JPH0226610A - Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process - Google Patents

Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process

Info

Publication number
JPH0226610A
JPH0226610A JP63176369A JP17636988A JPH0226610A JP H0226610 A JPH0226610 A JP H0226610A JP 63176369 A JP63176369 A JP 63176369A JP 17636988 A JP17636988 A JP 17636988A JP H0226610 A JPH0226610 A JP H0226610A
Authority
JP
Japan
Prior art keywords
gas
separation membrane
raw material
adsorption tower
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63176369A
Other languages
Japanese (ja)
Inventor
Hidenobu Toyotomi
豊臣 英延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HITACHI KENSETSU KK
Original Assignee
HITACHI KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HITACHI KENSETSU KK filed Critical HITACHI KENSETSU KK
Priority to JP63176369A priority Critical patent/JPH0226610A/en
Publication of JPH0226610A publication Critical patent/JPH0226610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dry gas of low dew point and also to keep a high dehumidification performance even when an operation gas pressure is low without consuming a large amount of dry virgin gas for purging by introducing a desorbed off-gas out of an adsorption tower to outer sides of separation membranes. CONSTITUTION:Raw air is pressurized by a compressor 4 and sent to an adsorption tower 1 through an air supply piping 5 and a valve 8 after dehumidified by separation membranes 3. Nitrogen is adsorbed by the adsorption tower 1 and separated oxygen, which is not adsorbed, is sent to a product tank 17 through a valve 12. On the other hand, nitrogen adsorbed by the adsorption tower 2 in the previous process is discharged through the outer paths of the separation membranes 3 while reducing a pressure in the adsorption tower 2 to atmospheric pressure. A dry air of lower dew point is thus obtained, because the outer sides of the membranes 3 are purged by this discharge operation and the partial pressure of water vapor in the outer sides of the membranes 3 is lowered. Next, the operations of adsorption towers 1, 2 are changed over and the desorbed nitrogen from the adsorption tower 1 is introduced to the outer sides of the membranes 3 and purges them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力変動吸着分離装置における原料ガスの除
湿システムに係り、より詳細には、空気原料等の原料ガ
スより圧力変動吸着分離によって酸素、窒素等のガスを
分離するための圧力変動吸着分離装置における原料ガス
を、より低露点の乾燥原料ガスとするようにした圧力変
動吸着分離装置における原料ガスの除湿システムに関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a dehumidification system for a raw material gas in a pressure fluctuation adsorption separation device, and more specifically, to a dehumidification system for dehumidifying a raw material gas such as an air feedstock by pressure fluctuation adsorption separation. , relates to a system for dehumidifying raw material gas in a pressure fluctuation adsorption separation apparatus for separating gases such as nitrogen, in which the raw material gas in the pressure fluctuation adsorption separation apparatus is made into a dry raw material gas with a lower dew point.

〔従来の技術〕[Conventional technology]

従来、圧力変動吸着分離装置においては、原料空気等の
原料ガスより酸素(0□)等を吸着分離するに際し、水
分等を吸着塔内で一連して分離したり、吸着塔の前段に
除湿装置を設け、該吸着塔に供給する原料ガス中より、
予め、水分の除去、喚言すれば、除湿するようにしてい
る。
Conventionally, in pressure fluctuation adsorption separation equipment, when adsorbing and separating oxygen (0□) etc. from raw material gas such as raw material air, moisture etc. are separated in series in an adsorption tower, or a dehumidification device is installed before the adsorption tower. is provided, and from the raw material gas supplied to the adsorption tower,
I try to remove moisture in advance, and if requested, dehumidify.

そして、吸着分離装置において用いられる除湿装置とし
ては、通常、冷却除去による構成のものが用いられてい
る。しかし、該構成の場合、凝縮水のドレンが出るため
、その取り扱いに難点がなる等の問題がある。
As a dehumidifying device used in an adsorption separation device, one having a structure that performs cooling removal is usually used. However, in the case of this configuration, since condensed water drains, there are problems such as difficulty in handling the condensed water.

