JP2019058299A - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
JP2019058299A
JP2019058299A JP2017184326A JP2017184326A JP2019058299A JP 2019058299 A JP2019058299 A JP 2019058299A JP 2017184326 A JP2017184326 A JP 2017184326A JP 2017184326 A JP2017184326 A JP 2017184326A JP 2019058299 A JP2019058299 A JP 2019058299A
Authority
JP
Japan
Prior art keywords
oxygen
unit
concentration
pressure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017184326A
Other languages
Japanese (ja)
Other versions
JP7022418B2 (en
Inventor
ミン ソン グエン
Minh Son Nguyen
ミン ソン グエン
実 石嶋
Minoru Ishijima
実 石嶋
義久 瀬下
Yoshihisa Seshita
義久 瀬下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METORAN KK
Metran Co Ltd
Original Assignee
METORAN KK
Metran Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METORAN KK, Metran Co Ltd filed Critical METORAN KK
Priority to JP2017184326A priority Critical patent/JP7022418B2/en
Publication of JP2019058299A publication Critical patent/JP2019058299A/en
Application granted granted Critical
Publication of JP7022418B2 publication Critical patent/JP7022418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

To provide an oxygen concentrator in which a variation in oxygen concentration of high concentration oxygen hardly occurs.SOLUTION: An oxygen concentrator 1 includes: a plurality of oxygen guiding passages 160 for guiding high concentration oxygen from oxygen concentrating parts to an oxygen tank; oxygen guiding passage check valves 60A and 60B provided respectively in the oxygen guiding passages for preventing a reverse flow of the high concentration oxygen from the oxygen tank to a plurality of the oxygen concentrating parts; a pressure equalizing passage 150, one side of which is connected to the downstream side of the oxygen guiding passage check valves or the oxygen tank, and the other side of which is connected to a pressure equalizing passage on-off valve 90; a distribution passage (illustration omitted), one side of which is connected to the upstream side of the respective oxygen guiding passage check valves in the oxygen guiding passages, and the other side of which is connected to the pressure equalizing passage on-off valve; and distribution passage check valves 70A and 70B provided respectively in the distribution passage for regulating the flow of the high concentration oxygen from an oxygen guiding passage side to the pressure equalizing passage on-off valve, and allowing the flow of the high concentration oxygen from the pressure equalizing passage to the oxygen guiding passage side. The high concentration oxygen flows from a pressure equalizing passage side to a distribution passage side by opening the pressure equalizing passage on-off valve.SELECTED DRAWING: Figure 1

Description

本発明は、高濃度の酸素を生成する酸素濃縮器に関する。   The present invention relates to an oxygen concentrator that produces high concentrations of oxygen.

近年、肺に慢性的な炎症が生じ呼吸困難などの症状を呈するCOPD(Chronic Obstructive Pulmonary Disease:慢性閉塞性肺疾患)の患者が世界的に増加している。COPDの患者だけではなく、一般に呼吸器不全で低酸素状態になると身体全体へ悪影響をおよぼす。このような低酸素状態を緩和して生活の質を改善するための治療として、高濃度の酸素を患者に供給する在宅酸素療法が知られている。在宅酸素療法では、空気中の窒素や水分を除去して酸素を濃縮することで高濃度の酸素を生成する酸素濃縮器と呼ばれる装置が利用されている。(例えば、特許文献1参照)。   BACKGROUND ART In recent years, patients with chronic obstructive pulmonary disease (COPD) having chronic inflammation in the lungs and symptoms such as dyspnea are increasing worldwide. Not only patients with COPD, but respiratory failure and hypoxia generally affect the entire body. Home oxygen therapy which supplies high concentration oxygen to a patient is known as a treatment for alleviating such hypoxia and improving the quality of life. In home oxygen therapy, a device called an oxygen concentrator that generates high concentration of oxygen by removing nitrogen and moisture in the air and concentrating oxygen is used. (See, for example, Patent Document 1).

図5(A)は、従来の酸素濃縮器301の構成を示す構成図である。酸素濃縮器301は、複数の酸素濃縮部310と、圧力調整部330と、複数の酸素濃縮部310Aと酸素濃縮部310Bを切り替える切り替え部320と、使用者へ供給する高濃度酸素を貯留する酸素タンク340を備える。そして所定の時間間隔で酸素濃縮部310が酸素の生成動作と、酸素濃縮部310の再生動作を繰り返すために、バイアス流路380内に均圧流路開閉弁370を設けている。また酸素分圧検出部410で測定される主流路400の酸素分圧(酸素濃度)を一定にするために、スプリング付き逆止弁390を備える。   FIG. 5A is a configuration diagram showing a configuration of a conventional oxygen concentrator 301. As shown in FIG. The oxygen concentrator 301 includes a plurality of oxygen concentration units 310, a pressure adjustment unit 330, a switching unit 320 that switches the plurality of oxygen concentration units 310A and oxygen concentration units 310B, and oxygen that stores high concentration oxygen supplied to the user. A tank 340 is provided. Then, in order for the oxygen concentrating unit 310 to repeat the generation operation of oxygen and the regenerating operation of the oxygen concentrating unit 310 at predetermined time intervals, a pressure equalizing passage on-off valve 370 is provided in the bias passage 380. In order to make constant the oxygen partial pressure (oxygen concentration) of the main flow path 400 measured by the oxygen partial pressure detection unit 410, a spring-loaded check valve 390 is provided.

特許第5281468号公報Patent No. 5281468 gazette

しかし図5(A)のように均圧流路開閉弁370において双方向にガスを流すために、そのガスの送気方向によって均圧流路開閉弁370における抵抗が異なる。具体的には第一ポート376からガスを供給して第二ポート378からガスを送気する場合(図5(B)参照)と、第二ポート378からガスを供給して第一ポート376からガスを送気する場合(図5(C)参照)とでは、流路抵抗が異なり、バイアス流路380を通して酸素濃縮部310を大気圧に戻す際の時間に差が生じる。そのため酸素分圧検出部410で検出される酸素の濃度は、変動することになる。例えば酸素濃縮部310Aが酸素を生成して、酸素濃縮部310Bから窒素を排気して再生している状態Aと、逆に酸素濃縮部310Bが酸素を生成して、酸素濃縮部310Aから窒素を排気して再生している状態Bとの間で酸素濃度に差がでてしまうという課題が生じる(図5(D)参照)。 本発明は、上記課題を鑑みてなされたものであり、使用者に供給される高濃度酸素の酸素濃度の変動が生じにくい酸素濃縮器の提供を目的とする。   However, as shown in FIG. 5A, in order to allow the gas to flow in both directions in the pressure equalizing passage on-off valve 370, the resistance in the pressure equalizing passage on-off valve 370 differs depending on the gas supply direction of the gas. Specifically, when the gas is supplied from the first port 376 and the gas is supplied from the second port 378 (see FIG. 5B), the gas is supplied from the second port 378 to be supplied from the first port 376. In the case where gas is supplied (see FIG. 5C), the flow path resistance is different, and a difference occurs in the time for returning the oxygen concentration unit 310 to the atmospheric pressure through the bias flow path 380. Therefore, the concentration of oxygen detected by the oxygen partial pressure detection unit 410 fluctuates. For example, a state A in which the oxygen concentration unit 310A generates oxygen and exhausts nitrogen from the oxygen concentration unit 310B for regeneration, and conversely, the oxygen concentration unit 310B generates oxygen and the nitrogen concentration from the oxygen concentration unit 310A There is a problem that there is a difference in oxygen concentration between the state B in which the air is exhausted and regenerated and the state B is regenerated (see FIG. 5D). This invention is made in view of the said subject, and it aims at provision of the oxygen concentrator which the fluctuation | variation of the oxygen concentration of high concentration oxygen supplied to a user does not produce easily.

酸素濃度の変動を抑えるために酸素分圧検出部の値を参照して、切り替え部と、均圧流路開閉弁等のフィードバック制御を行うことも考えられるが煩雑である。そこで本発明では、酸素濃縮部を再生させる際に大気圧に戻す際の流路の抵抗を、複数の酸素濃縮部について互いに等しくすることで、酸素濃度の変動を生じにくくする。   In order to suppress the fluctuation of the oxygen concentration, it is conceivable to perform feedback control of the switching unit, the pressure equalizing flow path on-off valve, etc. with reference to the value of the oxygen partial pressure detection unit, but it is complicated. Therefore, in the present invention, when the oxygen concentration portion is regenerated, the resistance of the flow path when returning to the atmospheric pressure is made equal to each other for the plurality of oxygen concentration portions, thereby making it difficult to cause the fluctuation of the oxygen concentration.

