JPS59208815A - Buried composite target in magnetron sputtering apparatus - Google Patents

Buried composite target in magnetron sputtering apparatus

Info

Publication number
JPS59208815A
JPS59208815A JP8447983A JP8447983A JPS59208815A JP S59208815 A JPS59208815 A JP S59208815A JP 8447983 A JP8447983 A JP 8447983A JP 8447983 A JP8447983 A JP 8447983A JP S59208815 A JPS59208815 A JP S59208815A
Authority
JP
Japan
Prior art keywords
phase
target
rare earth
metals
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8447983A
Other languages
Japanese (ja)
Inventor
Hisao Arimune
久雄 有宗
Yasuo Nishiguchi
泰夫 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8447983A priority Critical patent/JPS59208815A/en
Publication of JPS59208815A publication Critical patent/JPS59208815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Abstract

PURPOSE:To provide a large-sized sputtering target capable of forming accurately at a high speed with an amorphous vertically magnetized membrane of the prescribed composition. CONSTITUTION:A sputtering target 10 is formed of a base phase 11 made of rare earth metals such as gadolinium, terbium, dysprosium, holmium, and a buried phase 12 made of transition metal such as cobalt, iron. The base phase 11 is planely contacted with the cathode of a magnetron sputtering device, and the phase 12 is disposed at the free surface side opposite to the cathode. According to the sputtering target of such structure, the target can be manufactured merely by engaging a burying phase made of the transition metal in the base phase made of the rare earth metal. The metals of respective phases have no brittleness and good workability. Accordingly, an extremely large size can be readily manufactured.

Description

【発明の詳細な説明】 本発明は、光磁気記録媒体や磁気パルプ記録媒体として
使用される非晶質垂直磁化膜を製造するだめのスパッタ
リング装置に用いるスパッタリングクーグツトに関し、
より詳細には漏洩磁界の印加により高速、低温成膜を可
能とするヤグネトロンスパッタリング装置に使用される
スノくツタ1ノンクリ−グツトの改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sputtering device used in a sputtering apparatus for manufacturing an amorphous perpendicular magnetization film used as a magneto-optical recording medium or a magnetic pulp recording medium.
More specifically, the present invention relates to an improvement of the Snowcutter 1 non-climate used in a Yagnetron sputtering apparatus that enables high-speed, low-temperature film formation by applying a leakage magnetic field.

近時、光磁気効果を利用した光(蝕気古己録媒伺くや磁
気パルプ記録媒体に磁化容易ll1lI+力II央曲に
文寸し再直な方向にある非晶質垂直磁化II栗力(多用
されつつあり、該非晶質垂直磁化膜はマグネトロンヌノ
ぐツタリング装置により作製されている。この々り才・
トロンスパッタリング装置は、勿]えは第1図に示すよ
うに、アルゴン雰囲気で、力・つ低真空である容器1内
に、下面に基板5を収着した陽A娠2と、上面に非晶質
垂直磁化膜の摩剥であるターゲット6を、下面に強い磁
束を生ずる永久磁石4を収着した陰極3とを、前記基板
5とターゲット6と75玉相対向するように設置した構
造を剃しており、1場極2と陰極3との間に高電圧を目
J九]シ、容器11)]にプラズ々放電を生起させると
ともにグープント6近傍のプラズマ密度を永久磁石4の
漏洩(磁界で上げ、プラズマ放電により発生したアルコ
°ンイ71−ンをターゲット6表面に効率的に衝突させ
るとともに、該衝突によりはじき出されたターゲットを
基板5表面に付着させることによって基板5表面」二に
非晶質垂直磁化膜7を形成している。
Recently, amorphous perpendicular magnetization in the straight direction has been developed using light using the magneto-optical effect. (This amorphous perpendicularly magnetized film is now being widely used, and is produced using a magnetron tuttering device.
As shown in FIG. 1, the Tron sputtering apparatus consists of a positive chamber 2 with a substrate 5 adsorbed on its lower surface and a non-containing chamber 2 on its upper surface in an argon atmosphere and low vacuum. A structure in which a target 6, which is abrasion of a crystalline perpendicularly magnetized film, and a cathode 3, which has a permanent magnet 4 sorbed to its lower surface that generates a strong magnetic flux, are placed so that the substrate 5, target 6, and 75 beads face each other. A high voltage is applied between the field pole 2 and the cathode 3 to generate a plasma discharge in the container 11) and to increase the plasma density near the magnet 6 by leaking the permanent magnet 4 ( A magnetic field is used to make the alcone ion generated by the plasma discharge collide efficiently with the surface of the target 6, and the target repelled by the collision is attached to the surface of the substrate 5, thereby making the surface of the substrate 5 non-uniform. A crystalline perpendicular magnetization film 7 is formed.