ところで、近年、技術の進歩により、物質を選択的に透
過させる分離機能膜を用いる除湿法がある。この除湿法
は、具体的には、「分離膜を隔てて高圧側と低圧側に保
持するとガス成分は高圧側から分離膜に熔解し、該分離
膜中を拡散移動し低圧側から拡散する。そして、高分子
ポリイミド等による分離膜では、水蒸気の透過速度定数
が空気の定数に比べて数百倍大きいので、選択性をもち
、効率の良い除湿が可能となり、低露点の乾燥ガスが得
られる。jという分離膜の特性を利用し、分N膜により
得られた乾燥ガスの一部を分離膜の透過側(低圧透過側
)にパージすることにより分離膜の透過側(低圧透過側
)の水蒸気(Hl O)モル分率を下げるようにしてい
る方法である。
By the way, in recent years, due to advances in technology, there is a dehumidification method that uses a separation membrane that selectively allows substances to pass through. Specifically, this dehumidification method is explained as follows: When a separation membrane is separated between a high pressure side and a low pressure side, gas components are melted into the separation membrane from the high pressure side, diffused through the separation membrane, and diffused from the low pressure side. Separation membranes made of polymeric polyimide, etc., have a water vapor permeation rate constant several hundred times larger than that of air, making it possible to perform selective and efficient dehumidification and obtain dry gas with a low dew point. Utilizing the characteristics of the separation membrane called .j, the permeation side (low pressure permeation side) of the separation membrane is This method is designed to reduce the water vapor (Hl 2 O) molar fraction.

そして、この方法によれば、簡単な構成でもって、原料
ガスの除湿が行え、かつ第4図に示すような除湿の性能
曲線が得られる。
According to this method, the raw material gas can be dehumidified with a simple configuration, and a dehumidification performance curve as shown in FIG. 4 can be obtained.

そこで、本発明者は、上述した点に鑑み、圧力変動吸着
分離装置において、その吸着塔の前段に分離膜を配設し
、その原料ガスの除湿を該分、#膜を用いて行うことを
創案した。
Therefore, in view of the above-mentioned points, the present inventor has proposed a method in which a separation membrane is disposed upstream of the adsorption tower in a pressure fluctuation adsorption separation device, and the raw material gas is dehumidified using the # membrane. Invented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、分N膜による加圧ガスの脱湿では、再生サイク
ルなしで、低露点の乾燥ガスが連続的に得られる特徴は
あるが、このためには、分離膜の透過側(低圧透過側)
に製品となるべき乾燥バージン空気の多くの量をパージ
しなければ、低露点の空気が得られないという問題のあ
ることが判明した。また、使用ガス圧力が、2kir/
−以下の場合、除湿性能は低く利用範囲が制約を受ける
等の問題もある0例えば、空気圧力5kt/−で、大気
圧露点−50℃の乾燥ガスを得ようとすれば、その製品
ガス収率は50%となり、また、ガス圧力2kg/cd
で、製品空気収率を50%とすれば、大気圧露点は一1
7℃程度の乾燥ガスしか得られないB題もある。
However, dehumidification of pressurized gas using a membrane has the feature that dry gas with a low dew point can be obtained continuously without a regeneration cycle.
It has been found that there is a problem in that air with a low dew point cannot be obtained unless a large amount of dry virgin air, which is to be used as a product, is purged. Also, the gas pressure used is 2kir/
- In the following cases, there are problems such as low dehumidification performance and restrictions on the range of use. For example, if you try to obtain dry gas with an atmospheric pressure dew point of -50°C at an air pressure of 5 kt/-, the product gas The rate is 50%, and the gas pressure is 2kg/cd.
If the product air yield is 50%, the atmospheric pressure dew point is -11.
There is also a case B where only dry gas of about 7°C can be obtained.

本発明は、上述したような問題に対処して創案したもの
であって、その目的とする処は、大量のパージ用の乾燥
バージンガスを消費することなく、より低露点の乾燥ガ
スを得ると同時に、使用ガス圧力が低い場合でも高い除
湿性能をもつ圧力変動吸着分離装置における原料ガスの
除湿システムを提供することにある。
The present invention was devised in response to the above-mentioned problems, and its purpose is to obtain a dry gas with a lower dew point without consuming a large amount of dry virgin gas for purging. At the same time, it is an object of the present invention to provide a dehumidifying system for raw material gas in a pressure fluctuation adsorption separation device that has high dehumidifying performance even when the gas pressure used is low.