(1)本発明は、高濃度の酸素を生成する複数の酸素濃縮部と、使用者に送気される前記高濃度の酸素が貯留される酸素タンクと、複数の前記酸素濃縮部の各々と、前記酸素タンクを接続し、前記高濃度の酸素を前記酸素濃縮部から前記酸素タンクまで案内する複数の酸素案内流路と、複数の前記酸素案内流路内に各々設けられ、前記酸素タンクから複数の前記酸素濃縮部への前記高濃度の酸素の逆流を防止する複数の酸素案内流路逆止弁と、複数の前記酸素案内流路における前記案内路逆止弁よりも下流側又は前記酸素タンクに一方が接続されると共に、他方が均圧流路開閉弁に接続される均圧流路と、複数の前記酸素案内流路におけるそれぞれの前記案内路逆止弁よりも上流側に一方が接続されると共に、他方が前記均圧流路開閉弁に接続される複数の分配流路と、複数の前記分配流路内に各々設けられ、前記酸素案内流路側から前記均圧流路開閉弁への前記高濃度酸素の流れを規制し、前記均圧流路から前記酸素案内流路側への前記高濃度酸素の流れを許容する、複数の分配流路逆止弁とを備え、前記均圧流路開閉弁を開くことにより、前記均圧流路側から前記分配流路側に前記高濃度の酸素が流れることを特徴とする酸素濃縮器を提供する。   (1) According to the present invention, there are provided a plurality of oxygen concentration sections for producing high concentration of oxygen, an oxygen tank for storing the high concentration of oxygen supplied to the user, and a plurality of the oxygen concentration sections. A plurality of oxygen guiding flow paths for connecting the oxygen tank and guiding the high concentration oxygen from the oxygen concentration unit to the oxygen tank; and a plurality of oxygen guiding flow paths respectively provided from the oxygen tank A plurality of oxygen guide passage check valves for preventing the backflow of the high concentration oxygen to the plurality of oxygen concentration portions, and the oxygen downstream side of the guide passage check valves in the plurality of oxygen guide passages or the oxygen One side is connected to the tank, and the other side is connected to the pressure equalizing flow path connected to the pressure equalizing flow path on-off valve, and one side upstream of the respective guide path check valves in the plurality of oxygen guide flow paths And the other is in contact with the pressure equalizing And a plurality of distribution channels respectively provided, and restricting the flow of the high concentration oxygen from the oxygen guide channel side to the pressure equalizing channel on-off valve, from the pressure equalizing channel A plurality of distribution channel check valves permitting flow of the high concentration oxygen to the oxygen guide channel side, and opening the pressure equalizing channel on-off valve from the pressure equalizing channel side to the distribution channel side There is provided an oxygen concentrator characterized in that the high concentration of oxygen flows.

上記(1)に記載する発明によれば、複数の酸素濃縮部について、一方の酸素濃縮部が生成した酸素を、他方の酸素濃縮部へ送気して大気圧に戻すフラッシング状態において、常に酸素ガスが均圧流路開閉弁を同じ向きに流れる。したがって流路で受ける抵抗の変化が少なくなるので、各々の酸素濃縮部の再生時間に差が少なくなり、使用者に供給される高濃度酸素の酸素濃度の変動が生じにくいという優れた効果を奏する。   According to the invention described in the above (1), in the flushing state in which oxygen generated by one oxygen concentration unit is supplied to the other oxygen concentration unit and returned to the atmospheric pressure with respect to a plurality of oxygen concentration units, Gas flows in the same direction through the pressure equalizing channel on-off valve. Therefore, since the change in resistance received in the flow path is reduced, the difference in the regeneration time of the respective oxygen concentration portions is reduced, and the excellent effect is obtained that the fluctuation of the oxygen concentration of high concentration oxygen supplied to the user is less likely to occur. .

(2)本発明は、複数の前記分配流路が、複数の前記酸素案内流路同士を繋げるバイパス流路と前記均圧流路開閉弁に一方が接続されると共に、前記バイパス流路の途中の分岐点に他方が接続される共用流路とを備えて構成されることを特徴とする上記(1)に記載の酸素濃縮器を提供する。   (2) In the present invention, one of the plurality of distribution channels is connected to the bypass channel connecting the plurality of oxygen guiding channels and the pressure equalizing channel on-off valve, and The oxygen concentrator according to the above (1) is provided, comprising: a common flow path connected to the branch point with the other.

上記(2)に記載する発明によれば、均圧流路と共用流路の間に、均圧流路開閉弁として安価な二方向の開閉弁を設けることで、使用者に供給される高濃度酸素の酸素濃度の変動が生じにくいという優れた効果を奏する。   According to the invention described in (2), high concentration oxygen supplied to the user can be provided by providing an inexpensive two-way on-off valve as a pressure equalizing flow path on-off valve between the pressure equalizing flow path and the common flow path. There is an excellent effect that the fluctuation of the oxygen concentration is less likely to occur.

(3)本発明は、複数の前記酸素案内流路が、前記酸素タンクに接続される主流路と、前記酸素濃縮部の各々に一方が接続されると共に、前記主流路に他方が接続される複数の副流路とを有し、複数の前記酸素案内流路逆止弁は、複数の前記副流路内にそれぞれ設けられ、更に前記主流路内における前記副流路との接続点よりも下流側に設けられ、前記酸素タンクから前記副流路への逆流を防止する主流路逆止弁を備えることを特徴とする上記(1)又は上記(2)に記載の酸素濃縮器を提供する。   (3) In the present invention, one of the plurality of oxygen guiding channels is connected to the main channel connected to the oxygen tank, and one to each of the oxygen concentrating portions, and the other is connected to the main channel. A plurality of sub flow paths are provided, and the plurality of oxygen guide flow path check valves are respectively provided in the plurality of sub flow paths, and are further connected to connection points with the sub flow path in the main flow path. The oxygen concentrator according to the above (1) or (2), further comprising a main flow check valve provided downstream and preventing a backflow from the oxygen tank to the sub flow. .

上記(3)に記載する発明によれば、酸素案内流路が複数の酸素濃縮部の各々に接続される副流路と、接続点で接続されて酸素タンクに繋がる主流路を備え、副流路のそれぞれが酸素案内流路逆止弁を有し、主流路が主流路逆止弁を更に有するので、使用者に対して供給するガスについて酸素濃度の変動が少ないという優れた効果を奏する。   According to the invention described in the above (3), the oxygen guiding flow path is provided with the sub flow path connected to each of the plurality of oxygen concentrating portions, and the main flow path connected at the connection point and connected to the oxygen tank Since each of the passages has an oxygen guide passage check valve and the main passage further has a main passage check valve, the gas supplied to the user has an excellent effect that the fluctuation of the oxygen concentration is small.

(4)本発明は、複数の前記酸素濃縮部が、酸素濃縮触媒を備えることを特徴とする上記(1)乃至上記(3)のうちのいずれかに記載の酸素濃縮器を提供する。   (4) The present invention provides the oxygen concentrator according to any one of the above (1) to (3), characterized in that the plurality of the oxygen concentrators are equipped with an oxygen concentration catalyst.

上記(4)に記載する発明によれば、酸素濃縮部の各々が酸素濃縮触媒を有するので、少なくとも一つの酸素濃縮部が酸素を生成している間に、他の酸素濃縮部から窒素などを脱離させる再生動作が可能になり、濃度変動の少ない高濃度酸素を連続して提供しうるという優れた効果を奏する。   According to the invention described in the above (4), since each of the oxygen concentration units has an oxygen concentration catalyst, while at least one oxygen concentration unit is producing oxygen, nitrogen etc. is generated from the other oxygen concentration units. It is possible to perform the regeneration operation for releasing, and it is possible to continuously provide the high concentration oxygen with less concentration variation.

(5)本発明は、前記使用者に送気されるガス中の酸素分圧を検出する酸素分圧検出部を備えることを特徴とする上記(1)乃至上記(4)のうちのいずれかに記載の酸素濃縮器を提供する。   (5) The present invention further includes an oxygen partial pressure detection unit that detects an oxygen partial pressure in a gas supplied to the user, any one of the above (1) to (4). Provide an oxygen concentrator as described in

上記(5)に記載する発明によれば、主流路逆止弁よりも下流側で酸素タンクの酸素分圧を検出できるので、濃度変動の少ない高濃度酸素を連続して提供しうるという優れた効果を奏する。   According to the invention described in the above (5), since the oxygen partial pressure of the oxygen tank can be detected on the downstream side of the main flow path check valve, it is possible to continuously provide high concentration oxygen with little concentration variation. Play an effect.

(6)本発明は、複数の前記酸素濃縮部の圧力を調整する圧力調整部と、複数の前記酸素濃縮部を切り替える切り替え部と、前記酸素分圧検出部で検出された前記酸素分圧に基づいて、前記切り替え部と前記均圧流路開閉弁を制御する制御部とを備え、前記圧力調整部は複数の前記酸素濃縮部の上流側に設けられ、前記切り替え部は前記圧力調整部と複数の前記酸素濃縮部の間に設けられることを特徴とする上記(5)に記載の酸素濃縮器を提供する。   (6) In the present invention, a pressure adjustment unit that adjusts the pressure of the plurality of oxygen concentration units, a switching unit that switches the plurality of oxygen concentration units, and the oxygen partial pressure detected by the oxygen partial pressure detection unit Based on the switching unit and a control unit for controlling the pressure equalizing flow path opening valve, the pressure adjusting unit is provided on the upstream side of the plurality of oxygen concentration units, and the switching unit is a plurality of pressure adjusting units. The oxygen concentrator according to the above (5) is provided between the above-described oxygen concentrators.

