JPS59203832A - Electronic fuel injection control apparatus for internal-combustion engine used for vehicle - Google Patents

Electronic fuel injection control apparatus for internal-combustion engine used for vehicle

Info

Publication number
JPS59203832A
JPS59203832A JP7779883A JP7779883A JPS59203832A JP S59203832 A JPS59203832 A JP S59203832A JP 7779883 A JP7779883 A JP 7779883A JP 7779883 A JP7779883 A JP 7779883A JP S59203832 A JPS59203832 A JP S59203832A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
fuel
warm
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7779883A
Other languages
Japanese (ja)
Inventor
Toshiaki Mizuno
利昭 水野
Norio Omori
大森 徳郎
Mitsunori Takao
高尾 光則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7779883A priority Critical patent/JPS59203832A/en
Publication of JPS59203832A publication Critical patent/JPS59203832A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable to effect fuel increase appropriately according to the extent of warming up, by increasing the injection quantity of fuel at the time of starting according to the change of physical quantity related closely to the warmed- up state of an internal-combustion engine after starting of the same. CONSTITUTION:At least two physical parameters related closely to the warmed- up state of an internal-combustion engine 1 are detected and a physical quantity detecting means 3 is provided for porducing the signals of said two physical quantities as a first and a second physical quantity signals. The initial value for increasing fuel supplied to the internal-combustion engine 1 at the time of warming up the same is calculated by an arithmetic means 4 from the relationship between the first physical quantity and the initial value for increasing fuel supplied to the engine 1 for warming up the same. Further, the value obtained by the arithmetic means 4 is reduced by a reduction means 6 according to the change in the value of the second physical quantity. Thus, it is enabled to increase fuel appropriately according to the warmed-up state of the engine.

Description

【発明の詳細な説明】 本発明は車両用内燃機関のための燃イ:1噴川制御卸装
置に係り、特に車両の燃料供給源から内燃機関への燃料
供給量を、この内燃機関の始動後において増量補正すべ
く電子的に制御するようにしだ中国用内燃機関のための
゛(1%子式燃和噴’I=1制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control device for a vehicle internal combustion engine, and in particular controls the amount of fuel supplied to the internal combustion engine from the fuel supply source of the vehicle. This article relates to a 1% fuel injection 'I=1 control device for an internal combustion engine for China, which will be electronically controlled to correct the increase in quantity later.

従来、この種の車両用内燃機関のための電丁式燃3I噴
射制御装置においては、例えば、!l’、’+公昭49
−48890号公報に開示されているように、内燃機関
の始動時にその冷却水温に応じて燃料供給7jijから
内燃機関への燃料供給量に列する増1−11初期碩を設
定するとともに、この増量初期値を、その設定後の経過
時間或いは内燃機関の回転速度に同期して順次減少させ
るようにしたものがある。
Conventionally, in the electric knife type fuel 3I injection control device for this type of vehicle internal combustion engine, for example,! l', '+ Kosho 49
As disclosed in Publication No. 48890, when starting the internal combustion engine, an increase 1-11 initial value corresponding to the amount of fuel supplied from the fuel supply 7jij to the internal combustion engine is set according to the cooling water temperature, and this increase There is a system in which the initial value is sequentially decreased in synchronization with the elapsed time after the initial value is set or with the rotational speed of the internal combustion engine.

しかしながら、このような構成においては、上〕ボした
ごとく、内燃機関の始動後における前記増j>i初期イ
1αの減少割合がその設定後の経過時間或いは内燃機関
の回転速度に依存して定められているため、かかる増量
初期値が、内燃機関の始動後の暖機状態と密接に関連す
る冷却水温の上昇に応じては減少せず、その結果、内燃
機関に対する燃料供給量の増量補正に過不足が生じて空
燃比が不適正な値となり、始動直後における内燃機関の
円滑な回転状態を維持できないこととなる。このことは
、内燃機関の始動直後における車両のドライバビリティ
が著しく聾下することを意味する。
However, in such a configuration, as mentioned above, the rate of decrease of the increase j>i initial i1α after starting the internal combustion engine is determined depending on the elapsed time after the setting or the rotational speed of the internal combustion engine. As a result, the initial increase value does not decrease in response to the rise in cooling water temperature, which is closely related to the warm-up state after starting the internal combustion engine, and as a result, the increase in the amount of fuel supplied to the internal combustion engine cannot be corrected. As a result of excess or deficiency, the air-fuel ratio becomes an inappropriate value, making it impossible to maintain the smooth rotation of the internal combustion engine immediately after starting. This means that the drivability of the vehicle immediately after starting the internal combustion engine is significantly impaired.

本発明はこのようなことに対処してなされたもので、そ
の目的とするところは、内燃機関の始動後における燃料
の増量補正を内燃機関の暖機状況友化に応じて適正に行
うようにした車両用内燃機関のだめの電子式燃料噴射制
御装置を提供するととにある。
The present invention has been made in response to the above problems, and its purpose is to appropriately correct the increase in fuel amount after starting the internal combustion engine in accordance with the warm-up condition of the internal combustion engine. The present invention aims to provide an electronic fuel injection control device for a vehicle internal combustion engine.

