から原料ガスが供給されて吸着工程を行
っている第1の塔の製品出口端から製品ガスを導出して
製品ガス貯槽に供給しながら、該製品ガスの一部を第2
の塔の製品出口端から塔内に導入しつつ原料供給端から
塔内のガスを放出するパージ排気を行うことにより吸着
剤の再生工程を行う工程と、上記工程終了後の第1の塔
と第2の塔とを製品出口端で連通させ、吸着工程を終了
して塔内に圧力を保持した第1の塔から再生工程を終了
して低い圧力にある第2の塔へガスを回収した後、第1
の塔の原料供給端から系外へガスを放出する工程と、上
記工程終了後の第1の塔から引続きガスを系外に放出し
て塔内の圧力を下げることにより、窒素を吸着した吸着
剤から窒素ガスを脱着させるとともに、第2の塔におい
ては、製品ガス貯槽に貯えられた製品ガスを第2の塔の
製品出口端から導入しながら、同時に原料供給端から原
料ガスを供給して塔内の圧力を上昇させる工程と、上記
工程終了後の第1の塔から引続きガスを系外に放出して
塔内の圧力を更に下げることにより、窒素を吸着した吸
着剤から窒素ガスを脱着させるとともに、第2の塔にお
いては、原料供給端から原料ガスを供給して塔内の圧力
を上昇させる工程と、の各工程を、第1及び第2の吸着
塔を順次切換えて連続的に行うことにより、製品ガスを
継続して発生することを特徴としている。
[0010] The second configuration is to enrich oxygen by a pressure fluctuation adsorption separation method using two adsorption columns packed with an adsorbent that preferentially adsorbs nitrogen in a source gas containing oxygen and nitrogen. A gas separation method for recovering a gas as a product gas, wherein the product gas is supplied from a raw material supply end and the product gas is derived from a product outlet end of a first tower performing an adsorption process and supplied to a product gas storage tank. While a part of the product gas is
A step of performing a regeneration step of the adsorbent by performing a purge exhaust that releases gas in the tower from a raw material supply end while introducing the gas into the tower from a product outlet end of the tower, and a first tower after the above-described step. The second column was communicated with the product outlet end, and the gas was recovered from the first column, in which the adsorption step was completed and the pressure was maintained in the column, to the second column at a low pressure after the regeneration step was completed. Later, the first
A step of releasing gas from the raw material supply end of the column to the outside of the system, and a step of continuously releasing gas from the first column after the above-mentioned step to reduce the pressure in the column, thereby adsorbing nitrogen. While desorbing nitrogen gas from the agent, in the second tower, the product gas stored in the product gas storage tank is introduced from the product outlet end of the second tower, and at the same time, the raw material gas is supplied from the raw material supply end. The step of increasing the pressure in the column, and continuously releasing gas from the first column after the above-mentioned step to further reduce the pressure in the column, thereby desorbing nitrogen gas from the adsorbent that has adsorbed nitrogen. In the second column, the steps of supplying the source gas from the source end and increasing the pressure in the column are continuously performed by sequentially switching the first and second adsorption towers. By doing so, product gas is continuously generated It is characterized by a door.

【0011】また、第3の構成は、上記第1,第2の構
成において、前記吸着塔への原料ガスの供給量を流量制
御手段により制御することを特徴としている。
A third configuration is characterized in that, in the first and second configurations, the supply amount of the raw material gas to the adsorption tower is controlled by a flow control unit.

【0012】[0012]

【発明の実施の形態】図1は、本発明のガス分離方法を
実施するための圧力変動吸着式ガス分離装置(PSA装
置)の一例を示す系統図、図2は、本発明の各工程にお
けるガスの流れを説明するための概念図で、各機器間を
接続する矢印線は、矢印の方向にガスが流れていること
を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an example of a pressure fluctuation adsorption type gas separation apparatus (PSA apparatus) for carrying out the gas separation method of the present invention, and FIG. In the conceptual diagram for explaining the gas flow, an arrow line connecting between the devices indicates that the gas flows in the direction of the arrow.