〔問題点を解決するための手段〕[Means for solving problems]

そして、上記目的を達成するための手段としての本発明
の圧力変動吸着分離装置における原料ガスの除湿システ
ムは、原料ガスより圧力変動吸着分離によって酸素、窒
素等のガスを分離するための圧力変動吸着分離装置にお
いて、吸着塔の前段に分離膜を配置し、該分離膜に該吸
着塔への供給用の原料ガスである湿り加圧ガスを供給し
て乾燥ガスを得た後、該乾燥ガスを該吸着塔により分離
ガスと脱着排ガスとに分離し、該脱着排ガスを分離膜の
外側に導入パージすることにより、該分離膜の透過側の
水蒸気モル分率を下げて分離膜の非透過側に低露点の乾
燥原料ガスを得るようにした構成よりなる。
The dehumidification system for raw gas in the pressure fluctuation adsorption separation apparatus of the present invention as a means for achieving the above object is a pressure fluctuation adsorption system for separating gases such as oxygen and nitrogen from the raw material gas by pressure fluctuation adsorption separation. In the separation device, a separation membrane is placed upstream of the adsorption tower, and a wet pressurized gas, which is a raw material gas for supplying to the adsorption tower, is supplied to the separation membrane to obtain dry gas, and then the dry gas is The adsorption tower separates the separated gas and the desorbed exhaust gas, and the desorbed exhaust gas is introduced to the outside of the separation membrane and purged, thereby lowering the water vapor molar fraction on the permeate side of the separation membrane and causing it to flow to the non-permeate side of the separation membrane. The structure is designed to obtain dry raw material gas with a low dew point.

また、上記構成において、分離膜透過外側を真空負圧と
し、該分離膜を隔てて差圧を大きくし、吸着塔による脱
着排ガスを負圧導入し、分ji11膜の透過側の水蒸気
モル分率を下げ、分離膜の非透過側に低露点の乾燥原料
ガスを得るようにした構成、真空ポンプで吸引した脱着
排ガスを分#膜の外側に導入パージし、分離膜の透過側
の水蒸気モル分率を下げ、分jiII膜の非透過側に低
露点の乾燥原料ガスを得るようにした構成としてもよい
In addition, in the above configuration, the outside of the separation membrane permeation is set to a vacuum negative pressure, the pressure difference is increased across the separation membrane, the desorbed exhaust gas from the adsorption tower is introduced under negative pressure, and the water vapor molar fraction on the permeation side of the membrane is reduced. The structure is designed to lower the dew point and obtain dry raw material gas with a low dew point on the non-permeate side of the separation membrane, and the desorbed exhaust gas sucked in by a vacuum pump is introduced to the outside of the membrane for purging, and the water vapor molar content on the permeate side of the separation membrane is reduced. It is also possible to have a configuration in which the dry raw material gas with a low dew point is obtained on the non-permeable side of the Minji II membrane by lowering the rate.

〔作用〕[Effect]

そして、上記構成に基づく本発明の圧力変動吸着分離装
置における原料ガスの除湿システムの作用について説明
する。
Next, the operation of the raw material gas dehumidification system in the pressure fluctuation adsorption separation apparatus of the present invention based on the above configuration will be explained.

まず、加圧された湿り原料ガスを分離膜を隔てて、その
高圧側と低圧側を保持すると、水蒸気ガス成分は、分M
膜の高圧側(非透過側)から分離膜に溶解し、該分離膜
の中を拡散移動して低圧側から放散する。そして、水蒸
気が分離膜の外側へ選択的に透過して、その結果、非透
過側に乾燥ガスが得られる。この乾燥ガスを圧力変動吸
着分離装置における原料ガスとして、その吸着塔に供給
すると、圧力変動吸着分離によって製品ガスと脱排ガス
とに分離され、脱着操作工程で排出される乾燥した該脱
着排ガスを分離膜の外側に導入パージすることによって
、分離膜の非i3遇側に低露点の乾燥ガスが安定して得
られるように作用する。
First, when pressurized wet raw material gas is separated by a separation membrane and its high pressure side and low pressure side are held, the water vapor gas component is
It is dissolved in the separation membrane from the high-pressure side (non-permeation side) of the membrane, diffuses through the separation membrane, and radiates from the low-pressure side. Water vapor then selectively permeates to the outside of the separation membrane, resulting in dry gas being obtained on the non-permeable side. When this dry gas is supplied to the adsorption tower as a raw material gas in a pressure fluctuation adsorption separation device, it is separated into product gas and desorbed exhaust gas by pressure fluctuation adsorption separation, and the dried desorbed exhaust gas discharged in the desorption operation process is separated. By introducing and purging the outside of the membrane, it acts to stably obtain dry gas with a low dew point on the non-conducting side of the separation membrane.