従来、このマグネトロンスパッタリンク装置に使用され
るターゲットとしては、一般KM移金属吉希土類金属七
をアーク炉等で溶解し、合金とした合金ターゲット、遷
移金属と希土類金属とを微粉末にして焼結した焼結ター
ゲット、遷移金洩汰−にに希土類金属片を載置したチッ
プオンターゲット、及び遷移金属板を母相としてその厚
み方向に複数の孔を形成し、該孔内に希土類金属を埋め
込んだ埋め込みターゲットが使用されている。
Conventionally, targets used in this magnetron sputter link device include alloy targets made by melting general KM transfer metals and rare earth metals in an arc furnace, etc., and sintering transition metals and rare earth metals made into fine powder. A sintered target, a chip-on target in which rare earth metal pieces are placed on the transition metal leakage, and a plurality of holes are formed in the thickness direction of the transition metal plate as a matrix, and rare earth metals are embedded in the holes. An embedded target is used.

しかし乍ら、合金ターゲットは合金製作時に組成の不均
一性や遷移金属と希土類金属の熱膨張熱収縮の相別等に
よってクランクが生じ易く、捷だ合金自体も非常にもろ
いため研、磨等の加工による外力によりて容易に破損し
てしまい所望する大きな形状のターゲットが得られない
という欠点を有していた。
However, alloy targets are prone to cracking during alloy production due to compositional non-uniformity and differences in thermal expansion and thermal contraction of transition metals and rare earth metals, and since the alloy target itself is extremely brittle, it is difficult to grind, polish, etc. It has the disadvantage that it is easily damaged by external force during processing, making it impossible to obtain a target with a desired large shape.

また焼結ターゲットは遷移金属及び希土類金属がいずれ
も酸化されやすい金属であるため、これら金属を粉末化
する場合、金属粉木表+Iiiに酸化物が生成されてし
1い、該酸化物が同時に焼結されてクーゲント全体に多
量の酸化物を含有したものとなる。そのため上記焼結ク
ーゲットをスパックリングして非晶質垂直磁化膜を形成
すると、ターゲット中に含捷れる酸化物が同時にスパッ
タリングされて磁化膜中に混入し、その結果、所望する
特性の非晶質垂直磁化膜が得られないという欠点を有し
ていた。
Furthermore, since transition metals and rare earth metals in the sintering target are metals that are easily oxidized, when these metals are powdered, oxides are generated on the surface of the metal powder. When sintered, the entire Kugend contains a large amount of oxide. Therefore, when the above-mentioned sintered Couget is sputtered to form an amorphous perpendicularly magnetized film, the oxide contained in the target is simultaneously sputtered and mixed into the magnetized film, resulting in an amorphous film with the desired characteristics. This method had the disadvantage that a perpendicularly magnetized film could not be obtained.

更に、チップオンターゲットは形成される非晶質垂直磁
化膜の組成が遷移金属板の露出表面積々希土類金属片の
露出表面積の比(例えは3:1)によって決定されるだ
め希土類金属片の厚みを大きくすることかできず、捷だ
スパッタリングの際のイオンの衝突によって希土類金属
片の側面側近が早く減少することから希土類金属H″の
表a11混Jの変化が激しく、非晶質垂面磁化膜の組成
の制御が極めて困難で、かつ量産性がわるいという欠点
を有していた。捷た希土類金属片ζは小片であるため漏
洩磁界の磁力が印加されると片持状態となってしまい希
土類金属片の露出表面積が変化して非晶質垂直磁化膜の
組成に変化を与えることとなり、そのためこのチップオ
ンターゲットでは大きな磁界を印加することができず、
マグネトロンスパッタリングの効率が悪い七いう欠点も
有していた。
Furthermore, in the chip-on target, the composition of the amorphous perpendicular magnetization film to be formed is determined by the ratio of the exposed surface area of the transition metal plate to the exposed surface area of the rare earth metal piece (for example, 3:1) and the thickness of the rare earth metal piece. However, due to the collision of ions during rough sputtering, the side surface of the rare earth metal piece quickly decreases, resulting in severe changes in the surface a11 and J of the rare earth metal H'', resulting in amorphous vertical magnetization. It has the disadvantage that it is extremely difficult to control the composition of the film and that it is difficult to mass-produce.Since the cut rare earth metal piece ζ is a small piece, it becomes cantilevered when the magnetic force of the leakage magnetic field is applied. The exposed surface area of the rare earth metal piece changes, which changes the composition of the amorphous perpendicularly magnetized film, making it impossible to apply a large magnetic field with this chip-on target.
It also had the disadvantage of low efficiency of magnetron sputtering.