【0013】本形態例に示すPSA装置は、窒素を優先
的に吸着する吸着剤を使用し、酸素を含有する混合ガ
ス、具体的には、空気を原料として酸素に富んだガスを
製品として得るためのものであって、2塔の吸着塔A,
Bを所定の工程に従って運転することにより、高い酸素
回収率と酸素発生量とを得るものである。各吸着塔A,
Bには、原料空気中の酸素以外の成分、特に窒素を優先
的に吸着する吸着剤として、Ca−A型,Na−X型,
Ca−X型,モルデナイト、あるいはこれらに他のイオ
ンを単独又は複数組み合わせて導入したゼオライトが充
填されている。両吸着塔の原料供給端には、原料空気圧
縮機1から原料空気流量調整弁2を経て供給される原料
空気を導入するための入口弁3a,3bと、塔内のガス
を排気するための排気弁4a,4bとが設けられ、製品
出口端には、製品ガスを導出する出口弁5a,5bと、
均圧及びパージの際に塔内にガスを導入するためのパー
ジガス導入弁6a,6bとが設けられている。
The PSA apparatus shown in this embodiment uses an adsorbent that preferentially adsorbs nitrogen, and obtains a mixed gas containing oxygen, specifically, a gas rich in oxygen from air as a product. And two adsorption towers A,
By operating B according to a predetermined process, a high oxygen recovery rate and a high oxygen generation amount are obtained. Each adsorption tower A,
B has a Ca-A type, a Na-X type, an adsorbent which preferentially adsorbs components other than oxygen in the raw material air, particularly nitrogen.
It is filled with Ca-X type, mordenite, or a zeolite into which other ions are introduced alone or in combination. At the raw material supply ends of both adsorption towers, inlet valves 3a and 3b for introducing raw air supplied from the raw air compressor 1 via the raw air flow regulating valve 2, and for exhausting gas in the tower. Exhaust valves 4a and 4b are provided, and at the product outlet end, outlet valves 5a and 5b for discharging product gas,
Purge gas introduction valves 6a and 6b for introducing gas into the tower at the time of equalizing and purging are provided.

【0014】さらに、前記排気弁4a,4bには、真空
ポンプ7と放出弁8とが接続されており、出口弁5a,
5bには、製品ガス貯槽9が接続されるとともに、吸着
塔にパージガスを供給するためのパージガス供給弁1
0,パージガス流量調整弁11及び流量計12を有する
パージライン13が接続されている。また、原料空気圧
縮機1にバイパス弁1aが、製品貯槽9には製品供給弁
9aが設けられており、原料空気流量調整弁2には、制
御器14との間に弁開度制御信号14aが接続されてい
る。
Further, a vacuum pump 7 and a discharge valve 8 are connected to the exhaust valves 4a and 4b, and the outlet valves 5a and 4b are connected to the exhaust valves 4a and 4b.
5b is connected to a product gas storage tank 9 and a purge gas supply valve 1 for supplying a purge gas to the adsorption tower.
0, a purge line 13 having a purge gas flow control valve 11 and a flow meter 12 is connected. The raw material air compressor 1 is provided with a bypass valve 1a, the product storage tank 9 is provided with a product supply valve 9a, and the raw material air flow regulating valve 2 is provided with a valve opening control signal 14a between the raw material air compressor 1 and the controller 14. Is connected.

【0015】次に図2を参照しながら、上記PSA装置
による本発明方法の第1形態例を説明する。なお、各工
程において、記載の無い弁は基本的に閉じた状態になっ
ており、流量調整弁は、特に説明が無い限り所定の開度
に開いた状態になっているものとする。また、図2では
弁の位置を黒丸で略記する。
Next, a first embodiment of the method of the present invention using the PSA apparatus will be described with reference to FIG. In each step, valves not described are basically in a closed state, and the flow control valve is in an open state at a predetermined opening degree unless otherwise specified. In FIG. 2, the position of the valve is abbreviated as a black circle.

【0016】まず、工程1は、吸着塔A(第1の塔)が
吸着工程を行っており、吸着塔B(第2の塔)が再生工
程最終段階のパージ操作を行っている工程である。吸着
工程中の吸着塔Aでは、原料空気圧縮機1で所定圧力に
圧縮された原料空気が原料空気流量調整弁2及び入口弁
3aを経て原料供給端から吸着塔A内に供給され、塔内
に充填された吸着剤により原料空気中の窒素が優先的に
吸着除去され、製品出口端に向かって酸素が濃縮され
る。濃縮した酸素は、出口弁5aから製品ガス貯槽9に
供給されて該製品ガス貯槽9を充圧するとともに、その
一部が製品供給弁9aを経て使用先に送られる。
First, step 1 is a step in which the adsorption tower A (first tower) is performing an adsorption step and the adsorption tower B (second tower) is performing a purging operation at the final stage of the regeneration step. . In the adsorption tower A during the adsorption step, the raw air compressed to a predetermined pressure by the raw air compressor 1 is supplied from the raw material supply end into the adsorption tower A via the raw air flow control valve 2 and the inlet valve 3a. Nitrogen in the raw material air is preferentially adsorbed and removed by the adsorbent charged in the, and oxygen is concentrated toward the product outlet end. The concentrated oxygen is supplied from the outlet valve 5a to the product gas storage tank 9 to pressurize the product gas storage tank 9, and a part of the oxygen is sent to the destination through the product supply valve 9a.