すなわち、透過外側の水蒸気(H,o)のモル分圧を下
げる度合いによって、得られる乾燥空気の露点が調節で
きるように作用する 以上のように、本発明の圧力変動吸着分離装置における
原料ガスの除湿システムは、圧力変動吸着分離装置の吸
着塔の前段に分離膜を配設し、分離膜の外側に、吸着塔
における脱着操作工程で排出される乾燥した該脱着排ガ
スを導入パージとした点に特徴を有し、この点によって
、分離ガスや、分離膜より得られた原料乾燥ガス自体を
パージガスとする必要がなく、かつ原料乾燥ガスを消費
させることがないと共に、無動力で簡単な構成として得
られるいう格別な作用を奏するシステムである。
In other words, the dew point of the resulting dry air can be adjusted depending on the degree to which the molar partial pressure of water vapor (H, o) on the outside of the permeation is lowered. The dehumidification system has a separation membrane disposed upstream of the adsorption tower of the pressure fluctuation adsorption separation device, and the dried desorption exhaust gas discharged during the desorption operation process in the adsorption tower is introduced and purged outside the separation membrane. Due to this feature, there is no need to use the separation gas or the raw material dry gas itself obtained from the separation membrane as a purge gas, and there is no need to consume the raw material dry gas, and it is non-powered and has a simple configuration. This is a system that provides an exceptional effect.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明を具体化した実施例
について説明する。
Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.

ここに、第1図は本発明の一実施例を示す系統図、第2
.3図は本発明の他の実施例の系統図である。
Here, FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG.
.. FIG. 3 is a system diagram of another embodiment of the present invention.

本実施例の圧力変動吸着分離装置は、原料空気より窒素
(N2)を加圧吸着し、その後、吸着塔を減圧して窒素
を排出して、該吸着塔を再生しながら、非吸着物である
酸素(o2)のみを分離して連続的に生成する酸素fM
縮装置であって、概略すると、吸着塔1.2と、分離膜
3および圧縮機4とより構成されている。
The pressure fluctuation adsorption separation device of this embodiment adsorbs nitrogen (N2) from feed air under pressure, then depressurizes the adsorption tower to discharge nitrogen, and while regenerating the adsorption tower, removes non-adsorbable substances. Oxygen fM that is continuously generated by separating only a certain oxygen (o2)
The compression apparatus is roughly composed of an adsorption tower 1.2, a separation membrane 3, and a compressor 4.

吸着塔1.2は、ゼオライト等の吸着剤を備えた窒素の
加圧吸着、減圧脱着を行わせるための窒素吸着塔である
。吸着塔1.2は、並列に接続されていて、交互に、加
圧吸着、減圧脱着を行うことができるように空気供給用
連結管5によって接続されている。すなわち、吸着塔1
.2は原料空気供給口6.7を有し、該供給口には原料
空気(乾燥原料空気)が弁8.9および空気供給用連結
管5を介して、それぞれに交互に供給できるように接続
され、また、吸着塔1.2の分離酸素送出口10.11
には、非吸着の分離酸素を交互に送出するための弁12
.13を介して接続され、また、吸着塔1.2の脱着排
窒素ガス排出口(図面においては原料空気供給口6.7
と兼用)には弁14.15および脱着排窒素ガス排出用
連結管16とそれぞれ接続されている。そして、弁8,
9は、分離酸素を蓄える製品タンク17に接続されてい
る。
The adsorption tower 1.2 is a nitrogen adsorption tower equipped with an adsorbent such as zeolite for performing pressurized adsorption and reduced pressure desorption of nitrogen. The adsorption towers 1.2 are connected in parallel and are connected by an air supply connecting pipe 5 so that pressure adsorption and reduced pressure desorption can be performed alternately. That is, adsorption tower 1
.. 2 has a raw material air supply port 6.7, which is connected to the supply port so that raw material air (dry raw material air) can be alternately supplied to each via a valve 8.9 and an air supply connecting pipe 5. and the separated oxygen outlet 10.11 of the adsorption column 1.2.
includes a valve 12 for alternately delivering non-adsorbed separated oxygen;
.. 13, and is also connected to the desorption exhaust nitrogen gas outlet of the adsorption tower 1.2 (in the drawing, the raw air supply port 6.7
The valves 14 and 15 and the connecting pipe 16 for discharging desorbed and exhaust nitrogen gas are connected to the valves 14 and 15, respectively. And valve 8,
9 is connected to a product tank 17 that stores separated oxygen.