上記(6)に記載する発明によれば、濃度変動の少ない高濃度酸素を連続して提供しうるという優れた効果を奏する。   According to the invention described in the above (6), the excellent effect of continuously providing high concentration oxygen with less concentration variation is exhibited.

(7)本発明は、前記制御部が、前記酸素分圧検出部で検出された前記酸素分圧が所定の値になったときに、前記均圧流路開閉弁を開の状態にすることで、少なくとも一つの前記酸素濃縮部が生成した前記高濃度酸素を、前記均圧流路と前記分配流路を介して、他の少なくとも一つの前記酸素濃縮部へ送気する制御を行うことを特徴とする上記(6)に記載の酸素濃縮器を提供する。   (7) In the present invention, when the oxygen partial pressure detected by the oxygen partial pressure detection unit reaches a predetermined value, the control unit opens the pressure equalizing passage on-off valve. Controlling the supply of the high concentration oxygen generated by the at least one oxygen concentration unit to at least one other oxygen concentration unit via the pressure equalizing flow path and the distribution flow path. Providing the oxygen concentrator according to (6) above.

上記(7)に記載する発明によれば、一方の酸素濃縮部で生成した酸素を、他方の再生後の酸素濃縮部へ送気することで大気圧に戻して酸素濃縮を再開させることができるので、濃度変動の少ない高濃度酸素を連続して提供しうるという優れた効果を奏する。   According to the invention described in the above (7), the oxygen generated in one oxygen concentration unit can be returned to the atmospheric pressure by supplying the oxygen to the oxygen concentration unit after the other regeneration, and oxygen concentration can be resumed. Therefore, there is an excellent effect that high concentration oxygen with little concentration variation can be provided continuously.

(8)本発明は、前記制御部は、前記酸素濃縮部で、前記高濃度の酸素を生成する酸素生成状態と、一方の酸素濃縮部で生成した前記高濃度の酸素を、他方の前記酸素濃縮部へ送気してフラッシング状態と、吸着した窒素や水分を脱離させる再生状態と、前記酸素濃縮部の圧力を大気圧に戻す均圧状態とを含むように制御を行うことを特徴とする上記(6)又は上記(7)に記載の酸素濃縮器を提供する。   (8) In the present invention, the control unit causes the oxygen concentration unit to generate the high concentration of oxygen, and the high concentration oxygen generated by one of the oxygen concentration units to be the other oxygen Control is performed to include a flushing state by supplying air to the concentration part, a regeneration state in which adsorbed nitrogen and moisture are desorbed, and a pressure equalization state in which the pressure of the oxygen concentration part is returned to atmospheric pressure. (6) or (7) above.

上記(8)に記載する発明によれば、複数の酸素濃縮部が各々、酸素生成状態と、フラッシング状態と、再生状態と、均圧状態を含む制御をおこなうので、交互に酸素生成と窒素脱離を繰り返すことができ、濃度変動の少ない高濃度酸素を連続して提供しうるという優れた効果を奏する。   According to the invention described in the above (8), since the plurality of oxygen concentration units perform control including the oxygen generation state, the flushing state, the regeneration state, and the pressure equalization state, oxygen generation and nitrogen removal are alternately performed. It has the excellent effect of being able to repeat separation and continuously providing high concentration oxygen with less concentration variation.

本発明の請求項1〜8記載の酸素濃縮器によれば、連続して濃度変動の少ない高濃度酸素を提供しうるという優れた効果を奏する。   According to the oxygen concentrator according to claims 1 to 8 of the present invention, the excellent effect of continuously providing high concentration oxygen with little concentration variation is exhibited.

本発明の第一実施形態に係る酸素濃縮器の構成を示す構成図である。It is a block diagram which shows the structure of the oxygen concentrator which concerns on 1st embodiment of this invention. (A)酸素濃縮部10Aから酸素濃縮部10Bに、高濃度の酸素を送気して、再生後の酸素濃縮部10Bを大気圧に戻すフラッシング動作、及び、均圧動作を説明する説明図である。(B)酸素濃縮部10Bから酸素濃縮部10Aに、高濃度の酸素を送気して、再生後の酸素濃縮部10Aを大気圧に戻すフラッシング動作、及び、均圧動作を説明する説明図である。(A) A flushing operation in which high concentration oxygen is supplied from the oxygen concentration unit 10A to the oxygen concentration unit 10B, and the oxygen concentration unit 10B after regeneration is returned to the atmospheric pressure, and an explanatory view for explaining the pressure equalization operation. is there. (B) A flushing operation in which high concentration oxygen is supplied from the oxygen concentration unit 10B to the oxygen concentration unit 10A, and the oxygen concentration unit 10A after regeneration is returned to the atmospheric pressure, and an explanatory view for explaining the pressure equalization operation. is there. 2つの酸素濃縮部が、高濃度酸素の生成と酸素濃縮部の再生を交互に繰り返す動作を説明するフローチャートである。It is a flowchart explaining the operation | movement which two oxygen concentration parts repeat alternately production | generation of high concentration oxygen, and regeneration of an oxygen concentration part. (A)2つある酸素濃縮部について、一方の酸素濃縮部における圧力の時間変化を示すグラフである。(B)他方の酸素濃縮部における圧力の時間変化を示すグラフである。(A) It is a graph which shows the time change of the pressure in one oxygen concentration part about two oxygen concentration parts. (B) It is a graph which shows the time change of the pressure in the other oxygen concentration part. (A)従来の酸素濃縮器の構成を示す構成図である。(B)開閉弁において図上左方のポートからガスを供給して、図上右方のポートからガスを送気する態様を説明する説明図である。(C)開閉弁において図上右方のポートからガスを供給して、図上左方のポートからガスを送気する態様を説明する説明図である。(D)酸素分圧の時間変動を説明する説明図である。(A) It is a block diagram which shows the structure of the conventional oxygen concentrator. (B) It is explanatory drawing explaining the aspect which supplies gas from the port on the left of a figure top in an on-off valve, and insulates gas from a port on the right of a figure top. (C) It is explanatory drawing explaining the aspect which supplies gas from the port on the right of a figure top in an on-off valve, and ventilates gas from the port on the left of a figure top. (D) It is explanatory drawing explaining the time change of oxygen partial pressure.

以下、本発明の実施の形態を添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.

図1〜図4は発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。なお、各図において一部の構成を適宜省略して、図面を簡略化する。そして、部材の大きさ、形状、厚みなどを適宜誇張して表現する。   FIGS. 1 to 4 show an example of the embodiment of the present invention, and in the drawings, the parts denoted by the same reference numerals represent the same thing. In the drawings, a part of the configuration is appropriately omitted to simplify the drawings. Then, the size, shape, thickness and the like of the members are appropriately exaggerated and expressed.

図1は、本発明の実施形態に係る酸素濃縮器1の構成を示す構成図である。酸素濃縮器1は、圧縮空気を生成する圧縮器(コンプレッサ)と、真空ポンプを備える圧力調整部30と、高濃度の酸素を生成する2つの酸素濃縮部10と、酸素濃縮部10を切り替える切り替え部20と、使用者に送気される前記高濃度の酸素が貯留される酸素タンク40を備える。使用者は、酸素タンク40に接続されるマスク50から高濃度の酸素が供給される。   FIG. 1 is a block diagram showing the configuration of an oxygen concentrator 1 according to an embodiment of the present invention. The oxygen concentrator 1 switches between a compressor (compressor) that generates compressed air, a pressure adjustment unit 30 including a vacuum pump, two oxygen concentrators 10 that generate high concentration oxygen, and the oxygen concentrator 10. And an oxygen tank 40 in which the high concentration of oxygen supplied to the user is stored. The user is supplied with high concentration oxygen from the mask 50 connected to the oxygen tank 40.

なお酸素濃縮部10は、酸素濃縮塔とも呼ばれゼオライトなどの酸素濃縮触媒を備える。   The oxygen concentration unit 10 is also referred to as an oxygen concentration tower, and includes an oxygen concentration catalyst such as zeolite.