【0017】一方、吸着塔Bでは、原料供給端から排気
弁4bを介して塔内のガス(脱着ガス)が真空ポンプ7
に吸引されて大気に放出されるとともに、製品ガスの一
部が、パージガス供給弁10及びパージガス導入弁6b
を経て吸着塔Bの製品出口端から塔内に逆方向に導入さ
れる。このように、酸素に富んだガス、すなわち、窒素
分が少ないガスを製品出口端から塔内に導入しつつ原料
供給端から塔内のガスを放出するパージ排気を行うこと
により、吸着剤に吸着されている窒素の脱着が促進さ
れ、この工程を行うことにより吸着塔B内の吸着剤の再
生が完了する。
On the other hand, in the adsorption tower B, the gas (desorption gas) in the tower is supplied from the raw material supply end via the exhaust valve 4b to the vacuum pump 7
And a part of the product gas is supplied to the purge gas supply valve 10 and the purge gas introduction valve 6b.
Through the product outlet end of the adsorption tower B into the tower in the opposite direction. In this way, by performing a purge exhaust in which a gas rich in oxygen, that is, a gas having a low nitrogen content is introduced into the tower from the product outlet end and the gas in the tower is released from the raw material supply end, the gas is adsorbed by the adsorbent. This desorption of nitrogen is promoted, and by performing this step, regeneration of the adsorbent in the adsorption tower B is completed.

【0018】前記吸着塔Aの吸着工程において、窒素の
吸着前線が製品出口端に向かって進行し、製品ガス濃度
が決められた値より低下し始めると、工程1から工程2
に切換えられる。この工程2は、吸着塔Aが減圧操作を
行い、吸着塔Bが加圧操作を開始する工程である。この
工程2では、吸着工程を終了して塔内に圧力を保持した
吸着塔Aの製品出口端と、再生工程を終了して低い圧力
にある吸着塔Bの製品出口端とをパージガス導入弁6
a,6bを介して連通させ、吸着塔A内のガスを吸着塔
B内に回収していわゆる上部均圧操作を行うとともに、
吸着塔Aの排気弁4aから塔内のガスを系外に放出す
る。これにより、吸着塔Bは加圧され、吸着塔Aは減圧
される。このように上部均圧を行うと同時に、吸着塔A
の原料供給端から塔内のガスを放出することにより、原
料供給端側の窒素分に富むガスが、吸着塔Aから回収側
の吸着塔Bに流入することを防止でき、酸素の回収率や
発生量が向上する。
In the adsorption step of the adsorption tower A, when the nitrogen adsorption front advances toward the product outlet end and the product gas concentration starts to fall below a predetermined value, the steps 1 to 2 are performed.
Is switched to This step 2 is a step in which the adsorption tower A performs a pressure reduction operation and the adsorption tower B starts a pressure operation. In this step 2, the purge gas introduction valve 6 connects the product outlet end of the adsorption tower A whose pressure has been maintained in the tower after the end of the adsorption step and the product outlet end of the adsorption tower B at a low pressure after the regeneration step.
a and 6b, the gas in the adsorption tower A is recovered in the adsorption tower B, and a so-called upper pressure equalizing operation is performed.
The gas in the tower is discharged out of the system from the exhaust valve 4a of the adsorption tower A. Thereby, the adsorption tower B is pressurized and the adsorption tower A is depressurized. At the same time as the upper pressure equalization is performed, the adsorption tower A
By releasing the gas in the column from the raw material supply end, the nitrogen-rich gas on the raw material supply end side can be prevented from flowing from the adsorption column A to the adsorption column B on the recovery side, and the oxygen recovery rate and The amount of generation is improved.

【0019】なお、排気弁4aから吸着塔A内のガスを
排気する際、排気の初期においては、塔内の圧力が大気
圧以上であるから、そのまま真空ポンプ7に吸引させる
ことは、真空ポンプ7に過大な負荷を与えることとなる
ため、弁8を開いてガスを大気へ直接放出する。この工
程2において、製品ガスは製品ガス貯槽9から製品供給
弁9aを経て供給される。また、原料空気圧縮機1で
は、バイパス弁1aが開いた状態となる。
When the gas in the adsorption tower A is exhausted from the exhaust valve 4a, the pressure in the tower is equal to or higher than the atmospheric pressure in the initial stage of the evacuation. Since an excessive load is applied to the valve 7, the valve 8 is opened and the gas is directly discharged to the atmosphere. In this step 2, the product gas is supplied from the product gas storage tank 9 via the product supply valve 9a. In the raw material air compressor 1, the bypass valve 1a is in an open state.