分離膜3は、吸着塔1,2に供給する原料酸素中の水分
(H□O)を除去し、乾燥空気とするための分i11膜
である0分離膜3は、通常、高分子ポリイミド膜が用い
られている。しかし、エチルセルロース等地の膜を用い
た構成としてもよい。そして、分離膜3の高圧側(非透
過側・湿り空気供給側)−には圧縮機4が接続され、圧
縮機4によって加圧された原料空気を、その低圧側(透
過側・乾燥空気受給側)に送ることができるように接続
され、また、分離膜3の低圧側は空気供給用連結管5と
接続されている。また、分離膜3の外側は脱排窒素ガス
排出用連結管16と接続され、吸着後の脱徘窒素ガスを
導入パージできるようにしている。
The separation membrane 3 is a membrane for removing moisture (H□O) from the raw material oxygen supplied to the adsorption towers 1 and 2 to produce dry air.The separation membrane 3 is usually a polymeric polyimide membrane. is used. However, a structure using a membrane made of ethyl cellulose or the like may also be used. A compressor 4 is connected to the high-pressure side (non-permeate side, humid air supply side) of the separation membrane 3, and the raw air pressurized by the compressor 4 is transferred to its low-pressure side (permeate side, dry air receiving side). The low pressure side of the separation membrane 3 is connected to a connecting pipe 5 for supplying air. Further, the outside of the separation membrane 3 is connected to a connection pipe 16 for discharging denitrified gas, so that the denitrified nitrogen gas after adsorption can be introduced and purged.

そして、上記構成に基づく、圧力変動吸着分離装置は、
吸着塔1.2の加圧吸着、減圧吸着操作を交互に切り換
えて行うようことにより、分離酸素を得ることができる
と共に、原料酸素を分離膜3と吸着後の脱着排窒素ガス
とによって乾燥原料空気を得るように作用する。
The pressure fluctuation adsorption separation device based on the above configuration is
By alternately switching between pressurized adsorption and reduced pressure adsorption operations in the adsorption tower 1.2, separated oxygen can be obtained, and the raw material oxygen is converted into a dry raw material by the separation membrane 3 and the desorbed exhaust nitrogen gas after adsorption. It acts to obtain air.

すなわち、第1図において、原料空気は圧縮機4で加圧
され、圧縮空気は、分離膜3で脱湿される。そして、脱
湿された原料空気は、空気供給用連結管5と弁8.9を
介して吸着塔1.2に交互に送られ、まず、吸着塔lで
吸着工程が行われ、吸着塔2で脱着工程が行われる。こ
の場合、弁8.12は開、弁9.13は閉である。そし
て、この弁操作によって、原料空気は、圧縮機4、分離
膜3、弁8を通じ、吸着塔1に供給される。吸着塔lに
よって、窒素は吸着され、非吸着の分離酸素の大部分は
弁14を介して製品タンク17に送られる。一方、吸着
塔2は、前工程で吸着した窒素を弁9を開として分離膜
3の透過外側回路を通じ、圧力を大気圧に戻しながら排
出する。この排気操作で分離膜3の外側がパージされ、
上記分圧の低下をもたらし、より低露点の乾燥空気が得
られるように作用する。
That is, in FIG. 1, raw air is pressurized by a compressor 4, and the compressed air is dehumidified by a separation membrane 3. Then, the dehumidified raw air is alternately sent to the adsorption tower 1.2 via the air supply connecting pipe 5 and the valve 8.9.First, an adsorption process is performed in the adsorption tower 1. The desorption process is performed at In this case, valve 8.12 is open and valve 9.13 is closed. By operating this valve, the raw air is supplied to the adsorption tower 1 through the compressor 4, the separation membrane 3, and the valve 8. By the adsorption column I, nitrogen is adsorbed and the majority of the unadsorbed separated oxygen is sent to the product tank 17 via the valve 14. On the other hand, the adsorption tower 2 discharges the nitrogen adsorbed in the previous step through the permeation outer circuit of the separation membrane 3 by opening the valve 9 while returning the pressure to atmospheric pressure. This exhaust operation purges the outside of the separation membrane 3,
This lowers the partial pressure and acts to obtain dry air with a lower dew point.