圧力調整部30と切り替え部20は、圧縮ガス送気流路115と排気流路117により接続され、圧縮ガス送気流路115を介して圧縮空気が酸素濃縮部10へ圧縮器から供給され、排気流路117を介して酸素濃縮部10に吸着された窒素や水分が真空ポンプで排気される。切り替え部20と酸素濃縮部10はガス交換流路119で接続され、圧縮空気の送気と、吸着された窒素や水分の排気がなされる。複数の酸素濃縮部10の各々と酸素タンク40は、複数の酸素案内流路160によってそれぞれ接続される。酸素案内流路160は、酸素濃縮部10の各々に接続される複数の副流路120と、酸素タンク40における使用者と逆側に接続される主流路155とを備え、副流路120と主流路155は接続点80において接続される。   The pressure adjustment unit 30 and the switching unit 20 are connected by the compressed gas air flow passage 115 and the exhaust flow passage 117, compressed air is supplied from the compressor to the oxygen concentration unit 10 through the compressed gas air flow passage 115, and the exhaust flow Nitrogen and moisture adsorbed in the oxygen concentration unit 10 through the passage 117 are exhausted by a vacuum pump. The switching unit 20 and the oxygen concentration unit 10 are connected by a gas exchange flow passage 119, and air supply of compressed air and exhaust of adsorbed nitrogen and moisture are performed. Each of the plurality of oxygen concentration units 10 and the oxygen tank 40 are connected by a plurality of oxygen guide channels 160 respectively. The oxygen guiding flow channel 160 includes a plurality of sub flow channels 120 connected to each of the oxygen concentration units 10 and a main flow channel 155 connected to the side opposite to the user in the oxygen tank 40. The main flow path 155 is connected at the connection point 80.

具体的には、酸素案内流路160は、酸素タンク40に接続される主流路155と、酸素濃縮部10の各々に一方が接続されると共に、主流路155に他方が接続される複数の副流路120とを有し、複数の酸素案内流路逆止弁60は、複数の副流路120内にそれぞれ設けられ、更に主流路155内における副流路120との接続点80よりも下流側に設けられ、酸素タンク40から副流路120への逆流を防止する主流路逆止弁65を備える。   Specifically, one of the oxygen guiding flow channels 160 is connected to each of the main flow channel 155 connected to the oxygen tank 40 and the oxygen concentrating portion 10, and a plurality of sub-connections are connected to the main flow channel 155. A plurality of oxygen guide channel check valves 60 are provided respectively in the plurality of sub channels 120, and further downstream from the connection point 80 with the sub channel 120 in the main channel 155. A main channel check valve 65 is provided on the side to prevent a backflow from the oxygen tank 40 to the sub channel 120.

なお、酸素タンク40より使用者側には、送気されるガスの酸素分圧を検出する酸素分圧検出部100が設けられる。   An oxygen partial pressure detection unit 100 is provided on the user side of the oxygen tank 40 for detecting the oxygen partial pressure of the gas supplied.

酸素案内流路160におけるそれぞれの酸素案内流路逆止弁60よりも上流側には、分配流路(図示省略)が接続される。具体的には、均圧流路150は、複数の酸素案内流路160における案内路逆止弁60よりも下流側又は酸素タンク40に一方が接続されると共に、他方が均圧流路開閉弁90に接続される。また分配流路は複数の酸素案内流路160におけるそれぞれの案内路逆止弁60よりも上流側に一方が接続されると共に、他方が均圧流路開閉弁90に接続される。そして均圧流路開閉弁90を開くことにより、均圧流路150側から分配流路側に高濃度の酸素が流れる。   A distribution flow path (not shown) is connected to the oxygen guide flow path 160 at the upstream side of each oxygen guide flow path check valve 60. Specifically, one end of the pressure equalizing flow path 150 is connected downstream of the guide path check valve 60 in the plurality of oxygen guide flow paths 160 or to the oxygen tank 40, and the other is connected to the pressure equalizing flow path on-off valve 90. Connected Further, one of the distribution flow paths is connected to the upstream side of each of the guide path check valves 60 in the plurality of oxygen guide flow paths 160, and the other is connected to the pressure equalizing flow path opening / closing valve 90. Then, by opening the pressure equalization flow path opening / closing valve 90, high concentration oxygen flows from the pressure equalization flow path 150 side to the distribution flow path side.

具体的に分配流路は、複数の酸素案内流路160同士を繋げるバイパス流路130と均圧流路開閉弁90に一方が接続されると共に、バイパス流路130の途中の分岐点75に他方が接続される共用流路140とを備えて構成される。   Specifically, one of the distribution flow channels is connected to the bypass flow channel 130 connecting the plurality of oxygen guide flow channels 160 with each other and the pressure equalizing flow path opening / closing valve 90, and the other is connected to the branch point 75 in the middle of the bypass flow channel 130 And the common flow path 140 connected.

均圧流路開閉弁90としては、ポペット式電磁弁を用いてもよい。   As the pressure equalizing flow path opening / closing valve 90, a poppet type solenoid valve may be used.

複数の分配流路内にはそれぞれ、酸素案内流路160側から均圧流路150への高濃度酸素の流れを規制し、均圧流路155から酸素案内流路160側への高濃度酸素の流れを許容する、分配流路逆止弁70が設けられる。具体的には、バイパス流路130における分岐点75よりも副流路120A側には分配流路逆止弁70Aが設けられ、バイパス流路130における分岐点75よりも副流路120B側には分配流路逆止弁70Bが設けられる。   The flow of high concentration oxygen from the oxygen guide flow passage 160 side to the pressure equalization flow passage 150 is restricted in the plurality of distribution flow passages, and the flow of high concentration oxygen from the pressure equalization flow passage 155 to the oxygen guide flow passage 160 side A distribution channel check valve 70 is provided to allow for. Specifically, a distribution flow check valve 70A is provided on the side of the sub flow path 120A with respect to the branch point 75 in the bypass flow path 130, and on the side of the sub flow path 120B with respect to the branch point 75 in the bypass flow passage 130. A distribution passage check valve 70B is provided.

なお酸素案内流路逆止弁60と分配流路逆止弁70は、いわゆるコンビネーションバルブを用いてもよい。コンビネーションバルブを用いることで、部品点数は減り、簡素な構造になるためコスト的にも有利になる。   A so-called combination valve may be used as the oxygen guide passage check valve 60 and the distribution passage check valve 70. By using a combination valve, the number of parts is reduced and the structure is simple, which is also advantageous in cost.

また副流路120Aと、分岐点75から副流路120Bに接続されるバイパス流路130の流路の容量の合計、及び、これら副流路120A側流路におけるガスの流れに対する抵抗は、副流路120Bと、分岐点75から副流路120Aに接続される酸素濃縮部10A側のバイパス流路130の流路の容量の合計、及び、これら副流路120B側流路におけるガスの流れに対する抵抗と、それぞれ略等しいことが望ましい。同様に酸素濃縮部10A内におけるガスの流れに対する抵抗と、酸素濃縮部10B内におけるガスの流れに対する抵抗についても略等しいことが望ましい。所定の酸素濃度に到達できるまでの速度や、再生速度について、複数の酸素濃縮部10について略等しくなることで、酸素濃度の変動を少なくし得るからである。   Further, the sum of the capacities of the sub-flow path 120A and the flow path capacity of the bypass flow path 130 connected to the sub-flow path 120B from the branch point 75 and the resistance to the gas flow in these sub-flow path 120A The total of the capacities of the flow paths of the flow path 120B and the bypass flow path 130 on the side of the oxygen concentration section 10A connected to the sub flow path 120A from the branch point 75 and the flow of gas in these sub flow paths 120B side flow path It is desirable that the resistances be approximately equal to each other. Similarly, it is desirable that the resistance to the flow of gas in the oxygen concentration section 10A and the resistance to the flow of gas in the oxygen concentration section 10B be substantially equal. It is because the fluctuation | variation of oxygen concentration can be decreased by becoming substantially equal about several oxygen concentration part 10 about the speed | rate until it can reach | attain predetermined | prescribed oxygen concentration, and a reproduction | regeneration speed | rate.

図2(A)は、酸素濃縮部10Aから酸素濃縮部10Bに、高濃度の酸素を送気して、再生後の酸素濃縮部10Bを酸素で洗浄するフラッシング動作と、大気圧に戻す均圧動作を説明する説明図である。   In FIG. 2A, the oxygen concentration unit 10A supplies high concentration oxygen to the oxygen concentration unit 10B to flush the regenerated oxygen concentration unit 10B with oxygen, and pressure equalization to return to atmospheric pressure. It is an explanatory view explaining operation.

酸素濃縮器1は、複数の酸素濃縮部10の圧力を調整する圧力調整部30と、複数の酸素濃縮部10を切り替える切り替え部20と、酸素分圧検出部100で検出された酸素分圧に基づいて、切り替え部20と均圧流路開閉弁90等を制御する制御部とを備える。圧力調整部30は複数の酸素濃縮部10の上流側に設けられ、切り替え部20は圧力調整部30と複数の酸素濃縮部10の間に設けられる。   The oxygen concentrator 1 uses the pressure adjustment unit 30 that adjusts the pressure of the plurality of oxygen concentration units 10, the switching unit 20 that switches the plurality of oxygen concentration units 10, and the oxygen partial pressure detected by the oxygen partial pressure detection unit 100. A switching unit 20 and a control unit that controls the pressure equalizing passage opening / closing valve 90 and the like are provided. The pressure adjustment unit 30 is provided on the upstream side of the plurality of oxygen concentration units 10, and the switching unit 20 is provided between the pressure adjustment unit 30 and the plurality of oxygen concentration units 10.