【0020】前記上部均圧操作におけるガスの回収が所
定量となると、工程2から工程3に切換えられる。この
工程3では、吸着塔Aは、排気弁4aから真空ポンプ7
を経て塔内の排気が継続され、圧力の低下とともに吸着
剤に吸着されていた窒素が脱着し、吸着剤が再生される
(減圧再生操作)。吸着塔Bにおいては、製品ガスと原
料空気とによる再加圧が開始される。製品ガスは、製品
ガス貯槽9からパージガス供給弁10,パージガス導入
弁6bを経て製品出口端から吸着塔B内へ供給され、原
料空気は、原料空気圧縮機1から入口弁3bを経て原料
供給端から吸着塔B内へ供給される。この原料空気の供
給の初期において、吸着塔B内の圧力が大気圧より低い
間は、原料空気圧縮機1のバイパス弁1aが開かれ、原
料空気圧縮機1の吐出圧力が吸入圧力より低くならない
ようにして原料空気圧縮機1を保護する。また、製品ガ
スは、前記同様に製品ガス貯槽9から製品供給弁9aを
経て供給される。
When the gas recovery in the upper equalizing operation reaches a predetermined amount, the process is switched from step 2 to step 3. In this step 3, the adsorption tower A is connected to the vacuum pump 7 by the exhaust valve 4a.
Then, the exhaust in the tower is continued, and the nitrogen adsorbed by the adsorbent is desorbed as the pressure decreases, and the adsorbent is regenerated (reduced pressure regeneration operation). In the adsorption tower B, re-pressurization with the product gas and the raw material air is started. The product gas is supplied from the product gas storage tank 9 through the purge gas supply valve 10 and the purge gas introduction valve 6b to the adsorption tower B from the product outlet end, and the raw material air is supplied from the raw material air compressor 1 through the inlet valve 3b. To the adsorption tower B. In the initial stage of the supply of the raw air, while the pressure in the adsorption tower B is lower than the atmospheric pressure, the bypass valve 1a of the raw air compressor 1 is opened, and the discharge pressure of the raw air compressor 1 does not become lower than the suction pressure. Thus, the raw material air compressor 1 is protected. Further, the product gas is supplied from the product gas storage tank 9 through the product supply valve 9a in the same manner as described above.

【0021】吸着塔Bの圧力が所定圧力に高まると、工
程3から工程4に切換えられる。この工程4では、吸着
塔Aは、排気弁4aからの真空ポンプ7による排気が継
続して行われ、吸着剤の再生が進む。吸着塔Bは、製品
出口端からの製品ガスの供給が停止し、原料空気圧縮機
1で圧縮された原料空気が入口弁3bから吸着塔B内に
供給され,吸着塔Bの最終的な加圧が行われる。また、
製品ガスは、前記同様に製品ガス貯槽9から製品供給弁
9aを経て供給される。
When the pressure in the adsorption tower B increases to a predetermined pressure, the process is switched from step 3 to step 4. In this step 4, in the adsorption tower A, the exhaust from the exhaust valve 4a by the vacuum pump 7 is continuously performed, and the regeneration of the adsorbent proceeds. In the adsorption tower B, the supply of the product gas from the product outlet end is stopped, and the raw material air compressed by the raw material air compressor 1 is supplied into the adsorption tower B from the inlet valve 3b. Pressure is applied. Also,
The product gas is supplied from the product gas storage tank 9 through the product supply valve 9a as described above.

【0022】吸着塔Bの圧力が吸着工程の圧力まで高ま
ると工程4が終了し、吸着塔Bが吸着工程、吸着塔Aが
パージ操作となる。すなわち、前記工程1における吸着
塔Aと吸着塔Bとが入換った状態となり、以後、前記各
工程における吸着塔Aが吸着塔Bの状態、吸着塔Bが吸
着塔Aの状態となって工程4まで行われ、以降、吸着塔
A,Bを切換えて、工程1から工程4を繰返し行うこと
で、連続して製品ガスである酸素富化ガスが得られる。
When the pressure in the adsorption tower B increases to the pressure in the adsorption step, the step 4 is completed, the adsorption step in the adsorption tower B is performed and the purge operation in the adsorption tower A is performed. That is, the adsorption tower A and the adsorption tower B in the step 1 are interchanged, and thereafter, the adsorption tower A in each step is in the state of the adsorption tower B, and the adsorption tower B is in the state of the adsorption tower A. The process is performed up to the step 4. Thereafter, the adsorption towers A and B are switched, and the steps 1 to 4 are repeated, whereby an oxygen-enriched gas as a product gas is continuously obtained.

【0023】また、前記工程2を二つの工程に分割して
行うこともできる。すなわち、工程2の初期では、吸着
塔A及び吸着塔Bの製品出口端同士をパージガス導入弁
6a,6bを介して連通させることによる上部均圧操作
のみを行い、この上部均圧操作を行った後、吸着塔Aの
排気弁4aを開いて塔内ガスの排気を開始する。これに
より、吸着塔Aの製品出口側に濃縮されている酸素の回
収量を多くすることができ、酸素の回収率や発生量が向
上する。
Further, the step 2 can be performed by dividing the step into two steps. That is, in the early stage of the process 2, only the upper pressure equalization operation was performed by connecting the product outlet ends of the adsorption tower A and the adsorption tower B via the purge gas introduction valves 6a and 6b, and the upper pressure equalization operation was performed. Thereafter, the exhaust valve 4a of the adsorption tower A is opened to start exhausting gas in the tower. As a result, the amount of oxygen that is concentrated on the product outlet side of the adsorption tower A can be increased, and the oxygen recovery rate and the amount of generated oxygen can be improved.