次ぎに、吸着塔1.2の操作を交互反対にして、次工程
に移り、吸着塔1の脱着窒素ガスを分離膜3の透過外側
に引き続き導入パージするようにする。
Next, the operation of the adsorption towers 1.2 is alternately reversed, and the next step is proceeded to, so that the desorbed nitrogen gas of the adsorption tower 1 is continuously introduced to the permeation outside of the separation membrane 3 for purging.

以上のように、本実施例においては、排ガスを分離膜の
透過側にパージガスとして、無動力で再利用するように
している。
As described above, in this embodiment, the exhaust gas is reused as a purge gas on the permeation side of the separation membrane without power.

そして、上述した本実施例によれば、原料空気中の酸素
量21%の約50%が分離ガスとして分離されて、その
残りの酸素および窒素ガスが脱着排ガスとして排出され
る。すなわち、吸着塔l。
According to the present embodiment described above, about 50% of the 21% oxygen content in the feed air is separated as a separation gas, and the remaining oxygen and nitrogen gas are discharged as a desorbed exhaust gas. That is, adsorption tower l.

2に送入された乾燥原料空気の約90%は、低露点の乾
燥状態で脱着工程で排出されることが確認できた。これ
により(脱着排ガス量が多いこと)、分離膜3の外側を
十分にパージできることが確認できる。
It was confirmed that approximately 90% of the dry raw material air introduced into No. 2 was discharged in the desorption process in a dry state with a low dew point. This confirms that (the amount of desorbed exhaust gas is large), the outside of the separation membrane 3 can be sufficiently purged.

第2図は、前述した実施例において、分離膜透過外側を
真空負圧とし、該分離膜を隔てて差圧を大きくし、吸着
塔による脱着排ガスを負圧導入し、分離膜の透過側の水
蒸気モル分率を下げ、分離膜の非透過側に低露点の乾燥
原料ガスを得るようにした構成よりなる。そして、本実
施例の場合、透過外側が真空負圧下となって非透過側の
原料空気力が2kg/−以下のような低い場合でも分離
膜を隔てて、差圧が大きくなり、より低露点の乾燥空気
が得られ易くなるという利点を有する。
Figure 2 shows that in the above-mentioned example, the outside of the separation membrane permeate is set to a vacuum negative pressure, the pressure difference is increased across the separation membrane, the exhaust gas desorbed by the adsorption tower is introduced under negative pressure, and the permeate side of the separation membrane is It has a structure in which the water vapor molar fraction is lowered and dry raw material gas with a low dew point is obtained on the non-permeable side of the separation membrane. In the case of this example, even when the permeation outside is under vacuum negative pressure and the raw material air force on the non-permeation side is low, such as 2 kg/- or less, the pressure difference across the separation membrane becomes large, resulting in a lower dew point. This has the advantage of making it easier to obtain dry air.

また、第3図は、前述した実施例において、真空ポンプ
で吸引した圧縮熱をもつ脱着排ガスを分離膜の外側に導
入パージし、分離膜の透過側の水蒸気モル分率を下げ、
分離膜の非透過側に低露点の乾燥原料ガスを得るように
した構成よりなるものである。そして、本実施例の場合
、高い温度により水蒸気の飽和点の高い排ガスでパージ
することができ、透過側に膜の濡れ現象がなく、より低
露点の乾燥空気が得られ易くなるという利点を有する。
Further, FIG. 3 shows that in the above-mentioned embodiment, the desorption exhaust gas with the heat of compression sucked by the vacuum pump is introduced to the outside of the separation membrane for purging, and the water vapor molar fraction on the permeation side of the separation membrane is lowered.
The structure is such that dry raw material gas with a low dew point is obtained on the non-permeate side of the separation membrane. In the case of this example, purging can be performed with exhaust gas having a high water vapor saturation point due to the high temperature, and there is no membrane wetting phenomenon on the permeate side, which has the advantage of making it easier to obtain dry air with a lower dew point. .