制御部は、酸素分圧検出部100で検出された酸素分圧が所定の値になったときに、均圧流路開閉弁90を開の状態にすることで、少なくとも一つの酸素濃縮部10が生成した高濃度酸素を、均圧流路90と分配流路を介して、他の少なくとも一つの酸素濃縮部10へ送気する制御を行う   When the oxygen partial pressure detected by the oxygen partial pressure detection unit 100 reaches a predetermined value, the control unit opens the pressure equalizing flow path opening / closing valve 90 to allow at least one oxygen concentration unit 10 to Control is performed to supply the generated high concentration oxygen to at least one other oxygen concentration unit 10 via the pressure equalizing channel 90 and the distribution channel.

具体的には、酸素濃縮部10Aは酸素を生成している状態にあり、酸素濃縮部10Bは圧力調整部30の真空ポンプによって排気流路117を介して真空引きされて窒素や水分を脱離させている状態にあるとする。酸素分圧検出部100で検出された酸素分圧が所定の値になったならば、制御部(図示省略)は、均圧流路開閉弁90を開状態にし、切り替え部20により酸素濃縮部10への圧縮空気の送気と酸素濃縮部10Bの真空引きを停止させる。   Specifically, the oxygen concentration unit 10A is in a state of generating oxygen, and the oxygen concentration unit 10B is evacuated by the vacuum pump of the pressure adjustment unit 30 through the exhaust flow passage 117 to remove nitrogen and moisture. It is assumed that you When the oxygen partial pressure detected by the oxygen partial pressure detection unit 100 reaches a predetermined value, the control unit (not shown) opens the pressure equalizing flow path opening / closing valve 90, and the switching unit 20 switches the oxygen concentration unit 10. Supply of compressed air to the air and stopping the vacuuming of the oxygen concentrating unit 10B.

酸素濃縮部10Aで生成されていた高濃度の酸素は、副流路120Aを流れ、酸素案内流路逆止弁60Aを通って均圧流路150へと流れる。そして開状態の均圧流路開閉弁90を通じて共用流路140へと流れる。ここで酸素案内流路逆止弁60Aの上流と、分配流路逆止弁70Aの分岐点75側では圧力が等しい。そして酸素案内流路逆止弁60Bの上流側と分配流路逆止弁70Bの分岐点75側では後者の圧力が低い。したがって共用流路140に到達した酸素は、分配流路逆止弁70Bを通って酸素濃縮部10Bへと流れ酸素濃縮部10Bの洗浄(フラッシング動作)をおこない、酸素濃縮部10Bの内部圧力を大気圧へと戻す(均圧動作)。   The high concentration oxygen generated in the oxygen concentration unit 10A flows in the sub flow passage 120A and flows to the pressure equalizing flow passage 150 through the oxygen guide flow passage check valve 60A. Then, it flows to the common flow path 140 through the pressure equalization flow path on / off valve 90 in the open state. Here, the pressure is equal on the upstream side of the oxygen guide passage check valve 60A and on the side of the branch point 75 of the distribution passage check valve 70A. The pressure of the latter is low on the upstream side of the oxygen guide passage check valve 60B and on the branch point 75 side of the distribution passage check valve 70B. Therefore, the oxygen that has reached the common flow passage 140 flows through the distribution flow check valve 70B to the oxygen concentration unit 10B to perform cleaning (flushing operation) of the oxygen concentration unit 10B, and the internal pressure of the oxygen concentration unit 10B is increased. Return to atmospheric pressure (pressure equalization operation).

酸素濃縮部10Bが大気圧に戻って窒素吸着が可能になり、高濃度の酸素が生成できるようになったならば、制御部は均圧流路開閉弁90を閉状態とする。制御部が切り替え部20を制御して、ガス交換流路119Bを介して圧力調整部30の圧縮器から圧縮空気を酸素濃縮部10Bに送気して高濃度の酸素の生成を開始する。同時に制御部は、圧力調整部30の真空ポンプが酸素濃縮部10Aからガス交換流路119Aを通じて吸着した窒素や水分を排気するように切り替え部20の制御を行うことで酸素濃縮部10Aの再生動作を開始する。これらの制御を行うために、酸素濃縮器1には、酸素濃縮部10A内と酸素濃縮部10B内の圧力をそれぞれ検出するための検出部を設けることが望ましい。   When the oxygen concentration unit 10B returns to the atmospheric pressure and nitrogen adsorption becomes possible, and a high concentration of oxygen can be generated, the control unit closes the pressure equalizing passage opening / closing valve 90. The control unit controls the switching unit 20 to supply compressed air from the compressor of the pressure adjustment unit 30 to the oxygen concentration unit 10B via the gas exchange flow path 119B to start generation of high concentration oxygen. At the same time, the control unit controls the switching unit 20 so that the vacuum pump of the pressure adjustment unit 30 exhausts nitrogen and moisture adsorbed from the oxygen concentration unit 10A through the gas exchange flow path 119A, and the regeneration operation of the oxygen concentration unit 10A To start. In order to perform these controls, it is desirable that the oxygen concentrator 1 be provided with detection units for detecting the pressures in the oxygen concentration unit 10A and the oxygen concentration unit 10B.

図2(B)は、酸素濃縮部10Bから酸素濃縮部10Aに、高濃度の酸素を送気して、再生後の酸素濃縮部10Aを洗浄するフラッシング動作と、酸素濃縮部10Aを大気圧に戻す均圧動作等を説明する説明図である。ガスの流れ等や作用効果は、図2(A)と同様なので説明は省略する。   In FIG. 2B, a flushing operation for supplying oxygen of high concentration to the oxygen concentration unit 10A from the oxygen concentration unit 10B to wash the regenerated oxygen concentration unit 10A, and setting the oxygen concentration unit 10A to the atmospheric pressure It is an explanatory view explaining pressure equalization operation etc. which are returned. The gas flow and the like and the effects are the same as those in FIG.

なお制御部はCPU、RAMおよびROMなどから構成され、各種制御を実行する。CPUはいわゆる中央演算処理装置であり、各種プログラムが実行されて様々な機能を実現する。RAMはCPUの作業状態、記憶状態として使用され、ROMはCPUで実行されるオペレーティングシステムやプログラムを記憶する。   The control unit includes a CPU, a RAM, a ROM, and the like, and executes various controls. The CPU is a so-called central processing unit, and various programs are executed to realize various functions. The RAM is used as a working state and a storage state of the CPU, and the ROM stores an operating system and programs executed by the CPU.

次に、上記した実施の形態の動作を説明する。   Next, the operation of the above-described embodiment will be described.

図3は、酸素濃縮器1における2つの酸素濃縮部10A(図1参照)と酸素濃縮部10B(図1参照)が、高濃度酸素の生成と酸素濃縮部の再生を交互に繰り返す動作を説明するフローチャートである。   FIG. 3 illustrates an operation in which two oxygen concentrators 10A (see FIG. 1) and oxygen concentrators 10B (see FIG. 1) in the oxygen concentrator 1 alternately repeat generation of high concentration oxygen and regeneration of the oxygen concentrator. Is a flow chart.

まず酸素濃縮器1は、酸素濃縮部10Aにおいて高濃度酸素を生成させる。このために
制御部は圧力調整部30と切り替え部20を制御して酸素濃縮部10Aへ圧縮空気を送気する(ステップS1)。同時に制御部は、酸素濃縮部10Bに吸着された窒素と水分を脱離させるべく圧力調整部30と切り替え部20を制御して酸素濃縮部10Bの排気をおこなう(ステップS2)。
First, the oxygen concentrator 1 generates high concentration oxygen in the oxygen concentrator 10A. For this purpose, the control unit controls the pressure adjusting unit 30 and the switching unit 20 to supply compressed air to the oxygen concentrating unit 10A (step S1). At the same time, the control unit controls the pressure adjusting unit 30 and the switching unit 20 to discharge the oxygen concentrating unit 10B so as to desorb nitrogen and moisture adsorbed by the oxygen concentrating unit 10B (step S2).

酸素分圧検出部100(図1参照)において、主流路155の酸素分圧が所定の値になったならば(ステップS3のYES側)、制御部は、均圧流路開閉弁90を開状態にする(ステップS4)。酸素分圧検出部100(図1参照)において、主流路155の酸素分圧が所定の値になっていないならば(ステップS3のNO側)、酸素濃縮部10Aで酸素を生成し続ける(ステップS1に戻る)。   In the oxygen partial pressure detection unit 100 (see FIG. 1), when the oxygen partial pressure of the main flow passage 155 reaches a predetermined value (YES side in step S3), the control unit opens the pressure equalizing passage on-off valve 90 (Step S4). In the oxygen partial pressure detection unit 100 (see FIG. 1), if the oxygen partial pressure in the main flow channel 155 does not reach the predetermined value (NO side in step S3), the oxygen concentration unit 10A continues to generate oxygen (step S3) Return to S1).