かかる目的を達成するにあたり、本発明の構成上の特徴
は、第8図にて例示するごとく、車両の直流電源Bから
給電されたとき通′准して開状態になるとともに前記給
電から遮断されたとき非通電となり閉状態になる弁手段
1aをfiffiえて、η)両の燃料供給源2からの燃
料を弁手段1aによりその開状態にて供給される内燃機
関1に適用されて、この内燃機関1の暖1幾状態に密接
に関連する少なくとも二つの物理量を検出しこれらを第
1と第2の物理量信号として発生する物理量検出手段6
と、前記第1物理量と内燃機関1へ供給すべき燃料の暖
機増量初期値との間の所定の関係に基き内燃機関1の始
動時における前記物理量信号に応じて前記暖機増量初期
値を演算する演算手段4と、内燃機関1への燃料の基本
供給量を表わす基本供給時間を演算手段4の演算値によ
り補正するとともにこの補正結果を出力信号として発生
し弁手段1aに付与する出力手段5とを備えた電子式燃
料噴射制御装置において、内燃機関1の始動後における
AiJ記第2物理量信号の値の変化に応じて演算手段4
の演算値を減少させる減少手段6を設けて、出力手段5
が前記基本供給時間を減少手段6の減tp結果により補
正しこれを前記出力信号として発生するようにしたとと
にある。
In order to achieve such an object, the structural feature of the present invention is that, as illustrated in FIG. η) applied to the internal combustion engine 1 to which fuel from both fuel supply sources 2 is supplied by the valve means 1a in its open state; physical quantity detection means 6 for detecting at least two physical quantities closely related to the heating state of the engine 1 and generating these as first and second physical quantity signals;
and determining the initial value of the warm-up increase according to the physical quantity signal at the time of starting the internal combustion engine 1 based on a predetermined relationship between the first physical quantity and the initial value of the warm-up increase of the fuel to be supplied to the internal combustion engine 1. A calculating means 4 for calculating, and an output means for correcting the basic supply time representing the basic supply amount of fuel to the internal combustion engine 1 by the calculated value of the calculating means 4, and generating the correction result as an output signal and applying it to the valve means 1a. In the electronic fuel injection control device, the calculation means 4 corresponds to a change in the value of the second physical quantity signal written in AiJ after the internal combustion engine 1 is started.
A reduction means 6 is provided to reduce the calculated value of the output means 5.
The basic supply time is corrected by the result of reduction tp by the reduction means 6, and this is generated as the output signal.

しかして、本発明をこのように構成したことにより、内
燃機関の始動後におけるその暖機状態の変化に応じてこ
の内燃機関に供給される燃料の暖機増量分を減少させる
ようにしたので、内燃機関の始動後における空・燃比が
燃料の暖機増量性の過不足を伴うことなく常に適正な値
となり、内燃機関が燃費を適正に維持しつつ円滑な始動
状態を保持し、その結果かかる状態における車両のドラ
イバビリティが快J薗な状態に改善され得る。
By configuring the present invention in this manner, the warm-up increase in fuel supplied to the internal combustion engine is reduced in accordance with changes in the warm-up state of the internal combustion engine after it is started. After the internal combustion engine starts, the air/fuel ratio is always at an appropriate value without excess or deficiency in the warm-up increase of fuel, and the internal combustion engine maintains a smooth starting condition while maintaining appropriate fuel efficiency, resulting in The drivability of the vehicle in this state can be improved to a comfortable state.

以下、本発明の一実施例を図面により説明すると、第1
図は、本発明に係る電子式燃料噴射制御装置が車両用6
気筒内燃機関10に適用された例を示している。電子式
燃料噴射制御装置は、水温センサ20.スロットルホジ
ションセンサ60、負圧センサ40、吸気温センサ50
、空燃比センサ60、基準角センサ70及び回転角セン
サ80を備えており、水温センサ20は、内燃機関10
の冷却系統における冷却水温T Wを検出しこれを水温
信号として発生する。スロット)Lyポジション七アン
サ60、内燃機関10の吸気管16内に位置するヌロツ
トル弁14の開度θを4灸出しこれを開度信号として発
生し、負圧センサ40は、吸気管16におけるスロワ)
/し弁14の後流部分から導出してなる導管41内の負
圧pを検出してこれを負圧信号として発生する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The figure shows an electronic fuel injection control device according to the present invention for use in a vehicle.
An example applied to a cylinder internal combustion engine 10 is shown. The electronic fuel injection control device includes a water temperature sensor 20. Throttle position sensor 60, negative pressure sensor 40, intake temperature sensor 50
, an air-fuel ratio sensor 60, a reference angle sensor 70, and a rotation angle sensor 80.
The cooling water temperature TW in the cooling system is detected and generated as a water temperature signal. Slot) Ly position 7 answer 60 detects the opening degree θ of the throttle valve 14 located in the intake pipe 16 of the internal combustion engine 10 and generates this as an opening signal. )
The negative pressure p in the conduit 41 led out from the downstream portion of the valve 14 is detected and generated as a negative pressure signal.