なお、本発明は、上述した実施例に限定されるものでな
く、本発明の要旨を変更しない範囲で変形実施できるも
のを含む、因みに、原料ガスとして原料空気を用い、分
離酸素を得る構成で説明したが、他のガスの生成等につ
いても実施できることは明らかである0例えば、圧力変
動吸着分離法による窒素濃縮装置やアルゴンの生成等に
も通用できる。また、吸着塔は、2塔に限られるもので
なく、3塔、4塔等の複数基であってもよいことは明ら
かである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and includes modifications that can be carried out without changing the gist of the present invention. Although the description has been made, it is clear that the present invention can be implemented for the production of other gases, etc. For example, it can also be applied to nitrogen concentrators and argon production using the pressure fluctuation adsorption separation method. Furthermore, it is clear that the number of adsorption towers is not limited to two, but may be a plurality of adsorption towers such as three or four towers.

(発明の効果〕 以上の説明より明らかなように、本発明の圧力変動吸着
分離装置における原料ガスの除湿システムによれば、乾
燥パージとして脱着排ガスを用いたシステムとしている
ので、分離膜の透過外側に乾燥パージのためのバージン
空気を全く消費することなく、無動力で簡単な構成で、
より低露点の乾燥空気が容易に、しかも経済的に得られ
るという効果を有する。
(Effects of the Invention) As is clear from the above explanation, according to the dehumidification system for raw gas in the pressure fluctuation adsorption separation device of the present invention, the system uses desorbed exhaust gas as a dry purge. without consuming any virgin air for dry purge, in a non-powered and simple configuration,
This has the effect that dry air with a lower dew point can be obtained easily and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2.3図は
本発明の他の実施例の系統図、第4図は分離膜を用いた
従来のドライヤー性能曲線を示す説明図である。 1.2・・・吸着塔、3・・・分離膜、3′・・分離膜
を構成する中空糸、4・・・圧縮機、5・・・空気供給
用連結管、6.7・・・原料ガス供給口・脱着排ガス排
出口、8.9・・・弁、10.11・・・分離ガス送出
口、12.13・・・弁、14.15・・・弁、16・
・・脱若排ガス排出用連結管、17・・・製品タンク特
Fig. 1 is a system diagram showing one embodiment of the present invention, Figs. 2 and 3 are system diagrams of other embodiments of the present invention, and Fig. 4 is an explanatory diagram showing the performance curve of a conventional dryer using a separation membrane. It is. 1.2...Adsorption tower, 3...Separation membrane, 3'...Hollow fiber constituting the separation membrane, 4...Compressor, 5...Air supply connecting pipe, 6.7... - Raw material gas supply port - Desorption exhaust gas outlet, 8.9... Valve, 10.11... Separated gas delivery port, 12.13... Valve, 14.15... Valve, 16.
・・Connecting pipe for exhaust gas discharge, 17 ・・Product tank patent

Claims (3)

【特許請求の範囲】[Claims] (1)原料ガスより圧力変動吸着分離によって酸素、窒
素等のガスを分離するための圧力変動吸着分離装置にお
いて、吸着塔の前段に分離膜を配置し、該分離膜に該吸
着塔への供給用の原料ガスである湿り加圧ガスを供給し
て乾燥ガスを得た後、該乾燥ガスを該吸着塔により分離
ガスと脱着排ガスとに分離し、該脱着排ガスを分離膜の
外側に導入パージすることにより、該分離膜の透過側の
水蒸気モル分率を下げて分離膜の非透過側に低露点の乾
燥原料ガスを得るようにしたこと特徴とする圧力変動吸
着分離装置における原料ガスの除湿システム。
(1) In a pressure fluctuation adsorption separation device for separating gases such as oxygen and nitrogen from a raw material gas by pressure fluctuation adsorption separation, a separation membrane is placed upstream of an adsorption tower, and the separation membrane is used to supply gas to the adsorption tower. After obtaining dry gas by supplying wet pressurized gas, which is the raw material gas for the membrane, the dry gas is separated into separated gas and desorbed exhaust gas by the adsorption tower, and the desorbed exhaust gas is introduced outside the separation membrane for purging. Dehumidification of raw material gas in a pressure fluctuation adsorption separation device characterized by lowering the water vapor molar fraction on the permeation side of the separation membrane and obtaining dry raw material gas with a low dew point on the non-permeation side of the separation membrane. system.
(2)分離膜透過外側を真空負圧とし、該分離膜を隔て
て差圧を大きくし、吸着塔による脱着排ガスを負圧導入
し、分離膜の透過側の水蒸気モル分率を下げ、分離膜の
非透過側に低露点の乾燥原料ガスを得るようにしている
請求項1に記載の圧力変動吸着分離装置における原料ガ
スの除湿システム。
(2) Apply a vacuum negative pressure to the outside of the separation membrane, increase the differential pressure across the separation membrane, introduce the desorbed exhaust gas from the adsorption tower under negative pressure, lower the water vapor molar fraction on the permeation side of the separation membrane, and separate 2. The system for dehumidifying raw material gas in a pressure fluctuation adsorption separation apparatus according to claim 1, wherein dry raw material gas with a low dew point is obtained on the non-permeate side of the membrane.
(3)真空ポンプで吸引した脱着排ガスを分離膜の外側
に導入パージし、分離膜の透過側の水蒸気モル分率を下
げ、分離膜の非透過側に低露点の乾燥原料ガスを得るよ
うにしている請求項1に記載の圧力変動吸着分離装置に
おける原料ガスの除湿システム。
(3) The desorbed exhaust gas sucked in by a vacuum pump is introduced and purged to the outside of the separation membrane to lower the water vapor molar fraction on the permeation side of the separation membrane, and to obtain dry raw material gas with a low dew point on the non-permeation side of the separation membrane. A dehumidifying system for a raw material gas in a pressure fluctuation adsorption separation device according to claim 1.
JP63176369A 1988-07-14 1988-07-14 Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process Pending JPH0226610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63176369A JPH0226610A (en) 1988-07-14 1988-07-14 Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176369A JPH0226610A (en) 1988-07-14 1988-07-14 Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process