【0024】さらに、各吸着塔A,Bに原料空気を供給
する際には、塔内の窒素の吸着帯(物質移動帯、MT
Z)が、吸着塔の製品出口端に向かって延びることを防
止するため、原料空気の供給速度を調整することが好ま
しい。例えば、前記工程3が始まる段階で、加圧工程に
ある吸着塔Bは、工程2の均圧操作による加圧を行った
状態にあるので、その圧力は大気圧よりも低いから、何
らの制限もなく大気圧以上の原料空気を供給すると、同
時に行う製品ガスによる加圧のガス量に比較して大幅に
多い原料空気が流入するので、窒素の吸着帯はすぐに製
品出口端に延びてしまう。また、吸着塔に成り行きで空
気を供給すると、受入側の吸着塔の圧力次第で好ましく
ない過大な流速になることがある。窒素吸着に好ましい
条件は、適切な流速で空気が流れることであり、その条
件は、吸着塔の空気流入速度を調整することにより達成
される。
Further, when supplying the raw material air to each of the adsorption towers A and B, the nitrogen adsorption zone (mass transfer zone, MT
In order to prevent Z) from extending toward the product outlet end of the adsorption tower, it is preferable to adjust the supply speed of the raw material air. For example, at the stage where the step 3 is started, the adsorption tower B in the pressurizing step is in a state where the pressure is applied by the pressure equalizing operation in the step 2, and the pressure is lower than the atmospheric pressure. If the raw material air is supplied at a pressure higher than the atmospheric pressure, a large amount of the raw material air flows in compared with the amount of gas pressurized by the product gas at the same time, so that the nitrogen adsorption zone immediately extends to the product outlet end. . In addition, if air is supplied to the adsorption tower, the flow rate may become undesirably excessive depending on the pressure of the adsorption tower on the receiving side. A preferable condition for nitrogen adsorption is that air flows at an appropriate flow rate, and this condition is achieved by adjusting the air inflow speed of the adsorption tower.

【0025】空気流入速度の調整は、PSA装置全体の
制御を行う操作の制御器14からの弁開度制御信号14
aにより、原料空気ラインに設置した原料空気流量調整
弁2の開度を調整することにより行うことができる。こ
の開度調整は、例えば、工程の切換えを制御する制御器
14からの信号により、調整弁2に送られる制御空気圧
を変えて弁開度を変えることで行える。最も流速が大き
くなると思われる工程3においては、最も小さい弁開度
とし、次の工程4では弁開度を大きくする。また、特に
流れを制御する必要のない工程1においては調整弁2は
全開とする。この空気流入速度の調整の方法は、調整弁
による方法以外、原料空気圧縮機1の回転数を制御する
方法等によっても行うことができる。このように空気流
入速度を制御することにより、分離性能の向上ととも
に、吸着剤の流動化を防ぎ、吸着剤の粉化を防止すると
いう効果も得られる。
The adjustment of the air inflow speed is performed by controlling the valve opening control signal 14 from the controller 14 for controlling the entire PSA apparatus.
According to a, it can be performed by adjusting the opening degree of the raw material air flow control valve 2 installed in the raw material air line. This opening adjustment can be performed, for example, by changing the valve opening by changing the control air pressure sent to the adjustment valve 2 based on a signal from the controller 14 that controls the switching of the process. In step 3 where the flow velocity is considered to be the largest, the valve opening is set to the smallest, and in the next step 4, the valve opening is increased. Further, in the step 1 where there is no particular need to control the flow, the regulating valve 2 is fully opened. The method of adjusting the air inflow speed can be performed by a method of controlling the number of revolutions of the raw material air compressor 1 other than the method using the adjusting valve. By controlling the air inflow speed in this way, it is possible to obtain the effect of improving the separation performance, preventing fluidization of the adsorbent, and preventing powdering of the adsorbent.

【0026】上述のように、真空再生を行った吸着塔の
再加圧を、均圧操作によって回収されるガス、すなわ
ち、酸素分に富むガスを用いて原料空気の流れに対して
向流方向に加圧することにより、原料空気による加圧を
実施する時点での塔内圧力をある程度まで上昇させてお
くことができるので、原料空気による加圧の際の空気の
流速が過大になることを防ぐことができる。
As described above, the re-pressurization of the adsorption tower subjected to the vacuum regeneration is performed by using the gas recovered by the equalizing operation, that is, the gas rich in oxygen, in the countercurrent direction to the flow of the raw material air. , The pressure in the tower at the time of pressurizing with the raw material air can be increased to a certain extent, so that the flow velocity of the air at the time of pressurizing with the raw material air is prevented from becoming excessive. be able to.