寸だ丈に、埋め込みターゲットは母相である遷移金属が
1000°に以上という高キュリ一点強磁性体であるた
め、約2000cというスパッタリングクーゲット温度
においても磁性を失なうことがなく、そのため永久磁石
の磁束はターゲットの母相である遷移金属中を通ること
きなって、いわゆる磁気遮蔽が形成されてし捷う。した
がってこの埋め込みターゲットはクーグツト表面近傍に
おける漏洩磁界が小さなものとなり、マグネトロンスパ
ッタリング装置本来の機能を十分発揮できず、高速成膜
ができないという欠点を消していた。
In fact, since the embedded target is a high-curiency single-point ferromagnetic material whose matrix transition metal has an angle of over 1000 degrees, it does not lose its magnetism even at a sputtering temperature of about 2000 degrees Celsius, and therefore remains permanently stable. The magnetic flux of the magnet passes through the transition metal that is the parent phase of the target, forming a so-called magnetic shield. Therefore, this embedded target has a small leakage magnetic field near the Kugut surface, which eliminates the drawback that the original function of the magnetron sputtering device cannot be fully demonstrated and high-speed film formation cannot be performed.

零発8Aは上述の欠点に鑑み案出されたもので、その目
的は所望組成の非晶質垂直磁化膜を正確に、かつ高速に
形成することのできる大型のスパッタリングターゲット
を捉供することにある。
Zero-shot 8A was devised in view of the above-mentioned drawbacks, and its purpose is to capture and provide a large sputtering target that can form an amorphous perpendicularly magnetized film of a desired composition accurately and at high speed. .

本発明は希土類金属と遷移金属を主成万古する非晶質垂
直磁化膜を生成するためにターゲット近傍に漏洩磁界を
形成するマグネトロンスパックリング装置において、該
ターゲットは陰極と1f11接触する母相と、自由表面
側に設けられた埋め込み相とから成り、前記母相は少な
くとも一種の希土類金属により構成され、埋め込み相は
少なくとも一種の遷移金属によシ構成されたことを特徴
とするものである。
The present invention provides a magnetron sputtering device for forming a leakage magnetic field near a target in order to generate an amorphous perpendicularly magnetized film mainly composed of rare earth metals and transition metals, in which the target has a matrix in contact with a cathode at 1f11, and a buried phase provided on the free surface side, the parent phase being made of at least one kind of rare earth metal, and the buried phase being made of at least one kind of transition metal.

以下、本発明を添伺図面に示す実施例に基つき詳細に説
明する。第2図は本発明のスパッタリングターゲットの
一実施例を示し、全体として1()で示すスパッタリン
グターゲットはガドリニウム(Gd)、デルビニクム(
Tb)、ジスプロシクム(Dy)、ボルミクム(Ho)
等の希土類金属がら成る母相11とコバル)(Co)、
鉄(Fe)等の遷移金属から成る埋め込み相12さから
構成されている。この111相11はマグネトロンスパ
ンクリング装置Δの陰極に面接触し、埋め込み相12は
陰極と反対の自由表面側に配されるし 前記母相11は通常、厚みが5〜10mm、直径が12
0〜300 mmの円板状を成しており、その上面11
a側に該母相の軸線と平行な軸線を有する円柱状の嵌合
孔11bが形成されている(第2図(b)参照)。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the accompanying drawings. FIG. 2 shows an embodiment of the sputtering target of the present invention, and the sputtering target, generally designated by 1 ( ), contains gadolinium (Gd), delbinicum (
Tb), Dysprosicum (Dy), Volmicum (Ho)
A matrix 11 consisting of rare earth metals such as cobal (Co),
It is composed of a buried phase 12 made of a transition metal such as iron (Fe). This 111 phase 11 is in surface contact with the cathode of the magnetron spankling device Δ, and the buried phase 12 is arranged on the free surface side opposite to the cathode.
It has a disc shape of 0 to 300 mm, and its upper surface 11
A cylindrical fitting hole 11b having an axis parallel to the axis of the matrix is formed on the a side (see FIG. 2(b)).