吸気温センサ50は内燃機関10のエアフィルタ16内
を流れる吸気温TAを検出してこれを吸気温信号として
発生するとともに、また空燃比センサ60は内燃機関1
0の排気管18内における排気ガス中の酸素濃度を検出
しこれを7農度侶号として発生する。基準角センサ70
は、MiJ記カム軸の一回転(即ち、内燃機関10のク
ランク軸の二回転に相当する)毎に内燃機関100基準
回転角を検出しこれを基準角信号a(第2図参照)とし
て発生する。かかる場合、上述した基準回転角は、28
2図に示すごとく、内燃機関1oのクランク軸の回転角
、即ちクランク角o0(例えば、内燃機関10の第1気
筒C内における第1ビス1−ンPの上クビ点に対応する
クランク角)に対する所定進角値θθに71応する。回
転角センサ8oは、iiJ記カム軸の半回転毎に一連の
所定回転角を順次検出しこれを回転角信号b(第2図参
照)として発生する。
The intake temperature sensor 50 detects the intake temperature TA flowing through the air filter 16 of the internal combustion engine 10 and generates this as an intake temperature signal.
The oxygen concentration in the exhaust gas in the exhaust pipe 18 of 0 is detected and this is generated as 7 degrees. Reference angle sensor 70
detects the reference rotation angle of the internal combustion engine 100 every one revolution of the camshaft MiJ (that is, corresponds to two revolutions of the crankshaft of the internal combustion engine 10) and generates this as the reference angle signal a (see Fig. 2). do. In such a case, the reference rotation angle mentioned above is 28
As shown in Fig. 2, the rotation angle of the crankshaft of the internal combustion engine 1o, that is, the crank angle o0 (for example, the crank angle corresponding to the upper crack point of the first screw 1-P in the first cylinder C of the internal combustion engine 10) 71 corresponds to the predetermined advance angle value θθ. The rotation angle sensor 8o sequentially detects a series of predetermined rotation angles every half rotation of the camshaft iiJ and generates them as a rotation angle signal b (see FIG. 2).

かかる場合、−」二連した一連の所定回転角はそれぞh
クラ7 り角00ヲ基準としてクランク角1陥60’ノ
整数倍にZ・j応する。このことは、内P機関1oのク
ランク軸−回転毎に回転角センサ8oがら生じる回転角
信号すの数が内燃機関1oの気i%)数(6)に等しい
ことを1任、味する。
In such a case, the two series of predetermined rotation angles are each h
Assuming that the crank angle is 00, it corresponds to an integral multiple of the crank angle 1 and 60'. This means that the number of rotation angle signals generated by the rotation angle sensor 8o every time the crankshaft of the internal combustion engine 1o is rotated is equal to the number (6) of the internal combustion engine 1o.

マイクロコンピュータ9oは、A−D変換器を内蔵して
おり、このA−D変換器は、水温センサ20からの水(
!1i′+ 4TS号、スロワl−/l/ポジションセ
ンセンサからの開度信号、負圧センサ4oがらの負月信
号、吸気温センサ5oがらの吸気温信号、空燃比センサ
60がらのa度信号及び車両用向流電4九)Bからの直
流’%圧をそれぞれ水温ディジタル値、開度ディジクル
値、負圧ディジタル値、吸気11“・11テ゛イシタル
値、l農度ディジタル1的及び市、圧−ノー゛イシタル
値に変換する。また、マイクロコンピュータ90は、そ
の内部に予め記゛1意した公知のi: :l;(I御7
” IJクラムを図示しないフローチA= −、−1−
に従い天イ1し、この実行中において、回転角センサ8
oがらの回転角信号すを計数して内燃機関10の回11
i、速度Nを演算し、前記A−D2換器がらの開度ディ
ジタル値、吸気温ディジタル値及びl農瓜ディジタル顧
に応じ、後述のごとく決定される内燃機関1oへの燃料
の基本噴射量にり]応した基本+171 #、I I+
、’J間τの補正に必要な過渡補正(iri K o、
吸%CIn:、袖1「(ll′lKA及び空燃比補正値
KFをそれぞれ41目コし、かつ1jiJ記A−D変換
器からの電圧ディジタル碩に応じ、基本噴射時間の補正
に必要な補正11.5間T 、を7’h’i ’;’)
する。
The microcomputer 9o has a built-in A-D converter, and this A-D converter converts the water (
! 1i'+ 4TS, opening signal from thrower l-/l/position sensor, negative month signal from negative pressure sensor 4o, intake temperature signal from intake temperature sensor 5o, a degree signal from air-fuel ratio sensor 60 and vehicle countercurrent current 49) Direct current '% pressure from B, respectively, water temperature digital value, opening digital value, negative pressure digital value, intake 11"/11" digital value, l agriculture digital 1 and city, pressure. - Conversion into an initial value.The microcomputer 90 also converts the known i: :l; (I control 7
” Flowch A without IJ crumb shown = -, -1-
During this execution, the rotation angle sensor 8
11 of the internal combustion engine 10 by counting the rotation angle signal from the
i, the speed N is calculated, and the basic injection amount of fuel to the internal combustion engine 1o is determined as described below according to the opening digital value of the A-D2 converter, the intake temperature digital value, and the agricultural melon digital consultation. Basics +171 #, I I+
, 'Transient correction necessary for correction of τ between J (iri K o,
Absorption %CIn:, Sleeve 1 "(ll'l KA and air-fuel ratio correction value KF are each 41st, and according to the voltage digital value from the A-D converter in 1jiJ, make the correction necessary for correcting the basic injection time. 11.5T, 7'h'i';')
do.