【0027】また、工程2の均圧操作で酸素分に富むガ
スで加圧した後、工程3において、製品出口端からは製
品ガスを、原料供給端からは原料空気を同時に送って加
圧することにより、空気中の窒素が製品出口端に向かっ
て前進することを防ぐことができる。さらに、工程4で
は、工程2及び工程3で既に塔内の圧力がかなり上昇し
ているため、原料空気のみを供給して最終的な加圧を行
えるので、製品ガスを用いることなく、吸着工程に移行
するための準備を終了することができる。
Further, after pressurizing with a gas rich in oxygen in the pressure equalizing operation in step 2, in step 3, the product gas is simultaneously sent from the product outlet end and the raw material air is sent from the raw material supply end to be pressurized. Thereby, it is possible to prevent nitrogen in the air from advancing toward the product outlet end. Further, in the step 4, since the pressure in the tower has already been considerably increased in the steps 2 and 3, the final pressurization can be performed by supplying only the raw material air. Preparations for shifting to can be completed.

【0028】以上の各工程を組合わせることにより、極
めて高い酸素回収率と、吸着剤当たりの高い酸素発生量
を達成することができる。
By combining the above steps, an extremely high oxygen recovery rate and a high oxygen generation amount per adsorbent can be achieved.

【0029】[0029]

【実施例】図1に示す系統のPSA装置を使用して、
図2に示す工程1〜4を行った場合(第1の構成に相
当)、工程2を分割した場合(第2の構成に相当)、
工程2を分割するとともに原料空気の流入速度を調整
した場合(第2の構成に相当)の3通りの実験を行っ
た。主な操作条件は、次の通りである。 吸着圧力 800Torr 再生圧力 200Torr 原料空気温度 25℃ サイクルタイム 60秒 窒素吸着剤 Ca−A型ゼオライト
DESCRIPTION OF THE PREFERRED EMBODIMENTS Using a PSA system of the system shown in FIG.
When steps 1 to 4 shown in FIG. 2 are performed (corresponding to the first configuration), when step 2 is divided (corresponding to the second configuration),
Three experiments were performed in which the process 2 was divided and the flow rate of the raw material air was adjusted (corresponding to the second configuration). The main operating conditions are as follows. Adsorption pressure 800 Torr Regeneration pressure 200 Torr Raw material air temperature 25 ° C Cycle time 60 seconds Nitrogen adsorbent Ca-A type zeolite

【0030】その結果、では酸素回収率が43%、吸
着剤1トン当たりの酸素発生量が24Nm/hであっ
た。では酸素回収率が45%、吸着剤1トン当たりの
酸素発生量が25Nm/hに向上し、では酸素回収
率が46%、吸着剤1トン当たりの酸素発生量が27N
/hに更に向上した。なお、酸素発生量は2塔合計
の吸着剤を基準にした値である。
As a result, the oxygen recovery rate was 43%, and the amount of oxygen generated per ton of the adsorbent was 24 Nm 3 / h. In, the oxygen recovery rate was improved to 45%, and the amount of oxygen generated per ton of adsorbent was improved to 25 Nm 3 / h. In, the oxygen recovery rate was improved to 46%, and the amount of oxygen generated per ton of adsorbent was increased to 27 Nm
m 3 / h was further improved. Note that the oxygen generation amount is a value based on the total amount of the adsorbents in the two columns.

【0031】[0031]

【発明の効果】以上説明したように、本発明のガス分離
方法によれば、製品回収率、吸着剤当たりの製品発生量
を共に向上させることができる。これに加えて、吸着剤
の流動による粉化も防止することができる。
As described above, according to the gas separation method of the present invention, it is possible to improve both the product recovery rate and the product generation amount per adsorbent. In addition, powdering due to the flow of the adsorbent can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 PSA装置の一例を示す系統図である。FIG. 1 is a system diagram showing an example of a PSA device.

【図2】 各工程におけるガスの流れを説明する概念図
である。
FIG. 2 is a conceptual diagram illustrating a gas flow in each process.

【符号の説明】[Explanation of symbols]