前記嵌合孔11bKは該嵌合孔11bと同一形状の埋め
込み相12が嵌合されており、m相11の上面11aと
埋め込み相12の上面12aとは同−而となっている。
A buried phase 12 having the same shape as the fitting hole 11b is fitted into the fitting hole 11bK, and the upper surface 11a of the m-phase 11 and the upper surface 12a of the buried phase 12 are the same.

尚、前記母相土面11aの表面積と埋め込み相上面12
aとの表面積比は所望する非晶質垂直磁化膜の組成に対
応させて、(通常1:3の比率)適宜決定される。
Incidentally, the surface area of the mother phase soil surface 11a and the buried phase upper surface 12
The surface area ratio with a is appropriately determined (usually a ratio of 1:3) in accordance with the desired composition of the amorphous perpendicularly magnetized film.

本発明のスパッタリングターゲットにおいては希土類金
属から成る母相に遷移金属から成る埋め込み相を嵌合さ
せたことが重要であシ、このために第2図に示すように
希土類金属から成る母相11に円柱状の嵌合孔11bを
形成するとともに、該嵌合孔11b内に遷移金属から成
る埋め込み相12が嵌合されている。
In the sputtering target of the present invention, it is important that a buried phase made of a transition metal is fitted into a parent phase made of a rare earth metal, and for this purpose, as shown in FIG. A columnar fitting hole 11b is formed, and a buried phase 12 made of a transition metal is fitted into the fitting hole 11b.

かかる構造のスパッタリングターゲットにょれば希土類
金属から成る母相内に遷移金属から成る埋め込み相を嵌
合させるだけでスパッタリングターゲットを作製するこ
とができ、かつ各相の金属はそれぞれ脆性がなく、加工
性も良いことから極めて大型のものが容易に作製できる
。捷だ埋め込み相は母相内に該母相の軸線と平行に嵌合
されているため、ターゲットの軸線に直角な面の母相と
埋め込み相の断面積の比は常に一定であり、該スパッタ
リングターゲットを複数回使用しても形成される非晶質
垂直磁化膜の組成は常に一定と成すことができ、極めて
量産性に優れている。
With a sputtering target having such a structure, a sputtering target can be manufactured by simply fitting a buried phase made of a transition metal into a parent phase made of a rare earth metal, and the metals of each phase are not brittle and have good workability. Since it has good properties, extremely large-sized products can be easily manufactured. Since the twisted embedded phase is fitted into the parent phase parallel to the axis of the parent phase, the ratio of the cross-sectional area of the parent phase and the embedded phase in the plane perpendicular to the axis of the target is always constant, and the sputtering Even if the target is used multiple times, the composition of the amorphous perpendicularly magnetized film that is formed can always be kept constant, making it extremely suitable for mass production.

寸だ前記母相の希土類金属はキュリ一点が第1表に示す
ように300°に以下であるため非晶質」T直磁化膜を
形成する際のスパンクリングクーグツト温度(約200
’C)では磁性を完全に失なっておシ、該母相によって
永久磁石の磁気が遮蔽されることはなく、ターゲット表
面近傍における漏洩磁界を極めて大きなものにできる。
As shown in Table 1, the rare earth metal in the parent phase has a single Curie point of less than 300 degrees, so the spanning Kugt temperature (approximately 200 degrees
In 'C), magnetism is completely lost, and the magnetism of the permanent magnet is not shielded by the parent phase, making it possible to make the leakage magnetic field in the vicinity of the target surface extremely large.

そのためグラズマ放電により発生したイオンをターゲッ
トに効率よく衝突させることができ、非晶質垂面磁化膜
の高速成膜を可能とする。
Therefore, ions generated by the glazma discharge can be efficiently collided with the target, making it possible to form an amorphous vertically magnetized film at high speed.