さて均圧流路開閉弁90を開状態になると、酸素は酸素濃縮部10Aから、真空引きされた酸素濃縮部10Bに導かれ、酸素濃縮部10B内を酸素で洗浄(フラッシング)すると同時に、酸素濃縮部10Bの内部の圧力を大気圧へと均圧化する。このとき酸素濃縮部10Aの圧力も下がって酸素濃縮部10Bと同じ圧力となるので均圧化と呼ぶ。(ステップS5)。均圧化されたならば、制御部は均圧流路開閉弁90を閉状態にして、圧力調整部30と切り替え部20を制御して酸素濃縮部10Bにて高濃度酸素の生成を開始する(ステップS7)。同時に制御部は、酸素濃縮部10Aに吸着された窒素と水分を脱離させるべく圧力調整部30と切り替え部20を制御して酸素濃縮部10Aの真空排気をおこなう(ステップS8)。   When the pressure equalizing flow path opening / closing valve 90 is opened, oxygen is led from the oxygen concentration unit 10A to the oxygen concentration unit 10B that has been vacuumed, and the inside of the oxygen concentration unit 10B is flushed with oxygen at the same time The pressure inside the portion 10B is equalized to atmospheric pressure. At this time, the pressure of the oxygen concentration unit 10A is also lowered, and the pressure is the same as that of the oxygen concentration unit 10B. (Step S5). Once the pressure equalization has been achieved, the control unit closes the pressure equalization flow path opening / closing valve 90, controls the pressure adjustment unit 30 and the switching unit 20, and starts generation of high concentration oxygen in the oxygen concentration unit 10B ( Step S7). At the same time, the control unit controls the pressure adjustment unit 30 and the switching unit 20 to evacuate the oxygen concentration unit 10A so as to desorb nitrogen and moisture adsorbed by the oxygen concentration unit 10A (step S8).

酸素分圧検出部100(図1参照)において、主流路155の酸素分圧が所定の値になったならば(ステップS9のYES側)、制御部は、均圧流路開閉弁90を開状態にする(ステップS10)。酸素分圧検出部100(図1参照)において、主流路155の酸素分圧が所定の値になっていないならば(ステップS9のNO側)、酸素濃縮部10Aで酸素を生成し続ける(ステップS7に戻る)。   In the oxygen partial pressure detection unit 100 (see FIG. 1), when the oxygen partial pressure in the main flow passage 155 reaches a predetermined value (YES side in step S9), the control unit opens the pressure equalizing flow on-off valve 90 (Step S10). In the oxygen partial pressure detection unit 100 (see FIG. 1), if the oxygen partial pressure in the main flow channel 155 does not reach the predetermined value (NO side in step S9), oxygen generation unit 10A continues to generate oxygen (step S9) Return to S7).

さて均圧流路開閉弁90を開状態になると、酸素は酸素濃縮部10Bから、真空引きされた酸素濃縮部10Aに導かれ、酸素濃縮部10A内を酸素で洗浄(フラッシング)すると同時に、酸素濃縮部10Aの内部の圧力を大気圧へと均圧化する。   When the pressure equalizing flow path opening / closing valve 90 is opened, oxygen is led from the oxygen concentration unit 10B to the oxygen concentration unit 10A that has been vacuumed, and the inside of the oxygen concentration unit 10A is flushed with oxygen at the same time as oxygen concentration. The pressure inside the portion 10A is equalized to atmospheric pressure.

そして酸素濃縮部10Aと酸素濃縮部10Bが均圧化されたならば、制御部は均圧流路開閉弁90を閉状態にして(ステップ12)、圧力調整部30と切り替え部20を制御し酸素濃縮部10Aにて高濃度酸素の生成を開始する(ステップS1に戻る)。   Then, when the oxygen concentrating unit 10A and the oxygen concentrating unit 10B are equalized in pressure, the control unit closes the pressure equalizing passage on-off valve 90 (step 12) to control the pressure adjusting unit 30 and the switching unit 20 Generation of high concentration oxygen is started in the concentration unit 10A (return to step S1).

酸素濃縮器1は、以下このような動作を、例えば数十秒周期でおこなうことで、連続して高濃度の酸素を生成することができる。   The oxygen concentrator 1 can continuously generate high concentration oxygen by performing such an operation in a cycle of, for example, several tens of seconds.

図4(A)は、2つある酸素濃縮部10のうち酸素濃縮部10Aについて、圧力の時間変化を示すグラフであり、図4(B)は、同時刻における酸素濃縮部10Bにおける圧力の時間変化を示すグラフである。   FIG. 4 (A) is a graph showing the time change of pressure for the oxygen concentrating unit 10A of the two oxygen concentrating units 10, and FIG. 4 (B) is the time of the pressure in the oxygen concentrating unit 10B at the same time. It is a graph which shows change.

まず酸素濃縮部10Aで酸素を生成していく、酸素生成状態200(図4(A)参照)では、酸素濃縮部10A内の圧力は上昇していく。酸素分圧検出部100(図1参照)において酸素分圧が所定の値になったならば、制御部は、均圧流路開閉弁90を開状態にすると同時に、切り替え部20と圧力調整部30を制御し、制御部は酸素濃縮器1を、酸素濃縮部10Aから酸素を酸素濃縮部10Bへと送気し、酸素濃縮部10B内を洗浄するフラッシング状態210(図4(A)参照)に移行させる。酸素濃縮部10A内が大気圧に均圧化されたならば、均圧流路開閉弁90は閉状態にされ、制御部は切り替え部20と圧力調整部30を制御して酸素濃縮部10A内の排気を始めさせて、再生状態220(図4(A)参照)に移行する。このとき酸素濃縮部10A内から吸着された窒素や水分が排気され、酸素濃縮部10Aは再生される。   First, in the oxygen generation state 200 (see FIG. 4A) in which oxygen is generated in the oxygen concentration unit 10A, the pressure in the oxygen concentration unit 10A is increased. When the oxygen partial pressure reaches a predetermined value in the oxygen partial pressure detection unit 100 (see FIG. 1), the control unit opens the pressure equalizing flow path opening / closing valve 90 and simultaneously switches the switching unit 20 and the pressure adjustment unit 30. In the flushing state 210 (see FIG. 4A) in which the control unit controls the oxygen concentrator 1 to supply oxygen from the oxygen concentration unit 10A to the oxygen concentration unit 10B and cleans the inside of the oxygen concentration unit 10B. Migrate. When the pressure in the oxygen concentration section 10A is equalized to atmospheric pressure, the pressure equalizing flow path opening / closing valve 90 is closed, and the control section controls the switching section 20 and the pressure adjustment section 30 to set the pressure in the oxygen concentration section 10A. The exhaust is started to shift to the regeneration state 220 (see FIG. 4A). At this time, the adsorbed nitrogen and moisture are exhausted from the inside of the oxygen concentration unit 10A, and the oxygen concentration unit 10A is regenerated.

その後、酸素濃縮部10Bが生成する酸素によって酸素分圧検出部100において酸素分圧が所定の値になったならば(図4(B)の酸素生成状態200)、制御部は、均圧流路開閉弁90を開状態にすると同時に、切り替え部20と圧力調整部30を制御し、制御部は酸素濃縮器1を、酸素濃縮部10Bから酸素を酸素濃縮部10Aへと送気し、酸素濃縮部10A内を洗浄するフラッシング状態210(図4(B)参照)に移行させる。   Thereafter, if the oxygen partial pressure in the oxygen partial pressure detection unit 100 reaches a predetermined value due to oxygen generated by the oxygen concentration unit 10B (the oxygen generation state 200 in FIG. 4B), the control unit At the same time as opening the on-off valve 90, the switching unit 20 and the pressure adjusting unit 30 are controlled, and the control unit supplies oxygen from the oxygen concentrating unit 10B to the oxygen concentrating unit 10A to control oxygen concentration The state is shifted to the flushing state 210 (see FIG. 4B) in which the inside of the section 10A is cleaned.

酸素濃縮器1は、以下このような圧力変化を、例えば数十秒周期でおこなうことで、連続して高濃度の酸素を生成することができる。   The oxygen concentrator 1 can continuously generate high concentration oxygen by performing such pressure change in a cycle of, for example, several tens of seconds.