Publications (1)

Publication Number Publication Date
JPH0226610A true JPH0226610A (en) 1990-01-29

Family

ID=16012415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176369A Pending JPH0226610A (en) 1988-07-14 1988-07-14 Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process

Country Status (1)

Country Link
JP (1) JPH0226610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227021A (en) * 1990-06-18 1992-08-17 Union Carbide Ind Gases Technol Corp Hybrid preliminary purifier for low temperature air separation plant
JP2003529008A (en) * 2000-03-24 2003-09-30 ケンナメタル インコーポレイテッド Rotary cutting tool
JP2007044116A (en) * 2005-08-08 2007-02-22 Teijin Pharma Ltd Pressure-fluctuation adsorption type oxygen concentrator
RU188323U1 (en) * 2018-11-26 2019-04-08 Публичное акционерное общество "Аквасервис" Indoor respiratory atmosphere control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227021A (en) * 1990-06-18 1992-08-17 Union Carbide Ind Gases Technol Corp Hybrid preliminary purifier for low temperature air separation plant
JP2003529008A (en) * 2000-03-24 2003-09-30 ケンナメタル インコーポレイテッド Rotary cutting tool
JP2007044116A (en) * 2005-08-08 2007-02-22 Teijin Pharma Ltd Pressure-fluctuation adsorption type oxygen concentrator
RU188323U1 (en) * 2018-11-26 2019-04-08 Публичное акционерное общество "Аквасервис" Indoor respiratory atmosphere control device

Similar Documents

Publication Publication Date Title
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
JP2833595B2 (en) Pressure swing adsorption method
CA2148527C (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
EP0085155B1 (en) Nitrogen generation system
US4715867A (en) Auxiliary bed pressure swing adsorption molecular sieve
US5429664A (en) Pressure swing absorption with recycle of void space gas
US5906674A (en) Process and apparatus for separating gas mixtures
EP0699467B1 (en) Simultaneous step pressure swing adsorption process
JPH0250041B2 (en)
JPH035308A (en) Production of improved dry high-purity nitrogen
JPH04227812A (en) Method for recovering nitrogen gas from air
US6045603A (en) Two phase pressure swing adsorption process
EP0390392A2 (en) Separation of gas mixtures
EP0151186A1 (en) Method and apparatus for separating mixed gas
JPH0226610A (en) Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process
JPS63182019A (en) Method for dehumidifying pressurized gas
JP2004262743A (en) Method and apparatus for concentrating oxygen
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
CN112744789A (en) Oxygen generation method and device based on coupling separation technology
JPH11267439A (en) Gas separation and gas separator for performing same
JPH04227018A (en) Manufacture of inert gas of high purity
CN111921332A (en) Adsorption device and adsorption method
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
JP2948402B2 (en) Recovery method of low concentration sulfur dioxide
JPH09502658A (en) Nitrogen production method and apparatus by combination of adsorption and gas permeation