第1表 更に前記母相の希土類金属は母相自身の温度とスパッタ
リング雰囲気中に含まれる水分等の残留ガスによって酸
化されやすいものの母相は陰極に直接当接されており、
該母相の熱は陰極に良好に吸収され高温となることがな
いため、酸化を受けることは々い。したがってマグネト
ロンスパッタリングによって非晶質垂直磁化膜を形成し
た場合、非晶質東部磁化膜内に酸化物が混入することは
なく所望の特性を有する非晶質垂直磁化膜が形成できる
Table 1 Furthermore, although the rare earth metal of the parent phase is easily oxidized by the temperature of the parent phase itself and residual gas such as moisture contained in the sputtering atmosphere, the parent phase is in direct contact with the cathode.
Since the heat of the parent phase is well absorbed by the cathode and does not reach a high temperature, it is unlikely to undergo oxidation. Therefore, when an amorphous perpendicular magnetization film is formed by magnetron sputtering, no oxide is mixed into the amorphous east magnetization film, and an amorphous perpendicular magnetization film having desired characteristics can be formed.

以上、上述したように末完り」のスパッタリングターゲ
ットによれば極めて大型リスバッタリングターゲットが
作製できるとともに所望特性の非晶質垂直磁化膜を正確
にかつ高速に形成することができ極めて有用である。
As mentioned above, the sputtering target that is completely finished is extremely useful as it allows the production of extremely large lithium sputtering targets, as well as the ability to form an amorphous perpendicularly magnetized film with desired characteristics accurately and at high speed. .

尚、本発明は上述の実施例に限定されるものではなく、
例えば第3図に示すように希土類金属から成る母相21
に平面視して扇形の嵌合孔21aを形成し、該嵌合孔2
1. a−に扇形の遷移金属から成る埋め込み相22を
嵌合してもよく、また第4図に示すように希土類金属か
ら成るm柑31に平面視して角柱状の嵌合孔31aを形
成し、該嵌合孔31aに角柱状の遷移金属から成る埋め
込み相32を嵌合させてもよい。この場合ターゲットの
上面における母相と埋め込み相の表面積比は所望する非
晶質垂直磁化膜の組成に対応させて適宜決定される。
It should be noted that the present invention is not limited to the above-mentioned embodiments,
For example, as shown in FIG. 3, a matrix 21 made of a rare earth metal
A fan-shaped fitting hole 21a is formed when viewed from above, and the fitting hole 2
1. A sector-shaped embedded phase 22 made of a transition metal may be fitted into the hole 31. Alternatively, a fitting hole 31a which is prismatic in plan view may be formed in the metal cover 31 made of a rare earth metal, as shown in FIG. A prismatic embedded phase 32 made of a transition metal may be fitted into the fitting hole 31a. In this case, the surface area ratio between the parent phase and the buried phase on the upper surface of the target is appropriately determined in accordance with the desired composition of the amorphous perpendicularly magnetized film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマグネトロンスパッタリング方法を説明
するための構成図、第2図(a)は木発811の一実施
例を示すスパンクIJングターゲットの平ifl+図、
第2図(b)は第2図(a)のA−A線断面図、第3図
(a)は本発明の他の実施例を示すスパッタリングター
ゲットの平面図、第3図(b)は第3図(a)のB−B
線断面図、第4図(a)は本発明の更に他の実施例を示
すスパッタリングターゲットの平面図、第4図(b)は
第4図(a)のC−C線断面図である。 1.1,21.31・・・母相、12,22.32・・
・埋め込み相、llb、21a、31a−嵌合孔代理人
   弁理士 西教圭一部 第1図 第2図 (a) 2 (b) 第3図 (b) 第4区 (a) (b)
FIG. 1 is a block diagram for explaining the conventional magnetron sputtering method, FIG.
FIG. 2(b) is a sectional view taken along the line A-A in FIG. 2(a), FIG. 3(a) is a plan view of a sputtering target showing another embodiment of the present invention, and FIG. 3(b) is a plan view of a sputtering target showing another embodiment of the present invention. B-B in Figure 3(a)
4(a) is a plan view of a sputtering target showing still another embodiment of the present invention, and FIG. 4(b) is a sectional view taken along the line C--C of FIG. 4(a). 1.1, 21.31...matrix, 12,22.32...
・Embedded phase, llb, 21a, 31a - Fitting hole agent Patent attorney Kei Nishi Part Figure 1 Figure 2 (a) 2 (b) Figure 3 (b) Section 4 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 希土類金属と遷移金属を主成分さする非晶質垂直磁化膜
を生成するためにターゲット近傍に漏洩磁界を形成する
マグネトロンスパッタリンク装置において、該ターゲッ
トは陰極と面接触する母相と、自由表面側に設けられた
埋め込み相とから成り、前記母相は少なくとも一種の希
土類金属により構成され、埋め込み相は少なくとも一種
の遷移金属により構成されたことを特徴とする埋め込み
式複合ターゲット。
In a magnetron sputter link device that forms a leakage magnetic field near a target in order to generate an amorphous perpendicularly magnetized film mainly composed of rare earth metals and transition metals, the target has a parent phase in surface contact with the cathode and a free surface side. 1. An embedded composite target comprising: an embedded phase provided in the target; the parent phase is composed of at least one kind of rare earth metal; and the embedded phase is composed of at least one kind of transition metal.
JP8447983A 1983-05-13 1983-05-13 Buried composite target in magnetron sputtering apparatus Pending JPS59208815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8447983A JPS59208815A (en) 1983-05-13 1983-05-13 Buried composite target in magnetron sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8447983A JPS59208815A (en) 1983-05-13 1983-05-13 Buried composite target in magnetron sputtering apparatus

Publications (1)

Publication Number Publication Date
JPS59208815A true JPS59208815A (en) 1984-11-27

Family

ID=13831773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8447983A Pending JPS59208815A (en) 1983-05-13 1983-05-13 Buried composite target in magnetron sputtering apparatus

Country Status (1)

Country Link
JP (1) JPS59208815A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264533A (en) * 1985-05-17 1986-11-22 Toyo Soda Mfg Co Ltd Sputtering target for photomagnetic recording and its production
JPS6442576A (en) * 1987-08-10 1989-02-14 Fujitsu Ltd Composite sputtering target
US4915810A (en) * 1988-04-25 1990-04-10 Unisys Corporation Target source for ion beam sputter deposition
US4920094A (en) * 1987-03-27 1990-04-24 Nissin Electric Co., Ltd. Process for producing superconducting thin films
JP2016037617A (en) * 2014-08-05 2016-03-22 富士電機株式会社 Sputtering target, pvd film manufacturing method using the target, and control method for impurity concentration in pvd film
CN110295354A (en) * 2019-08-05 2019-10-01 暨南大学 A kind of direct current reaction magnetron sputtering deposition method of transition metal oxide film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264533A (en) * 1985-05-17 1986-11-22 Toyo Soda Mfg Co Ltd Sputtering target for photomagnetic recording and its production
US4920094A (en) * 1987-03-27 1990-04-24 Nissin Electric Co., Ltd. Process for producing superconducting thin films
JPS6442576A (en) * 1987-08-10 1989-02-14 Fujitsu Ltd Composite sputtering target
US4915810A (en) * 1988-04-25 1990-04-10 Unisys Corporation Target source for ion beam sputter deposition
JP2016037617A (en) * 2014-08-05 2016-03-22 富士電機株式会社 Sputtering target, pvd film manufacturing method using the target, and control method for impurity concentration in pvd film
CN110295354A (en) * 2019-08-05 2019-10-01 暨南大学 A kind of direct current reaction magnetron sputtering deposition method of transition metal oxide film

Similar Documents

Publication Publication Date Title
US4576699A (en) Magneto-optical recording medium and method of making same
JPS59208815A (en) Buried composite target in magnetron sputtering apparatus
JP2673807B2 (en) Method for manufacturing magneto-optical recording medium
JPS6151410B2 (en)
CN109844167A (en) Magnetic material sputtering target and its manufacturing method
JPH0454367B2 (en)
JPH031810B2 (en)
JPS59193272A (en) Target in sputtering and sputtering method
JPS6035354A (en) Photomagnetic recording medium
JP2728715B2 (en) Garnet-based magnetic material
JPH01283372A (en) Magnetron sputtering device
JPS5835261B2 (en) Electrodes for sputtering targets
JPS60101742A (en) Photomagnetic recording medium
JPS62285253A (en) Manufacture of photomagnetic recording medium
JPH0462814A (en) Method for producing artificial grid film
Schultheiss et al. Effects of target structure on the properties of MO recoding media produced in a large-scale vertical in-line sputtering system
JPS6299937A (en) Photomagnetic recording medium
JPS61296551A (en) Photomagnetic recording element and its production
JP2002231554A (en) Method of manufacturing magnetic alloy film and magnetic head
JPS6297154A (en) Production of photomagnetic recording medium
JPS63121660A (en) Magnetron sputtering device
JPS63452A (en) Manufacture of magnetic thin film
JPS63307256A (en) Production of thin alloy film
JPS63149848A (en) Apparatus for producing magneto-optical disk
JPS60125933A (en) Production of magnetic medium