本発明の実施形態に懸かる酸素濃縮器1によれば、複数の酸素濃縮部10について、例えば一方の酸素濃縮部10Aが生成した酸素を、他方の酸素濃縮部10Bへ送気して大気圧に戻すフラッシング状態において、常に酸素ガスが均圧流路開閉弁を同じ向きに流れる。したがって流路で受ける抵抗に変化が少なくなるので、各々の酸素濃縮部10の再生時間に差が少なくなり、使用者に供給される高濃度酸素の酸素濃度の変動が生じにくいという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, for the plurality of oxygen concentrating units 10, for example, the oxygen generated by one oxygen concentrating unit 10A is supplied to the other oxygen concentrating unit 10B to be at atmospheric pressure. In the flushing state to be returned, oxygen gas always flows in the same direction through the pressure equalizing passage on-off valve. Therefore, since the change in the resistance received in the flow path is reduced, the difference in the regeneration time of each oxygen concentration unit 10 is reduced, and the excellent effect is obtained that the fluctuation of the oxygen concentration of high concentration oxygen supplied to the user is less likely to occur. Play.

本発明の実施形態に懸かる酸素濃縮器1によれば、均圧流路150と共用流路140の間に、均圧流路開閉弁90として安価な二方向の開閉弁を設けることで、使用者に供給される高濃度酸素の酸素濃度の変動が生じにくいという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, by providing an inexpensive two-way on-off valve as the pressure equalizing flow path on-off valve 90 between the pressure equalizing flow path 150 and the common flow path 140 The excellent effect is obtained that fluctuation of the oxygen concentration of the high concentration oxygen supplied is unlikely to occur.

本発明の実施形態に懸かる酸素濃縮器1によれば、酸素案内流路160が複数の酸素濃縮部10の各々に接続される副流路120と、接続点80で接続されて酸素タンク40に繋がる主流路155を備え、副流路120のそれぞれが酸素案内流路逆止弁60を有し、主流路155が主流路逆止弁65を更に有するので、使用者に対して供給するガスにおいて酸素濃度の変動が少ないという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, the oxygen guiding flow passage 160 is connected to the sub flow passage 120 connected to each of the plurality of oxygen concentrating units 10 at the connection point 80 and is connected to the oxygen tank 40 As the main flow path 155 is connected, each of the sub flow paths 120 has the oxygen guide flow path check valve 60, and the main flow path 155 further has the main flow path check valve 65, the gas supplied to the user The excellent effect is obtained that the change in oxygen concentration is small.

本発明の実施形態に懸かる酸素濃縮器1によれば、酸素濃縮部10の各々が酸素濃縮触媒を有するので、少なくとも一つの酸素濃縮部10が酸素を生成している間に、他の酸素濃縮部10から窒素などを脱離させる再生動作が可能であるになり、連続して濃度変動の少ない高濃度酸素を提供しうるという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, since each of the oxygen concentrators 10 has an oxygen concentration catalyst, while the at least one oxygen concentrator 10 is producing oxygen, the other oxygen concentrators It becomes possible to perform a regenerating operation for desorbing nitrogen and the like from the part 10, and it is possible to continuously provide high concentration oxygen with little concentration variation.

本発明の実施形態に懸かる酸素濃縮器1によれば、主流路逆止弁65よりも下流側で酸素タンク40の酸素分圧を検出できるので、連続して濃度変動の少ない高濃度酸素を提供しうるという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, since the oxygen partial pressure of the oxygen tank 40 can be detected on the downstream side of the main flow path check valve 65, high concentration oxygen with less concentration fluctuation can be provided continuously. An excellent effect of being able to

本発明の実施形態に懸かる酸素濃縮器1によれば、例えば一方の酸素濃縮部10Aで生成した酸素を、他方の再生後の酸素濃縮部10Bへ送気することで大気圧に戻して酸素濃縮を再開させることができるので、連続して濃度変動の少ない高濃度酸素を提供しうるという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, for example, the oxygen generated in one oxygen concentrating unit 10A is returned to the atmospheric pressure by supplying the oxygen regeneration unit 10B after the other regeneration to oxygen concentration The present invention has an excellent effect of continuously providing high concentration oxygen with little concentration variation.

本発明の実施形態に懸かる酸素濃縮器1によれば、複数の酸素濃縮部100が各々、酸素生成状態200と、フラッシング状態210と、再生状態220と、均圧状態230を含む制御をおこなうので、交互に酸素生成と窒素脱離を繰り返すことができ、連続して濃度変動の少ない高濃度酸素を提供しうるという優れた効果を奏する。   According to the oxygen concentrator 1 according to the embodiment of the present invention, the plurality of oxygen concentrators 100 perform control including the oxygen generation state 200, the flushing state 210, the regeneration state 220, and the pressure equalization state 230. It has an excellent effect that oxygen generation and nitrogen desorption can be alternately repeated, and high concentration oxygen with less concentration fluctuation can be provided continuously.

尚、本発明の酸素濃縮器は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The oxygen concentrator according to the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

例えば、変形実施例としては、酸素濃縮部10を3つ以上設けても良い。この場合にはそれぞれの酸素濃縮部10に対応する、ガス交換流路119と、副流路120と、酸素案内流路逆止弁60と、分配流路逆止弁70等が必要になってくることは言うまでもない。   For example, as a modified embodiment, three or more oxygen concentrators 10 may be provided. In this case, the gas exchange flow passage 119, the sub flow passage 120, the oxygen guide flow passage check valve 60, the distribution flow passage check valve 70, and the like corresponding to the respective oxygen concentration units 10 are required. Needless to say.

またここではマスク50で使用者に供給される酸素濃度の把握のために、酸素分圧検出部100を用いたが、流量計や通常の圧力計を用いても良い。   Further, although the oxygen partial pressure detection unit 100 is used here to grasp the oxygen concentration supplied to the user by the mask 50, a flow meter or a normal pressure gauge may be used.

1 酸素濃縮器
10 酸素濃縮部
20 切り替え部
30 圧力調整部
40 酸素タンク
50 マスク
60 酸素案内流路逆止弁
65 主流路逆止弁
70 分配流路逆止弁
75 分岐点
80 接続点
90 均圧流路開閉弁
100 酸素分圧検出部
115 圧縮ガス送気流路
117 排気流路
119 ガス交換流路
120 副流路
130 バイパス流路
140 共用流路
150 均圧流路
155 主流路
160 酸素案内流路
200 酸素生成状態
210 フラッシング状態
220 再生状態
230 均圧状態
301 酸素濃縮器
310 酸素濃縮部
320 切り替え部
330 圧力調整部
340 酸素タンク
350 マスク
360 逆止弁
370 均圧流路開閉弁
372 ソレノイド組立品
374 コア組立品
376 第一ポート
378 第二ポート
380 バイパス流路
390 スプリング付き逆止弁
400 主流路
410 酸素分圧検出部
Reference Signs List 1 oxygen concentrator 10 oxygen concentrating unit 20 switching unit 30 pressure adjusting unit 40 oxygen tank 50 mask 60 oxygen guide passage check valve 65 main passage check valve 70 distribution passage check valve 75 branch point 80 connection point 90 pressure equalizing flow Path opening / closing valve 100 Oxygen partial pressure detection unit 115 Compressed gas air supply flow path 117 Exhaust flow path 119 Gas exchange flow path 120 Secondary flow path 130 Bypass flow path 140 Shared flow path 150 Pressure equalizing flow path 155 Main flow path 160 Oxygen guide flow path 200 Oxygen Production state 210 Flushing state 220 Regeneration state 230 Pressure equalization state 301 Oxygen concentrator 310 Oxygen concentration part 320 Switching part 330 Pressure adjustment part 340 Oxygen tank 350 Mask 360 Check valve 370 Pressure equalizing open / close valve 372 Solenoid assembly 374 Core assembly 376 first port 378 second port 380 bypass flow path With 90 a spring check valve 400 main channel 410 oxygen partial pressure detector

Claims (8)