A,B…吸着塔、1…原料空気圧縮機、1a…バイパス
弁、2…原料空気流量調整弁、3a,3b…入口弁、4
a,4b…排気弁、5a,5b…出口弁、6a,6b…
パージガス導入弁、7…真空ポンプ、8…放出弁、9…
製品ガス貯槽、9a…製品供給弁、10…パージガス供
給弁、11…パージガス流量調整弁、12…流量計、1
3…パージライン、14…制御器、14a…弁開度制御
信号
A, B: adsorption tower, 1: raw material air compressor, 1a: bypass valve, 2: raw material air flow control valve, 3a, 3b: inlet valve, 4
a, 4b ... exhaust valve, 5a, 5b ... outlet valve, 6a, 6b ...
Purge gas introduction valve, 7: vacuum pump, 8: release valve, 9 ...
Product gas storage tank, 9a: product supply valve, 10: purge gas supply valve, 11: purge gas flow control valve, 12: flow meter, 1
3 ... Purge line, 14 ... Controller, 14a ... Valve opening control signal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸素と窒素とを含む原料ガス中の窒素を
優先的に吸着する吸着剤を充填した2塔の吸着塔を用い
て圧力変動吸着分離法により酸素富化ガスを製品ガスと
して回収するガス分離方法であって、 原料供給端から原料ガスが供給されて吸着工程を行って
いる第1の塔の製品出口端から製品ガスを導出して製品
ガス貯槽に供給しながら、該製品ガスの一部を第2の塔
の製品出口端から塔内に導入しつつ原料供給端から塔内
のガスを放出するパージ排気を行うことにより吸着剤の
再生工程を行う工程と、 上記工程終了後の第1の塔と第2の塔とを製品出口端で
連通させ、吸着工程を終了して塔内に圧力を保持した第
1の塔から再生工程を終了して低い圧力にある第2の塔
へガスを回収するとともに、第1の塔の原料供給端から
系外へガスを放出する工程と、 上記工程終了後の第1の塔から引続きガスを系外に放出
して塔内の圧力を下げることにより、窒素を吸着した吸
着剤から窒素ガスを脱着させるとともに、第2の塔にお
いては、製品ガス貯槽に貯えられた製品ガスを第2の塔
の製品出口端から導入しながら、同時に原料供給端から
原料ガスを供給して塔内の圧力を上昇させる工程と、 上記工程終了後の第1の塔から引続きガスを系外に放出
して塔内の圧力を更に下げることにより、窒素を吸着し
た吸着剤から窒素ガスを脱着させるとともに、第2の塔
においては、原料供給端から原料ガスを供給して塔内の
圧力を上昇させる工程と、の各工程を、第1及び第2の
吸着塔を順次切換えて連続的に行うことにより、製品ガ
スを継続して発生することを特徴とするガス分離方法。
1. An oxygen-enriched gas is recovered as a product gas by a pressure fluctuation adsorption separation method using two adsorption columns packed with an adsorbent that preferentially adsorbs nitrogen in a source gas containing oxygen and nitrogen. A source gas is supplied from a source supply end, and a product gas is derived from a product outlet end of a first tower performing an adsorption step and supplied to a product gas storage tank. Performing a regenerating step of the adsorbent by performing a purge exhaust that releases gas in the tower from a raw material supply end while introducing a part of the gas into the tower from a product outlet end of the second tower; The first column and the second column are communicated at the product outlet end, and the regeneration process is completed from the first column, which has completed the adsorption process and maintained the pressure in the column, and has a second pressure at a low pressure. While collecting the gas in the tower, the gas was discharged from the raw material supply end of the first tower to the outside of the system. Releasing the gas from the first tower after the above-mentioned step, and continuously desorbing the nitrogen gas from the adsorbent having adsorbed nitrogen by releasing the gas to the outside of the system to reduce the pressure in the tower. In the tower, while introducing the product gas stored in the product gas storage tank from the product outlet end of the second tower, simultaneously supplying the raw material gas from the raw material supply end to increase the pressure in the column; After the completion, the gas is continuously discharged from the first column to the outside of the system to further reduce the pressure in the column, thereby desorbing the nitrogen gas from the adsorbent having adsorbed nitrogen, and supplying the raw material in the second column. The step of supplying the raw material gas from the end to increase the pressure in the tower is continuously performed by sequentially switching the first and second adsorption towers, thereby continuously generating the product gas. A gas separation method comprising:
【請求項2】 酸素と窒素とを含む原料ガス中の窒素を
優先的に吸着する吸着剤を充填した2塔の吸着塔を用い
て圧力変動吸着分離法により酸素富化ガスを製品ガスと
して回収するガス分離方法であって、 原料供給端から原料ガスが供給されて吸着工程を行って
いる第1の塔の製品出口端から製品ガスを導出して製品
ガス貯槽に供給しながら、該製品ガスの一部を第2の塔
の製品出口端から塔内に導入しつつ原料供給端から塔内
のガスを放出するパージ排気を行うことにより吸着剤の
再生工程を行う工程と、 上記工程終了後の第1の塔と第2の塔とを製品出口端で
連通させ、吸着工程を終了して塔内に圧力を保持した第
1の塔から再生工程を終了して低い圧力にある第2の塔
へガスを回収した後、第1の塔の原料供給端から系外へ
ガスを放出する工程と、 上記工程終了後の第1の塔から引続きガスを系外に放出
して塔内の圧力を下げることにより、窒素を吸着した吸
着剤から窒素ガスを脱着させるとともに、第2の塔にお
いては、製品ガス貯槽に貯えられた製品ガスを第2の塔
の製品出口端から導入しながら、同時に原料供給端から
原料ガスを供給して塔内の圧力を上昇させる工程と、 上記工程終了後の第1の塔から引続きガスを系外に放出
して塔内の圧力を更に下げることにより、窒素を吸着し
た吸着剤から窒素ガスを脱着させるとともに、第2の塔
においては、原料供給端から原料ガスを供給して塔内の
圧力を上昇させる工程と、の各工程を、第1及び第2の
吸着塔を順次切換えて連続的に行うことにより、製品ガ
スを継続して発生することを特徴とするガス分離方法。
2. An oxygen-enriched gas is recovered as a product gas by a pressure fluctuation adsorption separation method using two adsorption columns packed with an adsorbent that preferentially adsorbs nitrogen in a source gas containing oxygen and nitrogen. A source gas is supplied from a source supply end, and a product gas is derived from a product outlet end of a first tower performing an adsorption step and supplied to a product gas storage tank. Performing a regenerating step of the adsorbent by performing a purge exhaust that releases gas in the tower from a raw material supply end while introducing a part of the gas into the tower from a product outlet end of the second tower; The first column and the second column are communicated at the product outlet end, and the regeneration process is completed from the first column, which has completed the adsorption process and maintained the pressure in the column, and has a second pressure at a low pressure. After recovering the gas to the tower, release the gas from the raw material supply end of the first tower to the outside of the system And a step of continuously releasing gas from the first tower after the above step to reduce the pressure in the tower, thereby desorbing nitrogen gas from the adsorbent that has adsorbed nitrogen, In the method, while introducing the product gas stored in the product gas storage tank from the product outlet end of the second column, simultaneously supplying the source gas from the raw material supply end to increase the pressure in the column; Subsequently, the gas is continuously discharged from the first column to the outside of the system to further reduce the pressure in the column, thereby desorbing the nitrogen gas from the adsorbent that has adsorbed nitrogen. Continuously increasing the pressure in the tower by supplying the raw material gas from the first and second adsorption towers in order to continuously generate the product gas. A gas separation method comprising:
【請求項3】 前記吸着塔への原料ガスの供給量を流量
制御手段により制御することを特徴とする請求項1又は
2記載のガス分離方法。
3. The gas separation method according to claim 1, wherein the supply amount of the raw material gas to the adsorption tower is controlled by a flow rate control means.
JP21876197A 1997-08-13 1997-08-13 Gas separation method Expired - Fee Related JP3889125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21876197A JP3889125B2 (en) 1997-08-13 1997-08-13 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21876197A JP3889125B2 (en) 1997-08-13 1997-08-13 Gas separation method