さらに、マイクロコンピュータ9oは、その内部に予め
記憶した割込it、(]御プログラムを、第61ノjに
示すフローチャー1−に従い実イjし、との′に行中に
おいて、水温ディジタル値及び−1−制御ブロクラムの
実行中に求めた各値に応じ、その内蔵に係るダウンカウ
ンタの駆動に必要な各種の演算処理及び内燃機関10へ
の燃料の暖機増量補正の減少度合の決定に必要な各種の
演算処理を後述のごとく行う。かかる場合、割込制御プ
ログラムの天性のための割込時期は、夷(弗角センサ7
0からの基準角イぎ号aを基準とし回転角センサ80か
らの回転角信号すをマイクロコンピュータ90内にて6
分周して形成される分周信号C(第2図に示すごとくク
ランク角600°を基準として660°毎に発生する)
によって規定される。
Further, the microcomputer 9o executes the interrupt program previously stored in the microcomputer 9o according to the flowchart 1- shown in the 61st node j, and in the middle of the process, the water temperature digital value is and -1- In accordance with each value obtained during execution of the control blockram, various calculation processes necessary for driving the down counter related to the built-in down counter and determination of the reduction degree of the warm-up increase correction of fuel to the internal combustion engine 10. Various necessary arithmetic processes are performed as described below.In such a case, the interrupt timing due to the nature of the interrupt control program is
The rotation angle signal from the rotation angle sensor 80 is calculated using the reference angle number a from 0 as a reference in the microcomputer 90.
Frequency division signal C formed by frequency division (generated every 660° with a crank angle of 600° as the reference, as shown in Figure 2)
defined by.

ル1ス動回路100はマイクロコンピュータ90の制釧
jのもとに内燃イ幾関10の燃料噴射弁12への直流電
源Bからの給′准を選択的に許容する。このことfd 
、燃料1質坏1ノ「12が、駆動回路100との協1動
により、その内蔵に係るソレノイドを直流電渕HBから
の給電により開いて燃料供給源15からの燃本」を内燃
機関10の燃焼室内に噴射することケい、味する。なお
、燃料噴射弁12は、内燃機関10の多気管11にその
気筒数に応じた数だけ設けられている。
The pulse control circuit 100 selectively allows the supply of the DC power supply B to the fuel injection valve 12 of the internal combustion engine 10 under the control of the microcomputer 90. This fd
, the fuel 1 material 1 "12 cooperates with the drive circuit 100 to open the built-in solenoid by supplying power from the DC power supply HB to supply the fuel from the fuel supply source 15" to the internal combustion engine 10. It is injected into the combustion chamber and tasted. Note that the number of fuel injection valves 12 corresponding to the number of cylinders is provided in the multi-tube 11 of the internal combustion engine 10.

以上のように構成した木大施例において、]1.1 :
l:!:機関10を始動させて当該車両を定進さぜると
ともに本発明装置を作動させれば、マイク11コンピユ
ータ90が公知の仁制御プログラムを′j4(rL、こ
の実行中において」二連したごとく内・岡機関10の回
転速度N、過渡補正値KO1吸(xc 711+’+ 
f’ll! JIXf直に/i−空燃比補正値KF及び
補正11」闇値TVを演1ンする3、しかして、マイク
ロコンピュータ90がその内部にて生じる分周信号Cに
応答して割込ili”l ?ltlブ゛1」クラムの実
行ヲ第6図のフローチA−−1・に従いステップ110
にて開始すると、このマイクロコンピュータ90が、ス
テップ111にて、自撚(浅関10の現段階における暖
機増量補正値S E (S E−0と初期設定されてい
るものとする)にノ、(きi N Ojと判別し、ステ
ップ112にて、1)1]記A−D変換器にて求めた水
温ディジタル顧をとりだし、ステップ116にて、暖機
増量初期111′1SE■旧・と水(m4テインタル値
との間の関係を表わす+Wi定のデータ1)(第4図参
照)に基きステップ112における水温ディシクロ値に
応じ暖機増量初期値SE工NTを演算しSEとセットす
る。かかる場合、上述したデータDは、水温ディジタノ
ン値との関連にて内燃機関10を円滑に始動させるに必
要な特性を表わすもので、予めマイクロコンピュータ9
0に記憶されている。
In the Kidai example configured as above, ]1.1:
l:! : When the engine 10 is started to make the vehicle move steadily and the device of the present invention is activated, the microphone 11 computer 90 executes a known control program 'j4 (rL, during this execution)' as if twice in a row. Rotational speed N of Uchi-Oka engine 10, transient correction value KO1 suction (xc 711+'+
f'll! JIXf directly performs /i- air-fuel ratio correction value KF and correction 11'' dark value TV3, and the microcomputer 90 interrupts in response to the frequency division signal C generated within it. Step 110: Execute the ``?ltl block 1'' crumb according to flow A--1 in Figure 6.
At step 111, the microcomputer 90 enters a note in the self-twisting (warm-up increase correction value SE (assumed to be initially set as SE-0) at the current stage of the Asaseki 10). , (kii N Oj), and in step 112, the water temperature digital value obtained by the A-D converter is taken out. Based on the +Wi constant data 1 representing the relationship between the water temperature and the m4 taintal value (see Fig. 4), the warm-up increase initial value SE/NT is calculated according to the water temperature dicyclo value in step 112 and set to SE. In such a case, the data D described above represents the characteristics necessary to smoothly start the internal combustion engine 10 in relation to the water temperature digiton value, and is stored in advance in the microcomputer 9.
It is stored as 0.

ついで、マイクロコンピュータ90が、ステップ114
〜116にて、基本噴射時間τ1回転速度N及び吸気管
16内の負圧の間の関係を表わすマツプに基き主制御プ
ログラムにおける回転速度N及び前記A−’D変換器か
らの負圧ディジタル値に応じ基本噴府、1時間τを演算
し、この演算結果にステップ116における暖機増量初
期値5EINT ””SF、主制御プログラムにおける
各補正値KO1KA、KFを東じてこの乗算結果を有効
噴射時間τ0とセットし、このセット結果に主制御プロ
グラムにおける補正時間値τ7を加算してこの加算結果
を最適噴射時間τ。として前記ダウンカウンタにセラ1
゛する。すると、このダウンカウンタが最適噴射時間τ
。のセットと同時にこれを出力信号として発生するとと
もにタウンカウントし始める。ついで、駆動回路10口
がマイク1」コンじ゛JI−−タ90からの出力信号に
応答して駆動(2’、、i’ ”を/1じ、これに応答
して燃ね噴坏1)’F 12がそのソレノイドへの直流
電源Bからの給電により開いて燃1:1供給源15から
の燃肛1を内燃機関10内に噴坏jし始める。然る後、
マイクロコンピュータ90のタウンカウンタがそのダウ
ンカウント終了によI) +iii記出力借出力信号を
停止すると、駆動回路100が駆動信号の発生を停止し
、これに応答して燃Jl噴坏1弁12がそのソレノイド
への給電停止ににより閉じて内燃機関10への燃料噴η
、1を停[」二する、1以上説明したことから理解され
るとおり、内燃機関10の始動時においては、この始動
11.14における内燃機関10の冷却系統の冷却水温
に応じて所定のデータDに基き暖機増量初期値SE工I
iq・を設定するので、内燃機関10への燃料1141
創:1kを過不足なく暖機増量補正することができ、そ
の結果、不必要な燃料消費を伴うことなく内燃機関10
を円滑に始動できる。
Then, the microcomputer 90 performs step 114.
- 116, the rotational speed N and the negative pressure digital value from the A-'D converter in the main control program are determined based on the map representing the relationship between the basic injection time τ1, the rotational speed N, and the negative pressure in the intake pipe 16. The basic jet flow and 1 hour τ are calculated according to the calculation results, and the initial value of warm-up increase 5EINT ""SF in step 116 and each correction value KO1KA, KF in the main control program are multiplied by this calculation result to perform effective injection. The time τ0 is set, the correction time value τ7 in the main control program is added to this set result, and this addition result is set as the optimum injection time τ. Sera 1 on the down counter as
Do it. Then, this down counter determines the optimal injection time τ
. At the same time as is set, this is generated as an output signal and the town count starts. Next, the drive circuit 10 drives the microphone 1'' in response to the output signal from the JI controller 90 (2', i''' by /1), and in response, the mic 1 is driven (2', i''' by /1). )'F 12 opens by supplying power to its solenoid from the DC power source B and begins to inject the fuel port 1 from the fuel 1:1 supply source 15 into the internal combustion engine 10. After that,
When the town counter of the microcomputer 90 stops the I) +iii output signal due to the completion of its down count, the drive circuit 100 stops generating the drive signal, and in response, the fuel Jl injection valve 12 starts. When the power supply to the solenoid is stopped, the solenoid closes and fuel injection to the internal combustion engine 10 starts.
As can be understood from the above explanation, when the internal combustion engine 10 is started, predetermined data is determined according to the cooling water temperature of the cooling system of the internal combustion engine 10 at the time of starting 11.14. Initial value of warm-up increase based on D SE engineering I
Since iq・ is set, the fuel 1141 to the internal combustion engine 10
As a result, the internal combustion engine 10 can be increased without unnecessary fuel consumption.
can be started smoothly.

割込制御プログラムがステップ117に進むと、マイク
ロコンピュータ90が、噴射時間積算値τ、(現段階に
てはτ、−〇と初期設定法)にステップ114における
有効噴射時間τ。を積算してこれをτ□と更新する。し
かして、現段階においては、暖機増量補正値SEから所
定の暖機減少量△SEだけ減少させるに必要十分な設定
時間τ。(マイクロコンピュータ?0内に予め記憶済み
)が経過していないため、マイクロコンピュータ90が
ステップ118にてrNOJと判別する。かかる場合、
上述した暖機減少量△SRは、内燃機関10に対する暖
機増量補正をその始動後の冷却水温の上昇(即ち、lI
!機温の上昇)に応じて過不足なく適正に(′tうため
に定められたもので、予めマイクロコンピュータ90内
に記憶されている。また、設定時間τ。を採用した根拠
は、この設定時間τ。中に内燃機関10に対しなされる
燃料の暖機増量分がこの暖機増量補正の燃焼熱に伴う冷
却水温の上ゲ1−分に周心することに着眼したことにあ
る。
When the interrupt control program proceeds to step 117, the microcomputer 90 sets the effective injection time τ in step 114 to the injection time integrated value τ, (currently τ, −0 and the initial setting method). is integrated and updated as τ□. Therefore, at this stage, the set time τ is necessary and sufficient to reduce the warm-up increase correction value SE by the predetermined warm-up decrease amount ΔSE. (previously stored in the microcomputer ?0) has not elapsed, the microcomputer 90 determines rNOJ in step 118. In such case,
The above-mentioned warm-up reduction amount ΔSR is the warm-up increase correction for the internal combustion engine 10 due to the increase in cooling water temperature after its startup (i.e., lI
! This is determined in order to maintain the temperature properly ('t) according to the rise in machine temperature, and is stored in advance in the microcomputer 90.The reason for adopting the set time τ is that This is based on the fact that the warm-up increase in fuel applied to the internal combustion engine 10 during the time τ is centered around the 1-minute increase in the cooling water temperature associated with the combustion heat of the warm-up increase correction.

然る後、ステップ118における判別が[YE、SJに
なると、マイクロコンピュータ90が、ステップ119
にて、ステップ117における最わ?の噴射時間積算値
τ、から設定時間τ。を減じてこの減算結果をτiとし
て更新し、ステップI 2 DI/こて、ステップ11
6における暖機増)1(柚市(ll′1SE−’5EI
NTから暖機減少量△SEたけ減じてこの減算結果をS
Eと更新し、ステップ121にて、ステップ120にお
ける更新結果SEが正であることに基きl’−YESJ
と判別する。以後、各ステ゛ノブ。
After that, when the determination in step 118 becomes [YE, SJ, the microcomputer 90 performs step 119.
In step 117, the most important question? from the injection time integrated value τ, to the set time τ. is subtracted and this subtraction result is updated as τi, Step I 2 DI/trowel, Step 11
Warm-up increase in 6) 1 (Yuzu City (ll'1SE-'5EI
Subtract the warm-up reduction amount △SE from NT and use this subtraction result as S
In step 121, l'-YESJ is updated based on the update result SE in step 120 being positive.
It is determined that After that, each step knob.

119.120における演算及びステップ121におけ
る「YESJとの判別を割込制御プログラムの実行毎に
繰返しつつ、暖機増量補正値SEを、第5図に示すごと
く1.iSEずつ減少させて、ステップ121における
判別がr N O、、lとなったとき、マイクロコンピ
ュータ90がステップ122にて5R=0とセットする
While repeating the calculations in steps 119 and 120 and the determination of "YESJ" in step 121 every time the interrupt control program is executed, the warm-up increase correction value SE is decreased by 1.iSE as shown in FIG. When the determination in is r N O, , l, the microcomputer 90 sets 5R=0 in step 122 .

以上説明したとおり、内燃機関10の始動後においては
、噴射時間積算値で1が設定時間τ。に達する毎に暖機
増量補正値sg二SE工t4Tから繰返しΔSEずつ減
少させるようにしたので、この/−8Eの減少回数に対
応する内燃機関10の暖機温の上昇分に応じてこの内燃
機関10に対する燃料の暖機増量分を段階的に減少させ
ることとなり、このため、内燃機関10の始動後の回転
状態を燃費の過不足を伴うことなく円滑に維持でき、そ
の結果、当該車両の内燃機関10の始動後のドライバビ
リティを快適にし得る。なお、割込制御プログラムのス
テップ111における判別は、ステップ122にてSE
=[lとセットされるまで、rYEsJとなる。
As explained above, after the internal combustion engine 10 is started, 1 in the injection time integrated value is the set time τ. Since the warm-up increase correction value sg2SE is repeatedly decreased by ΔSE each time the warm-up increase correction value sg2SEt4T is reached, the internal combustion The warm-up amount of fuel for the engine 10 is gradually reduced, and as a result, the rotational state of the internal combustion engine 10 after starting can be maintained smoothly without excessive or insufficient fuel consumption, and as a result, the vehicle's Drivability after starting the internal combustion engine 10 can be made comfortable. Note that the determination in step 111 of the interrupt control program is based on the SE
= [rYEsJ until set to l.

なお、本発明の実施にあたっては、割込制御プログラム
のステップ117〜120に代えて、第6図に示すごと
く、ステップ12’3,124を採用し、かかるステッ
プ123,124において、第7図にて示すごとく予め
定めた総暖機減少量△”””sumと有効噴射時間τ8
との関係を表わすデータに基きステップ114における
有効噴射時間τ。から総1暖機減少量ΔS E s u
 mを求めるとともに暖機増量補正値sgから総暖機減
少量△SE8umを減じこの減算結果をSEと更新する
ようにしてもよい。
In implementing the present invention, instead of steps 117 to 120 of the interrupt control program, steps 12'3 and 124 are adopted as shown in FIG. 6, and in steps 123 and 124, the steps shown in FIG. As shown, the predetermined total warm-up reduction amount △"""sum and effective injection time τ8
The effective injection time τ in step 114 is based on data representing the relationship between τ and τ. Total 1 warm-up reduction amount ΔS E s u
While determining m, the total warm-up decrease amount ΔSE8um may be subtracted from the warm-up increase correction value sg, and the result of this subtraction may be updated as SE.

また、前記実施例においては、本発明を6気i:”ti
内燃機関10に適用した例について説明したが、これに
限ることなく、内燃機関の1い′;1)数1−11]逸
宜変更してよい。
In addition, in the above embodiments, the present invention is
Although an example in which the present invention is applied to the internal combustion engine 10 has been described, the present invention is not limited to this and may be modified as necessary.

また、前記実施例においては、内燃機関10への燃料噴
射量とその発熱は(即ち、暖機速度)とが一義的に対応
することに着目して、t= *;l噴坏1. :、l。
Furthermore, in the embodiment described above, focusing on the fact that the amount of fuel injected into the internal combustion engine 10 and its heat generation (that is, the warm-up speed) uniquely correspond, t=*;l injection 1. :,l.

(即ち、燃料噴射時間)の内燃機関10の始動後の積算
値に基き暖機増量補正値SEを順次減少させるようにし
たが、これに代えて、内燃機関10の可燃混合比のもと
における回転状四においては、内燃機関10の発熱量が
、その吸気量(又は吸気管負圧)と回転数との積に等し
いことに’;+’? [I l、、吸気量(又は吸気管
負圧)の積算値に応じて]lガ]幾増量補正値SEを減
少させるようにしてもよい。
(i.e., fuel injection time) after the start of the internal combustion engine 10, the warm-up increase correction value SE is sequentially decreased. In rotation mode 4, the amount of heat generated by the internal combustion engine 10 is equal to the product of its intake air amount (or intake pipe negative pressure) and rotational speed. The increase correction value SE may be decreased depending on the integrated value of the intake air amount (or intake pipe negative pressure).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すブロック図、第2図
は、第1図における基ω角センザ及び回転角センサの出
ノア信号波形図、第3図は、第11図におけるマイクロ
コンピュータの作用を示すフローチャート、第4図は、
暖機増(i初ル4値と水温ディシクロ値との関係を示す
特性曲線図、第5図は、暖機増量補正値の噴牙]回数と
の関連における減少状態の説明図、第6図は、第61図
のフローチャー1−の部分的変形例を示す図、第7図は
、総1区]幾減少jhと自効噴射時間との関係を示す特
性曲線図、及び第8図は、特許請求の範囲に記載の発明
の構成に文jする対応図である。 符号の説明 )3・・・直流電源、10・・・内燃機関、12・・・
燃才1噴剖介、15・・・燃絹供給源、20・・・水温
十ン−’J−190・・・マイクロコンピュータ、10
0・・・jlji7動回路。 出回路人 日本′肛裟株式会社 代、jl、17人 ノ「即± i  [+!ぴ −第4
図 水ン1清テイジタル値 第5図 11ct射回数 第6図 第7図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram of output signals from the base ω angle sensor and rotation angle sensor in FIG. 1, and FIG. 3 is a micrograph in FIG. A flowchart showing the operation of the computer, FIG.
Figure 6 is an explanatory diagram of the decreasing state in relation to the number of warm-up increases (Characteristic curve diagram showing the relationship between the i initial value and the water temperature dicyclo value, Figure 5 is the blowing fan of the warm-up increase correction value) 61 is a diagram showing a partial modification of the flowchart 1- in FIG. , is a corresponding diagram corresponding to the configuration of the invention described in the claims. Explanation of symbols) 3... DC power supply, 10... Internal combustion engine, 12...
Genzai 1 injection mechanism, 15... Fuel silk supply source, 20... Water temperature 10-'J-190... Microcomputer, 10
0...jlji7 motion circuit. Outgoing personnel: Nippon'Anal Co., Ltd., JL, 17 people.
Fig. 11 water digit value Fig. 5 11ct shot count Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 車両の直流電源から給電されたとき通電して開状態にな
るとともにil記給電から遮断されたとき非通電となり
閉状態になる弁手段を備えて、車両の燃料供給源からの
燃料を前記弁手段によりその開状態にて供給される内燃
機関に適用されて、この内燃機関の暖機状態に密接に関
連する少なくとも二つの物理量を検出しこれらを第1と
第2の物理垣信号として発生する物理量検出手段と、前
記第1物理量と前記内燃機関へ供給すべき燃料の暖機増
1■初期値との間の所定の関係に基き1)IJ記内燃機
関の始動時におけるOi前記物理量信号に応じて前記暖
機増量初期]直を演算する演算手段と、OiJ記内燃機
関への燃料の越本供給量を表わす基本供給時間を前記演
算手段の演算値により補正するとともにこの補正結果を
出力信号として発生し前記弁手段に伺与する出力手段と
を(+iiiえた電子式撚オ;1・“iT ”l、1制
御装置において、riiJ記内燃機関の始動後における
前記第2物理量信号の1的の変化に応じて1)ケ記1i
ij算手段の演算値を減少させる減少丁段を設けて、前
記出力手段が前記基本供給時間を1jIJ記減少手1−
シの減少結果により補正しこれを])1■記出力1.−
]号として発生するようにした車両用内燃機関のだめの
’IL!:子式燃料噴ρ」制御装置。
The valve means is provided with a valve means that is energized to be in an open state when supplied with power from a DC power source of the vehicle, and de-energized and to be in a closed state when cut off from the power supply, and the valve means is configured to supply fuel from a fuel supply source of the vehicle to the valve means. A physical quantity applied to an internal combustion engine supplied in its open state by detecting at least two physical quantities closely related to the warm-up state of the internal combustion engine and generating these as first and second physical signals. a detection means, and based on a predetermined relationship between the first physical quantity and the initial value of the warm-up increase of fuel to be supplied to the internal combustion engine, 1) IJ, Oi at the time of starting the internal combustion engine, according to the physical quantity signal; a calculation means for calculating the initial amount of fuel to be supplied to the internal combustion engine according to OiJ; and an output means for generating and applying to the valve means (+iii) an electronic twister; Depending on the change 1) Note 1i
A reduction step for reducing the calculated value of the ij calculation means is provided, and the output means is configured to reduce the basic supply time by 1jIJ.
This is corrected based on the result of reduction of 1) 1. −
] The 'IL! :Sub-type fuel injection control device.
JP7779883A 1983-05-02 1983-05-02 Electronic fuel injection control apparatus for internal-combustion engine used for vehicle Pending JPS59203832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7779883A JPS59203832A (en) 1983-05-02 1983-05-02 Electronic fuel injection control apparatus for internal-combustion engine used for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7779883A JPS59203832A (en) 1983-05-02 1983-05-02 Electronic fuel injection control apparatus for internal-combustion engine used for vehicle

Publications (1)

Publication Number Publication Date
JPS59203832A true JPS59203832A (en) 1984-11-19

Family

ID=13644015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7779883A Pending JPS59203832A (en) 1983-05-02 1983-05-02 Electronic fuel injection control apparatus for internal-combustion engine used for vehicle

Country Status (1)

Country Link
JP (1) JPS59203832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247730A (en) * 1988-03-28 1989-10-03 Nissan Motor Co Ltd Control device for fuel feed of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247730A (en) * 1988-03-28 1989-10-03 Nissan Motor Co Ltd Control device for fuel feed of internal combustion engine

Similar Documents

Publication Publication Date Title
JP2009287532A (en) Fuel injection control device for internal combustion engine
JP2001349231A (en) Fuel supply control device of internal combustion engine
JPS59203832A (en) Electronic fuel injection control apparatus for internal-combustion engine used for vehicle
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPH0686831B2 (en) Air-fuel ratio learning controller for internal combustion engine
JPS59188053A (en) Air-fuel ratio compensation control for internal- combustion engine
JPS60237137A (en) Fuel injection amount controller on starting for electronic controlled injection controller for internal-combustion engine
JP2678756B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS5827849A (en) Air-fuel ratio controlling method for internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPH06249013A (en) Fuel supplying device for internal combustion engine
JPS60249643A (en) Air-fuel ratio control in fuel feeding apparatus for internal-combustion engine
JP2003286870A (en) Variable valve timing controller of internal combustion engine
JPH02119647A (en) Electronically controlled fuel injection device for internal combustion engine
JPS63205443A (en) Air-fuel ratio controller for internal combustion engine
JPS6045745A (en) Method of controlling learning of air-fuel ratio of electronically-controlled engine
JPS6217330A (en) Fuel supply device for engine
JPH09209803A (en) Fuel injection control device of internal combustion engine
JPH04231636A (en) Air-fuel ratio control method for internal combustion engine
JPH08177555A (en) Fuel supply control device for internal combustion engine
JPS5990739A (en) Control-by-learning of air-fuel ratio of internal-combustion engine
JPS62258143A (en) Electronic control fuel injection device for internal combustion engine
JPH01190934A (en) Fuel injection quantity controller for internal combustion engine
JPS5951141A (en) Electronic fuel injection timing control method of internal-combustion engine