高濃度の酸素を生成する複数の酸素濃縮部と、
使用者に送気される前記高濃度の酸素が貯留される酸素タンクと、
複数の前記酸素濃縮部の各々と、前記酸素タンクを接続し、前記高濃度の酸素を前記酸素濃縮部から前記酸素タンクまで案内する複数の酸素案内流路と、
複数の前記酸素案内流路内に各々設けられ、前記酸素タンクから複数の前記酸素濃縮部への前記高濃度の酸素の逆流を防止する複数の酸素案内流路逆止弁と、
複数の前記酸素案内流路における前記案内路逆止弁よりも下流側又は前記酸素タンクに一方が接続されると共に、他方が均圧流路開閉弁に接続される均圧流路と、
複数の前記酸素案内流路におけるそれぞれの前記案内路逆止弁よりも上流側に一方が接続されると共に、他方が前記均圧流路開閉弁に接続される複数の分配流路と、
複数の前記分配流路内に各々設けられ、前記酸素案内流路側から前記均圧流路開閉弁への前記高濃度酸素の流れを規制し、前記均圧流路から前記酸素案内流路側への前記高濃度酸素の流れを許容する、複数の分配流路逆止弁と
を備え、
前記均圧流路開閉弁を開くことにより、前記均圧流路側から前記分配流路側に前記高濃度の酸素が流れることを特徴とする酸素濃縮器。
Multiple oxygen concentrators that produce high concentrations of oxygen,
An oxygen tank in which the high concentration of oxygen supplied to the user is stored;
A plurality of oxygen guiding flow paths, each of which is connected to the oxygen tank, and which guides the high concentration of oxygen from the oxygen concentrating unit to the oxygen tank;
A plurality of oxygen guiding channel check valves respectively provided in the plurality of oxygen guiding channels and preventing backflow of the high concentration oxygen from the oxygen tank to the plurality of the oxygen concentration sections;
A pressure equalizing flow path in which one side is connected to a downstream side of the guide path check valve in the plurality of oxygen guide flow paths or the oxygen tank and the other side is connected to the pressure equalizing flow path on-off valve;
A plurality of distribution channels, one of which is connected to the upstream side of each of the guide passage check valves in the plurality of oxygen guide channels, and the other of which is connected to the pressure equalizing channel on-off valve;
A plurality of distribution channels are respectively provided to regulate the flow of the high concentration oxygen from the oxygen guide channel side to the pressure equalizing channel on-off valve, and the height from the pressure equalizing channel to the oxygen guide channel side And a plurality of distribution passage check valves for allowing the flow of concentration oxygen,
The oxygen concentrator characterized in that the high concentration oxygen flows from the pressure equalizing flow path side to the distribution flow path side by opening the pressure equalizing flow path on-off valve.
複数の前記分配流路は、
複数の前記酸素案内流路同士を繋げるバイパス流路と
前記均圧流路開閉弁に一方が接続されると共に、前記バイパス流路の途中の分岐点に他方が接続される共用流路と
を備えて構成されることを特徴とする請求項1に記載の酸素濃縮器。
The plurality of distribution channels are
A bypass flow path connecting a plurality of the oxygen guide flow paths, and a common flow path connected to one end to the pressure equalizing flow path on-off valve and the other connected to a branch point in the middle of the bypass flow path The oxygen concentrator of claim 1, wherein the oxygen concentrator is configured.
複数の前記酸素案内流路は、
前記酸素タンクに接続される主流路と、
前記酸素濃縮部の各々に一方が接続されると共に、前記主流路に他方が接続される複数の副流路とを有し、
複数の前記酸素案内流路逆止弁は、複数の前記副流路内にそれぞれ設けられ、更に前記主流路内における前記副流路との接続点よりも下流側に設けられ、前記酸素タンクから前記副流路への逆流を防止する主流路逆止弁を備えることを特徴とする請求項1または請求項2に記載の酸素濃縮器。
The plurality of oxygen guiding channels are
A main flow path connected to the oxygen tank;
One of the plurality of sub-flow channels is connected to one of the oxygen concentration sections and the other is connected to the main flow channel,
A plurality of the oxygen guide passage check valves are respectively provided in the plurality of the sub-passages, and further provided downstream of a connection point with the sub-passage in the main passage, from the oxygen tank The oxygen concentrator according to claim 1 or 2, further comprising a main flow check valve that prevents reverse flow to the sub flow.
複数の前記酸素濃縮部は、酸素濃縮触媒を備えることを特徴とする請求項1から請求項3のうちのいずれか一項に記載の酸素濃縮器。   The oxygen concentrator according to any one of claims 1 to 3, wherein the plurality of the oxygen concentration units include an oxygen concentration catalyst. 前記使用者に送気されるガス中の酸素分圧を検出する酸素分圧検出部を備えることを特徴とする請求項1から請求項4のうちのいずれか一項に記載の酸素濃縮器。   The oxygen concentrator according to any one of claims 1 to 4, further comprising an oxygen partial pressure detection unit that detects an oxygen partial pressure in a gas supplied to the user. 複数の前記酸素濃縮部の圧力を調整する圧力調整部と、
複数の前記酸素濃縮部を切り替える切り替え部と、
前記酸素分圧検出部で検出された前記酸素分圧に基づいて、前記切り替え部と前記均圧流路開閉弁を制御する制御部と
を備え、
前記圧力調整部は複数の前記酸素濃縮部の上流側に設けられ、前記切り替え部は前記圧力調整部と複数の前記酸素濃縮部の間に設けられることを特徴とする請求項5に記載の酸素濃縮器。
A pressure adjustment unit that adjusts the pressure of the plurality of the oxygen concentration units;
A switching unit that switches a plurality of the oxygen concentration units;
And a control unit configured to control the switching unit and the pressure equalizing flow path on-off valve based on the oxygen partial pressure detected by the oxygen partial pressure detection unit,
The oxygen according to claim 5, wherein the pressure adjusting unit is provided upstream of the plurality of oxygen concentrating units, and the switching unit is provided between the pressure adjusting unit and the plurality of oxygen concentrating units. Concentrator.
前記制御部は、前記酸素分圧検出部で検出された前記酸素分圧が所定の値になったときに、前記均圧流路開閉弁を開の状態にすることで、少なくとも一つの前記酸素濃縮部が生成した前記高濃度酸素を、前記均圧流路と前記分配流路を介して、他の少なくとも一つの前記酸素濃縮部へ送気する制御を行うことを特徴とする請求項6に記載の酸素濃縮器。   When the oxygen partial pressure detected by the oxygen partial pressure detection unit reaches a predetermined value, the control unit opens the pressure equalizing flow path on-off valve to allow at least one of the oxygen concentration steps to be performed. 7. The system according to claim 6, wherein the high concentration oxygen generated by the unit is controlled to be supplied to at least one other oxygen concentration unit via the pressure equalizing channel and the distribution channel. Oxygen concentrator. 前記制御部は、前記酸素濃縮部で、
前記高濃度の酸素を生成する酸素生成状態と、
一方の酸素濃縮部で生成した前記高濃度の酸素を、他方の前記酸素濃縮部へ送気してフラッシング状態と、
吸着した窒素や水分を脱離させる再生状態と、
前記酸素濃縮部の圧力を大気圧に戻す均圧状態と
を含むように制御を行うことを特徴とする請求項6又は請求項7に記載の酸素濃縮器。
The control unit may include the oxygen concentration unit.
An oxygen generation state that generates the high concentration of oxygen;
The high concentration oxygen generated in one oxygen concentration unit is supplied to the other oxygen concentration unit to perform a flushing state,
Regenerated state to desorb adsorbed nitrogen and moisture,
The oxygen concentrator according to claim 6 or 7, wherein control is performed so as to include a pressure equalization state in which the pressure of the oxygen concentration unit is returned to the atmospheric pressure.
JP2017184326A 2017-09-26 2017-09-26 Oxygen concentrator Active JP7022418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184326A JP7022418B2 (en) 2017-09-26 2017-09-26 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184326A JP7022418B2 (en) 2017-09-26 2017-09-26 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2019058299A true JP2019058299A (en) 2019-04-18
JP7022418B2 JP7022418B2 (en) 2022-02-18

Family

ID=66175719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184326A Active JP7022418B2 (en) 2017-09-26 2017-09-26 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP7022418B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731825A (en) * 1993-07-20 1995-02-03 Tokico Ltd Gas separator
JPH1157375A (en) * 1997-08-13 1999-03-02 Nippon Sanso Kk Separation of gas
JP2017509472A (en) * 2013-12-20 2017-04-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Oxygen separator with rapid diagnosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731825A (en) * 1993-07-20 1995-02-03 Tokico Ltd Gas separator
JPH1157375A (en) * 1997-08-13 1999-03-02 Nippon Sanso Kk Separation of gas
JP2017509472A (en) * 2013-12-20 2017-04-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Oxygen separator with rapid diagnosis

Also Published As

Publication number Publication date
JP7022418B2 (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP5357264B2 (en) Oxygen concentrator
JP4816590B2 (en) Method for shutting down oxygen concentrator and oxygen concentrator
US8945278B2 (en) Method and apparatus for concentrating ozone gas
KR20170046739A (en) Methods of operating pressure swing adsorption purifiers with electrochemical hydrogen compressors
CN107073238B (en) Oxygen concentration device
JP2019058299A (en) Oxygen concentrator
JP7064835B2 (en) Gas separator
JP2015150209A (en) oxygen concentrator
JP5007610B2 (en) Oxygen concentrator design method
JP4798076B2 (en) Oxygen concentrator
JP7037040B2 (en) Low oxygen concentration air supply device
JP2014014797A (en) Purging method by gas separating device and gas separating device
JP7454100B2 (en) Oxygen concentrator, control method and control program
JP4594223B2 (en) Nitrogen gas generator
JP2006062932A (en) Oxygen concentrator
US20240131466A1 (en) Oxygen enrichment device, control method and control program
WO2024063041A1 (en) Oxygen concentration device
JP2009273623A (en) Oxygen enricher
KR102684360B1 (en) oxygen concentrator
JP2008178795A (en) Oxygen concentrator
JP2008173284A (en) Adsorption oxygen concentrator
JP2006008464A (en) Oxygen concentrator
JP2009142380A (en) Oxygen concentrator
JP2013094753A (en) Method for purging gas adsorption apparatus, and gas adsorption apparatus
JP2001252519A (en) Oxygen concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7022418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150