Publications (2)

Publication Number Publication Date
JPH1157375A true JPH1157375A (en) 1999-03-02
JP3889125B2 JP3889125B2 (en) 2007-03-07

Family

ID=16724996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21876197A Expired - Fee Related JP3889125B2 (en) 1997-08-13 1997-08-13 Gas separation method

Country Status (1)

Country Link
JP (1) JP3889125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173284A (en) * 2007-01-18 2008-07-31 Teijin Pharma Ltd Adsorption oxygen concentrator
JP2008214151A (en) * 2007-03-06 2008-09-18 Teijin Pharma Ltd Oxygen concentrator
JP2019058299A (en) * 2017-09-26 2019-04-18 株式会社メトラン Oxygen concentrator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173284A (en) * 2007-01-18 2008-07-31 Teijin Pharma Ltd Adsorption oxygen concentrator
JP2008214151A (en) * 2007-03-06 2008-09-18 Teijin Pharma Ltd Oxygen concentrator
JP2019058299A (en) * 2017-09-26 2019-04-18 株式会社メトラン Oxygen concentrator

Also Published As

Publication number Publication date
JP3889125B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
EP0085160B1 (en) Improved rpsa process
US4566881A (en) Process and apparatus for producing oxygen with a low proportion of argon from air
KR100300939B1 (en) Improved vacuum pressure swing adsorption process
JPH0929044A (en) Reflux in pressure swing type suction method
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
JPH0429601B2 (en)
JPH08239204A (en) Method for recovering enriched oxygen
JP2000153124A (en) Pressure swing adsorption for producing oxygen-enriched gas
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JP3889125B2 (en) Gas separation method
JPH10272332A (en) Gas separation device and its operation method
JPH0733404A (en) Production of high concentration oxygen
JPH04227018A (en) Manufacture of inert gas of high purity
JPH11267439A (en) Gas separation and gas separator for performing same
JPS6238281B2 (en)
JPH07330306A (en) Generation of oxygen by pressure change adsorption separation method
JPH0994424A (en) Gaseous mixture separator
JP2680694B2 (en) Gas separation method
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JP4195131B2 (en) Single tower type adsorption separation method and apparatus
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH10277343A (en) Gas separation method
JP3073061B2 (en) Gas separation device
JPH1147535A (en) Method for gas separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees