JPS59188053A - Air-fuel ratio compensation control for internal- combustion engine - Google Patents

Air-fuel ratio compensation control for internal- combustion engine

Info

Publication number
JPS59188053A
JPS59188053A JP6281783A JP6281783A JPS59188053A JP S59188053 A JPS59188053 A JP S59188053A JP 6281783 A JP6281783 A JP 6281783A JP 6281783 A JP6281783 A JP 6281783A JP S59188053 A JPS59188053 A JP S59188053A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
engine
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6281783A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
和義 山本
Toshiaki Mizuno
利昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP6281783A priority Critical patent/JPS59188053A/en
Publication of JPS59188053A publication Critical patent/JPS59188053A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2458Learning of the air-fuel ratio control with an additional dither signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve operation performance by renewing the learned value in accordance with the engine operation state when lean control is performed with the lean air-fuel ratio obtained on the basis of the learned value in a feedback and controlling the air-fuel ratio with the fundamental air-fuel ratio corrected by said learned value renewed. CONSTITUTION:A controller 48 feedback-controls an injector 30 in accordance with the output of an O2 sensor 40 so that the air-fuel ratio of the mixed gas becomes equal to a theoretical air-fuel ratio. Further, learning control is performed so that the fundamental air-fuel ratio is corrected to the vicinity of the theoretical air-fuel ratio from the feedback correction value, and when the engine operation state fulfills a certain condition, for example when the temp. of cooling water rises over 70 deg.C, the air-fuel ratio is feed forward controlled (lean control) on the basis of the fundamental air-fuel ratio learned. When the operation state where feedback control is performed is temporarily formed in lean control, the learned value due to the feedback control in the previous time can be renewed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の空燃比補償制御方法に係シ、特に、
自動車用エンジンの運転状態に応じて混合気の空燃比を
制御するのに好適な内燃機関の空燃比補償制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air-fuel ratio compensation control method for an internal combustion engine, and in particular, to
The present invention relates to an air-fuel ratio compensation control method for an internal combustion engine suitable for controlling the air-fuel ratio of an air-fuel mixture according to the operating state of an automobile engine.

〔従来技術〕[Prior art]

自動車用エンジンにおいて、排気ガス中の酸素濃度を検
出する酸素濃度センサ(以下02センナと称する)の検
出出力に応じて混合気の空燃比(A/F )を理論空燃
比(A/F = 14.7 )近傍にフィードバック制
御し、排気系に配設された三元融媒により排気ガスを浄
化することが従来から行なわれている。又さらに、エン
ジンの運転状態がある一定東件になった場合、例えばエ
ンジン冷却水温が70℃以上になった場合、フィードバ
ック制御時に、基本空燃比を理論空燃比に近似させる為
フィードバック補正値から学習された基本空燃比を基に
希薄空燃比に混合気の空燃比をフイードフォワード制御
するリーン制御(例えばA/F −16としての制御)
を行ない、燃料消費量を抑制することなども従来から行
々われでいた。
In an automobile engine, the air-fuel ratio (A/F) of the air-fuel mixture is adjusted to the stoichiometric air-fuel ratio (A/F = 14) according to the detection output of an oxygen concentration sensor (hereinafter referred to as 02 Senna) that detects the oxygen concentration in exhaust gas. .7) It has been conventionally practiced to perform feedback control in the vicinity and purify the exhaust gas using a ternary melting medium installed in the exhaust system. Furthermore, when the engine operating condition reaches a certain condition, for example, when the engine cooling water temperature reaches 70 degrees Celsius or higher, during feedback control, learning is performed from the feedback correction value in order to approximate the basic air-fuel ratio to the stoichiometric air-fuel ratio. Lean control that feedforward controls the air-fuel ratio of the mixture to a lean air-fuel ratio based on the basic air-fuel ratio determined (e.g. control as A/F-16)
Conventionally, efforts have been made to reduce fuel consumption by doing this.

しかし、従来のリーン制御は、フィードバック時の学習
値を基にした希薄空燃比で混合気の空燃比が制御され、
フィードバック制御に移るまで学習された空燃比を基に
した希薄空燃比を更新することは行なわれていなかった
。そのため、従来のリーン制御が適用されたエンジンに
おいて、IJ−ン制御が長時間継続されているときに、
エンジン水温、大気圧の変化によってエンジンの運転状
態が変化しても、フィードバック制御がされない為、学
習による基本空燃比が補正されないままの希薄空燃比で
運転され、エンジンの運転状態の変化に対応したり−ン
制御を行なうことができなかった。
However, in conventional lean control, the air-fuel ratio of the mixture is controlled at a lean air-fuel ratio based on the learned value during feedback.
Updating the lean air-fuel ratio based on the learned air-fuel ratio was not performed until feedback control was started. Therefore, in an engine to which conventional lean control is applied, when IJ-on control is continued for a long time,
Even if the operating state of the engine changes due to changes in engine water temperature or atmospheric pressure, feedback control is not performed, so the basic air-fuel ratio by learning is operated at a lean air-fuel ratio without being corrected, and the engine does not respond to changes in the operating state. control could not be performed.

エンジンの運転状態が変化しても補正され女い希薄空燃
比でリーン制御が継続されると燃焼状態が悪化しドライ
バビリティが低下する。特にアイドル状態妊おいてはエ
ンジンストールが発生するという不具合がある。
Even if the operating state of the engine changes, if lean control is continued with a lean air-fuel ratio that is corrected, the combustion state will deteriorate and drivability will deteriorate. In particular, there is a problem that the engine stalls when the engine is idling.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の課題に鑑みて為されたものであり
、その目的は、フィードバック時の学習値を基にした希
薄空燃比でリーン制御が行なわれているときでも、エン
ジンの運転状態に応じて学習値を更新し、更新された学
習値を基に補正された基本A/Fで希薄空燃比に混合気
の空燃比を制御し、リーン制御時のエンジン性能を向上
させることができる内燃機関の空燃比補償制御方法を提
供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to change the operating state of the engine even when lean control is performed at a lean air-fuel ratio based on the learned value at the time of feedback. The learned value is updated accordingly, and the basic A/F corrected based on the updated learned value controls the air-fuel ratio of the air-fuel mixture to a lean air-fuel ratio, improving engine performance during lean control. An object of the present invention is to provide an air-fuel ratio compensation control method for an engine.

〔発明の概要〕[Summary of the invention]

前記目的を達成するために、本発明は、排気ガス中の酸
素濃度を検出する酸素#度センサの検出出力に応じて混
合気の空燃比を理論空燃比近傍にフィードバック制御す
るフィードバック制御と、フィードバック制御時に、基
本空燃比を理論空燃比に近似させる為フィードバック補
正値から学習された基本空燃比を基にした希薄空燃比に
混合気の空燃比をフィードフォワード制御するリーン制
御とを、エンジンの運転状態に応じて切替えて行なう内
燃機関の空燃比補償制御方法において、リーン制御時に
一時フイードバック制御を行なうエンジンの運転状態を
予め定め、リーン制御時に前記エンジンの運転状態が検
出されたとき、一時フィードバック制御にする空燃比制
御を行なって前回のフィードバック制御による学習値を
更新し、更新された学習値を基にした希薄空燃比で次の
リーン制御を行なうことを特徴とする。
In order to achieve the above object, the present invention provides feedback control that feedback-controls the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio according to the detection output of an oxygen degree sensor that detects the oxygen concentration in exhaust gas; At the time of control, in order to approximate the basic air-fuel ratio to the stoichiometric air-fuel ratio, lean control is used to feed forward the air-fuel ratio of the mixture to a lean air-fuel ratio based on the basic air-fuel ratio learned from the feedback correction value. In an air-fuel ratio compensation control method for an internal combustion engine that performs switching according to the state, an operating state of the engine to which temporary feedback control is performed during lean control is determined in advance, and when the operating state of the engine is detected during lean control, temporary feedback control is performed. The present invention is characterized in that the air-fuel ratio control is performed to update the learned value from the previous feedback control, and the next lean control is performed at a lean air-fuel ratio based on the updated learned value.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の好適な実施例を説明する
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明が適用された自動車用エンジンシス
テムの実施例が示されている。
FIG. 1 shows an embodiment of an automobile engine system to which the present invention is applied.

第1図において、エンジン1oの吸気管12には、外気
を取シ入れるためのエアクリーナ14、アクセルペダル
と連動して回動し吸入空気の流量を制御するためのスロ
ットル弁18などが設けられている。
In FIG. 1, an intake pipe 12 of an engine 1o is provided with an air cleaner 14 for taking in outside air, a throttle valve 18 that rotates in conjunction with an accelerator pedal, and controls the flow rate of intake air. There is.

エアクリーナ14には、吸入空気の温度を検出する吸気
温センサ22が内蔵されている。又、スロットル弁18
には、アイドルスイッチヲ會ミスロットル弁18の開破
を検出するスロットルセンサ24が配設されている。吸
気マニホールド26には、吸気管圧力を検出する圧力セ
ンサ28、エンジン10の吸気ボートに向けて燃料を噴
射するインジェクタ30が設けられている。又、さらに
エンジン10の本体忙は、エンジン10のクランク軸の
回転速度に応じた周波数のパルス信号を出力する回転速
度センサ32、エンジンの冷却水温を検出する水温セン
サ34が設けられている。
The air cleaner 14 has a built-in intake temperature sensor 22 that detects the temperature of intake air. Also, the throttle valve 18
A throttle sensor 24 for detecting opening of the idle switch throttle valve 18 is disposed. The intake manifold 26 is provided with a pressure sensor 28 that detects intake pipe pressure and an injector 30 that injects fuel toward the intake boat of the engine 10. Further, the main body of the engine 10 is provided with a rotational speed sensor 32 that outputs a pulse signal of a frequency corresponding to the rotational speed of the crankshaft of the engine 10, and a water temperature sensor 34 that detects the engine cooling water temperature.

一方、排気管36の排気マニホールド38出口側には排
気ガス中の酸素濃度を検出するO、センサ40が配設さ
れている。排気管36の下流側には三元触媒コンバータ
42が配設されている。
On the other hand, on the exhaust manifold 38 outlet side of the exhaust pipe 36, an oxygen sensor 40 is arranged to detect the oxygen concentration in the exhaust gas. A three-way catalytic converter 42 is disposed downstream of the exhaust pipe 36.

又、変速機44には、変速機44の出力軸の回転速度か
ら車両の走行速度を検出する車速センサ46が設けられ
ている。
The transmission 44 is also provided with a vehicle speed sensor 46 that detects the running speed of the vehicle from the rotational speed of the output shaft of the transmission 44.

吸気温センサ22、吸気量センサ20.スロットルセン
サ24などエンジン10の各種運転状態を検出するセン
サの検出出力はそれぞれエンジン制御装置48に供給さ
れている。
Intake air temperature sensor 22, intake air amount sensor 20. Detection outputs of sensors such as the throttle sensor 24 that detect various operating states of the engine 10 are supplied to an engine control device 48, respectively.

エンジン制御装置48は、第2図に示されるように、C
PU50を中枢とするマイクロコンピュータで構成され
ておシ、タイマ52、割込制御部54、回転速度カウン
タ56、デジタル入力ボート58、アナログ入力ポート
ロ0、電源回路62、R,AM64、I(、OM 66
、カウンタ68、電力増幅部70、出力回路72が設け
られておp1各部がパスライン74で接続されている。
As shown in FIG.
It consists of a microcomputer with PU50 as the core, timer 52, interrupt control section 54, rotational speed counter 56, digital input port 58, analog input port 0, power supply circuit 62, R, AM64, I(, OM 66
, a counter 68, a power amplifying section 70, and an output circuit 72 are provided, and the respective sections of p1 are connected by a pass line 74.

回転速度カウンタ56は、回転速度センサ32の検出出
力を取p込み、エンジン1回転に1回エンジン回転速度
を計数すると共に、この計数の終了時に割込指令信号を
割込制御部54に出力することができる。割込制御部5
4は、割込指令信号に応じた割込信号を発生し、CPU
50に、燃料噴射時間の演算を行なう割込処理ルーチン
を実行させることができる。
The rotational speed counter 56 receives the detection output of the rotational speed sensor 32, counts the engine rotational speed once per engine rotation, and outputs an interrupt command signal to the interrupt control unit 54 at the end of this counting. be able to. Interrupt control unit 5
4 generates an interrupt signal according to the interrupt command signal, and
50 can be caused to execute an interrupt processing routine for calculating the fuel injection time.

スロットルセンサ24のスロットル全M信号、車速セン
サ46の車速信号、スタータスイッチ76のスタータ信
号はデジダル人力ボート58に供給されている。又、吸
気量センサ20、吸気温センサ22、圧力センサ28、
水温センサ34、O。
A throttle full M signal from the throttle sensor 24, a vehicle speed signal from the vehicle speed sensor 46, and a starter signal from the starter switch 76 are supplied to the digital human-powered boat 58. Further, an intake air amount sensor 20, an intake air temperature sensor 22, a pressure sensor 28,
Water temperature sensor 34, O.

センサ40の各検出出力はアナログ入力ポートロ0に供
給され、デジタル信号に変換される。
Each detection output of the sensor 40 is supplied to an analog input port 0 and converted into a digital signal.

又、カウンタ68はレジスタを含むダラウンカウンタか
らなfi、CPU50へ算出されたインジェクタ30の
開弁時間、即ち、燃料噴射量を表わすデジタル信号を実
際のインジェクタ30の開弁時間を与えるパルス幅のパ
ルス信号を電力増幅部70に供給することができる。電
力増幅部70はカウンタ68からのパルス信号を電力増
幅しインジェクタ30に供給する。
Further, the counter 68 inputs a digital signal representing the calculated valve opening time of the injector 30, that is, the fuel injection amount, to the CPU 50 from a down counter including a register, and sends the calculated valve opening time of the injector 30, that is, a digital signal representing the fuel injection amount, to the CPU 50. The pulse signal can be supplied to the power amplification section 70. The power amplifying section 70 amplifies the power of the pulse signal from the counter 68 and supplies it to the injector 30.

又、出力回路72は、水温センサ34の検出出力に基づ
いてエンジン水温が設定温度を越えたことが検出された
とき駆動回路78に制御信号を供給し、エンジン冷却水
を冷却する電動ファン80を作動することができる。
Furthermore, when it is detected that the engine water temperature exceeds the set temperature based on the detection output of the water temperature sensor 34, the output circuit 72 supplies a control signal to the drive circuit 78 to turn on the electric fan 80 that cools the engine cooling water. can operate.

RAM64には、CPU50による演算データなどが記
憶され、ROM56には制御プログラムや各種の数値デ
ータなどが格納されている。ROM66に格納されてい
る数値データとしては、例えばリーン制御を行なうか否
かの判定を行なうために、スロットル開度、エンジン水
温、吸気管圧力、エンジン回転速度の変化率、走行速度
の変化率などに対する設定値、の数値データ、フィード
バック補正係数の数値データ々とがある。
The RAM 64 stores data calculated by the CPU 50, and the ROM 56 stores control programs and various numerical data. Numerical data stored in the ROM 66 includes, for example, throttle opening, engine water temperature, intake pipe pressure, rate of change in engine speed, rate of change in traveling speed, etc. in order to determine whether to perform lean control. There are numerical data of setting values for and numerical data of feedback correction coefficients.

なお、エンジン制御装置48はキースイッチ82の作動
によって電源84が電源回路62に供給されることKよ
って作動状態となシ、制御プログラム及び各種センサの
検出出力に基づいて各種の制御を実行する。
The engine control device 48 is brought into operation by supplying power 84 to the power supply circuit 62 by operating the key switch 82, and executes various controls based on the control program and detection outputs of various sensors.

本実施例は以上の構成からなシ、次にその作用を説明す
る。
The present embodiment has the above configuration, and its operation will be explained next.

第3図は、エンジン制御装置48による本発明の処理ル
ーチンのフローチャートで、インジェクタ300開弁時
間を演算する部分を示す。
FIG. 3 is a flowchart of the processing routine of the present invention performed by the engine control device 48, and shows the portion for calculating the injector 300 valve opening time.

噴射時間τ演算ルーチン100が起動されるとまずステ
ップ101で回転数Ne、102で吸気管圧力Pm f
取込む。次にステップ103でNe。
When the injection time τ calculation routine 100 is started, first in step 101 the rotational speed Ne is determined, and in 102 the intake pipe pressure Pm f
Take in. Next, in step 103, Ne.

踊に対応する基本噴射f)iTpを、ROM66内に格
納されているマツプよシ計算する。次にステップ104
でこの噴射時間Tpに、後述する学習制御による空燃比
補正を行なう。ステップ105ではさらに02センサ4
0からの信号に基き、空燃比補正を行ない、ステップ1
06でリーン制御用の補正比FLEANを乗じ噴射時間
τを決定する。次にステップ107へ進み、噴射時期か
否かを判断し、噴射時期であればステップ108で噴射
処理を行ない、そうでなければ直にステップ109へ進
みリーン制御処理を実行する。
The basic injection f) iTp corresponding to the movement is calculated from the map stored in the ROM 66. Next step 104
During this injection time Tp, air-fuel ratio correction is performed by learning control, which will be described later. In step 105, 02 sensor 4
Based on the signal from 0, the air-fuel ratio is corrected, and step 1
In step 06, the injection time τ is determined by multiplying by the lean control correction ratio FLEAN. Next, the process advances to step 107, and it is determined whether or not it is the injection time. If it is the injection time, the injection process is performed at step 108, and if not, the process directly goes to step 109, where the lean control process is executed.

次に図4に従い、ステップ109のリーン制御処理につ
いて説明する。
Next, referring to FIG. 4, the lean control process in step 109 will be explained.

リーン制御ルーチン200が起動されるとまずステップ
201でスロットルセンサ24、水温センサ34、圧力
センサ28、回転速度センサ32、車速センサ40の各
検出出力によシ、リーン制御の中性が成立しているか否
かの判断を行なう。即ち本実施例においては、アクセル
開度が30°以下、エンジン水温が70℃以上、吸気管
圧力450mm1(fabs以下、車速の2秒間の変化
量が5h以下等のすべての条件が成立しているとき、リ
ーン制御を行なうこととしている。ステップ201で条
件不成立であればステップ205へ進み、フィードバッ
ク制御ルーチンへ移る。続いて、ステップ206で学習
制御ルーチンが起動され、本処理を終了する。
When the lean control routine 200 is started, first in step 201, the neutrality of the lean control is established based on the detection outputs of the throttle sensor 24, water temperature sensor 34, pressure sensor 28, rotational speed sensor 32, and vehicle speed sensor 40. Make a judgment as to whether or not there is one. That is, in this example, all conditions such as the accelerator opening degree being 30 degrees or less, the engine water temperature being 70 degrees Celsius or more, the intake pipe pressure being 450 mm1 (fabs or less), and the amount of change in vehicle speed in 2 seconds being 5 hours or less are met. If the condition is not satisfied in step 201, the process advances to step 205, where the feedback control routine is executed.Subsequently, in step 206, a learning control routine is started, and the present process ends.

ステップ201で条件が成立していれば、ステップ20
2へ進み、アイドルスイッチがON、すなわちスロット
ル弁が全閉か否かを判定する。アイドルスイッチONで
あれば、ステップ203へ進み電動ファンが作動中か否
かを判断する〜作動中であればステップ205へ進み、
フィードバック制御を実行する。ステップ203で作動
中でなければ、ステップ204へ進み、す〜ン制御を行
なう。ここでは、吸気管圧力に対応するり一ン補正係数
FLEANを求める。
If the condition is satisfied in step 201, step 20
Proceed to step 2 to determine whether the idle switch is ON, that is, the throttle valve is fully closed. If the idle switch is ON, proceed to step 203 and determine whether or not the electric fan is operating. If it is operating, proceed to step 205.
Execute feedback control. If it is not in operation at step 203, the process advances to step 204, and time control is performed. Here, a reduction correction coefficient FLEAN corresponding to the intake pipe pressure is determined.

次に第5図に従い、ステップ205内のフィードバック
制御ルーチンについて説明する。
Next, the feedback control routine in step 205 will be explained with reference to FIG.

まずステップ301で、第6図の(a)に示される02
  センサ40からの信号S7を取込む。次にステップ
302で、87>REF2(比較電圧)ならばステップ
303へ進み、S7≦R,’E F 2ならばステップ
307へ進む。ステップ303では、Φ)図のリッチフ
ラグF1%が11すなわち前回処理時の空燃比状態がリ
ッチであったか否かを判断し、1であればステップ30
4へ進み、(C)図に示される前回の補正係数PAFを
一定貴αiだけ減らしFAFとする。ステップ303で
PR=0であれば、今回始めて空燃比状態が変わったと
判断し、ステップ305でPRを1にセットし、次のス
テップ306でFAFをαs(αs:)czi)  だ
け減匂:し、本処理を終了する。
First, in step 301, 02 shown in FIG.
A signal S7 from the sensor 40 is taken in. Next, in step 302, if 87>REF2 (comparison voltage), the process proceeds to step 303, and if S7≦R, 'E F 2, the process proceeds to step 307. In step 303, it is determined whether the rich flag F1% in the diagram Φ) is 11, that is, the air-fuel ratio state at the time of the previous processing was rich, and if it is 1, step 30
4, the previous correction coefficient PAF shown in the diagram (C) is reduced by a certain value αi to obtain FAF. If PR=0 in step 303, it is determined that the air-fuel ratio state has changed for the first time, and in step 305, PR is set to 1, and in the next step 306, FAF is reduced by αs(αs:)czi). , this process ends.

又、ステップ307でも同様にFR=1か否かを判断し
、’FR=0であればステップ308へ進み、FAFを
βiだけ増す。ステップ307でPR=1であればステ
ップ309へ進み、FR=0としステップ310へ進む
。ステップ310ではFAFにβS(βS〉βi)を加
え、本処理を終了する。
Similarly, in step 307, it is determined whether FR=1 or not, and if FR=0, the process proceeds to step 308, where FAF is increased by βi. If PR=1 in step 307, the process proceeds to step 309, where FR=0 and the process proceeds to step 310. In step 310, βS (βS>βi) is added to FAF, and the process ends.

次に第7図及び第8図に従ってステップ206内の学習
制御処理について説明する。
Next, the learning control process in step 206 will be explained according to FIGS. 7 and 8.

第7図は、吸気管圧力(運転条件)が変化した時のF 
A Fの動きを示したものであるが、各学習領域KGI
〜K G 6は、学習前には、運転条件により、第8図
の(a)に示きれるように、FAF=1からのずれ量が
それぞれ異なっている。このすれ量K G 1〜KG6
をそれぞれの吸気管圧力に対応させてRAMに記憶して
、第3図の様な演算処理を行なうと、掌習後には、F’
AFのずれ量は(+))図に示す様にほとんど0とする
ことが可能となる。
Figure 7 shows F when the intake pipe pressure (operating conditions) changes.
This shows the movement of A F, but each learning area KGI
~K G 6 differs in the amount of deviation from FAF=1 before learning, as shown in FIG. 8(a), depending on the operating conditions. This amount of rubbing KG 1~KG6
is stored in RAM in correspondence with each intake pipe pressure, and the arithmetic processing shown in Fig. 3 is performed. After practicing, F'
The amount of AF deviation can be reduced to almost zero (+) as shown in the figure.

これによりFAF=1.0としフィードバックを中止し
た時においても、空気過剰率1.0のμa射景を求める
ことが可能となる。
As a result, even when FAF=1.0 and feedback is discontinued, it is possible to obtain the μa view with an excess air ratio of 1.0.

以上述べた様に、電動ファン作動時に、リーン制御を中
止し、フィードバック制御及び学習制御を行なうことに
より、常に空気過剰率1.0の噴射量を求めることが可
能で、この値を基に、リーン制御時の噴射量を決定する
ため、リーン制御時の制御精度が向上する。
As mentioned above, by canceling lean control and performing feedback control and learning control when the electric fan is operating, it is possible to always obtain the injection amount with an excess air ratio of 1.0, and based on this value, Since the injection amount during lean control is determined, control accuracy during lean control is improved.

このように本実施例においては、リーン制御が行なわれ
ているときにも、アイドルスイッチがONで、かつ電動
ファンが作動した運転状態となったときには前記運転状
態に対応し゛だ学習値に更新するフィードバック制御を
行ない、更新された学習値を基にした希薄空燃比で次の
り一ン制御を行なうように口たので、リーン制御による
アイドル状態が継続されているときに運転状態が変化し
てもエンジンストールが発生するのを防止することがで
きるとともにドライバビリティが低下するのを防止する
ことができる。
In this way, in this embodiment, even when lean control is being performed, when the idle switch is on and the electric fan is in operation, the learned value is updated to correspond to the operating state. Feedback control is performed to perform the next level control at a lean air-fuel ratio based on the updated learning value, so even if the operating state changes while the idle state due to lean control continues. Engine stall can be prevented from occurring, and drivability can be prevented from deteriorating.

又、前記実施例においては、リーン制御が行なわれてい
るとき一時フイードバック制御を行なうエンジンの運転
状態としてアイドルスイッチON、電動ファン作動中を
条件とすることについて述べたが、大気圧、車速の変化
などを条件としても前記実施例を適用することは可能で
ある。
Furthermore, in the embodiment described above, when lean control is performed, the engine operating state for which temporary feedback control is performed is that the idle switch is ON and the electric fan is in operation. However, changes in atmospheric pressure and vehicle speed It is possible to apply the above-mentioned embodiments even under the following conditions.

〔発明の効果〕 以上説明したように、本発明によれば、リーン制御時に
一時フイードバック制御を行々うエンジンの運転状態を
予め定め、リーン制御時に前記工ンジンの運転状態が検
出されたとき一時フイードバック制御による空燃比制御
を行なって前回のフィードバック制御による学習値を更
新し1、更新された学習値を基にした希薄空燃比で次の
リーン制御を行なうようにしたので、リーン制御が継続
されているときにエンジンの運転状態が変化しても、運
転状態の変化に対応した空燃比制御が行なえ、リーン制
御時にエンジン性能が低下するのを防止することができ
るという優れた効果がある。
[Effects of the Invention] As explained above, according to the present invention, the operating state of the engine for which temporary feedback control is performed during lean control is determined in advance, and when the operating state of the engine is detected during lean control, the operating state of the engine is temporarily controlled. Air-fuel ratio control is performed using feedback control to update the learned value from the previous feedback control1, and the next lean control is performed at a lean air-fuel ratio based on the updated learning value, so lean control is continued. Even if the operating state of the engine changes while the engine is running, the air-fuel ratio can be controlled in response to the change in operating state, and this has the excellent effect of preventing engine performance from deteriorating during lean control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したエンジンのシステム構成図、
第2図は第1図に示すエンジン制御装置の構成を説明す
るだめの構成図、第3図は本発明に係る作用を説明する
だめのフローチャート、第4図は本発明に係るリーン制
御ルーチンのフローチャート、第5図は本発明に係る補
正係数演算ルチンのフローチャート、第6図の(a)〜
(C)は第5図のフローチャートを説明するだめのタイ
ムチャート、第7図は時間と吸気管圧力との関係を示す
線図、第8図の(a)、(b)は本発明の詳細な説明す
るための補正係数の特性図である。 10・・・エンジン、 20・・・吸気量センサ、 22・・・吸気温センサ、 24・・・スロットルセンサ、 28・・・圧力センサ、 30・・・インジェクタ、 32・・・回転速度センサ、 34・・・水温センサ、 40・・・0.センサ、 −46・・・車速センサ、 48・・・エンジン制御装置。 代理人 鵜 沼 辰 之 (ほか1名) 第1図 4 第2図 第3図 第4図 第5図 第6図 時M→ 晴間− 請間一
FIG. 1 is a system configuration diagram of an engine to which the present invention is applied;
2 is a block diagram for explaining the configuration of the engine control device shown in FIG. 1, FIG. 3 is a flowchart for explaining the operation of the present invention, and FIG. 4 is a flowchart for explaining the lean control routine according to the present invention. Flowchart, FIG. 5 is a flowchart of the correction coefficient calculation routine according to the present invention, and (a) to FIG.
(C) is a time chart for explaining the flowchart of FIG. 5, FIG. 7 is a diagram showing the relationship between time and intake pipe pressure, and FIGS. 8 (a) and (b) are details of the present invention. FIG. 3 is a characteristic diagram of a correction coefficient for explaining the present invention. DESCRIPTION OF SYMBOLS 10... Engine, 20... Intake air amount sensor, 22... Intake temperature sensor, 24... Throttle sensor, 28... Pressure sensor, 30... Injector, 32... Rotational speed sensor, 34...Water temperature sensor, 40...0. Sensor, -46...Vehicle speed sensor, 48...Engine control device. Agent Tatsuyuki Unuma (and 1 other person) Figure 1 4 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Time M → Haruma - Hajime Ukema

Claims (1)

【特許請求の範囲】[Claims] (1)排気ガス中の酸素濃度を検出する酸素濃度センサ
の検出出力に応じて混合気の空燃比を理論空燃比近傍に
フィードバック制御するフィードバック制御と、フィー
ドバック制御時にフィードバック補正値から基本空燃比
を理論空燃比近傍に補正させる学習制御を行ない学習さ
れた基本空燃比を基に希薄空燃比に混合気の空燃比をフ
ィードフォワード制御するリーン制御とを、エンジンの
運転状態に応じて切替えて行なう内燃機関の空燃比補償
制御方法において、リーン制御時に一時フイードバック
制御を行なうエンジンの運転状態を予め定め、リーン制
御時に前記エンジンの運転状態が検出されたとき、一時
フィードバック制御による空燃比制御を行なって前回の
フィードバック制御による学習値を更新し、更新された
学習値を基にした希薄空燃比で次のリーン制御を行なう
ことを特徴とする内燃機関の空燃比補償制御方法。
(1) Feedback control that feedback controls the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio according to the detection output of the oxygen concentration sensor that detects the oxygen concentration in exhaust gas, and the basic air-fuel ratio that is determined from the feedback correction value during feedback control. Internal combustion control that performs learning control to correct the air-fuel ratio to near the stoichiometric air-fuel ratio and performs lean control that feedforward controls the air-fuel ratio of the air-fuel mixture to a lean air-fuel ratio based on the learned basic air-fuel ratio, depending on the engine operating state. In an engine air-fuel ratio compensation control method, an operating state of the engine for which temporary feedback control is performed during lean control is determined in advance, and when the operating state of the engine is detected during lean control, air-fuel ratio control is performed using temporary feedback control, and the operating state of the engine is determined in advance. 1. An air-fuel ratio compensation control method for an internal combustion engine, comprising updating a learned value through feedback control, and performing next lean control at a lean air-fuel ratio based on the updated learned value.
JP6281783A 1983-04-08 1983-04-08 Air-fuel ratio compensation control for internal- combustion engine Pending JPS59188053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6281783A JPS59188053A (en) 1983-04-08 1983-04-08 Air-fuel ratio compensation control for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6281783A JPS59188053A (en) 1983-04-08 1983-04-08 Air-fuel ratio compensation control for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS59188053A true JPS59188053A (en) 1984-10-25

Family

ID=13211260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6281783A Pending JPS59188053A (en) 1983-04-08 1983-04-08 Air-fuel ratio compensation control for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS59188053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176643A (en) * 1987-01-14 1988-07-20 Nissan Motor Co Ltd Air-fuel ratio controller
WO1993007363A1 (en) * 1991-10-03 1993-04-15 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
WO1993012863A1 (en) * 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device in internal combustion engine
DE102016121120A1 (en) 2015-11-06 2017-05-11 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176643A (en) * 1987-01-14 1988-07-20 Nissan Motor Co Ltd Air-fuel ratio controller
WO1993007363A1 (en) * 1991-10-03 1993-04-15 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
US5473887A (en) * 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
WO1993012863A1 (en) * 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device in internal combustion engine
DE102016121120A1 (en) 2015-11-06 2017-05-11 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine

Similar Documents

Publication Publication Date Title
JPS6011220B2 (en) fuel injector
JPH0214975B2 (en)
JPH0214976B2 (en)
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS59188053A (en) Air-fuel ratio compensation control for internal- combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPH05141293A (en) Air fuel ratio correcting method
JPH045818B2 (en)
JPH01305142A (en) Fuel injection controller of internal combustion engine
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3922533B2 (en) Vehicle constant speed travel control device
JPH0821274A (en) Control method for transient fuel injection
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JPH09209803A (en) Fuel injection control device of internal combustion engine
JPS5830425A (en) Feedback control method of air-fuel ratio
JPS6035148A (en) Air-fuel ratio control device
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JPS6123633Y2 (en)
JPS6045745A (en) Method of controlling learning of air-fuel ratio of electronically-controlled engine
JPH07279716A (en) Air-fuel ratio control device for internal combustion engine having exhaust reflux device
JPH0491341A (en) Method for controlling air-fuel ratio of internal combustion engine
JPH0874614A (en) Throttle valve control device for internal combustion engine
JPH01280652A (en) Idling control device for engine
JPH01121537A (en) Fuel supply control device of internal combustion engine