JPH09209803A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine

Info

Publication number
JPH09209803A
JPH09209803A JP1996896A JP1996896A JPH09209803A JP H09209803 A JPH09209803 A JP H09209803A JP 1996896 A JP1996896 A JP 1996896A JP 1996896 A JP1996896 A JP 1996896A JP H09209803 A JPH09209803 A JP H09209803A
Authority
JP
Japan
Prior art keywords
fuel injection
amount
injection amount
fuel
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1996896A
Other languages
Japanese (ja)
Inventor
Toru Sakuma
徹 佐久間
Akira Kiyomura
章 清村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP1996896A priority Critical patent/JPH09209803A/en
Publication of JPH09209803A publication Critical patent/JPH09209803A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device having, for example, an extensive linearity region by carrying out fuel injection control to provide desired injection characteristics of a fuel injection valve. SOLUTION: A linearity correction coefficient KLN to provide linearity as desired injection characteristics of a fuel injection valve is computed (S2) by computing fuel injection quantity Tio by Tio=Tp×COEF×α+Ts in accordance with basic fuel injection quantity Tp, various weighting coefficients COEF, an air-fuel ratio feedback correction coefficient α and voltage correction Ts (S1) and referring a map in accordance with this fuel injection quantity Tio. Thereafter, fuel injection is carried out (S4) by computing final fuel injection quantity Ti by Ti=Tio×KLN (S3) in accordance with the computed fuel injection quantity Tio and the linearity correction coefficient KLN and supplying pulse width of an injection pulse signal equivalent to this final fuel injection quantity Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃料噴
射制御装置に関し、特に、燃料噴射弁の所望の噴射特性
を得る燃料噴射制御技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control technique for obtaining a desired injection characteristic of a fuel injection valve.

【0002】[0002]

【従来の技術】従来から、内燃機関の燃料噴射制御装置
として、例えば、吸入空気流量及び機関回転速度から基
本燃料噴射量を算出し、この基本燃料噴射量に対して機
関の冷却水温度等による補正を行うことで最終的な燃料
噴射量を算出し、この燃料噴射量に相当する噴射パルス
信号の噴射パルス幅(通電時間)を電磁式燃料噴射弁に
供給することで、機関への燃料噴射量を制御することが
行われている。
2. Description of the Related Art Conventionally, as a fuel injection control device for an internal combustion engine, for example, a basic fuel injection amount is calculated from an intake air flow rate and an engine rotation speed, and the basic fuel injection amount is determined by the engine cooling water temperature or the like. The final fuel injection amount is calculated by performing the correction, and the injection pulse width (energization time) of the injection pulse signal corresponding to this fuel injection amount is supplied to the electromagnetic fuel injection valve to inject fuel into the engine. The amount is being controlled.

【0003】また、このような燃料噴射制御を行うに際
し、燃料噴射弁に供給される噴射パルス幅の小さい領域
においては、燃料噴射弁の機構上の特性により、図6に
示すように、噴射パルス幅と燃料噴射量との関係が比例
関係(以下、直線性領域という)を有しておらず、この
領域での燃料噴射量制御が不適切になるおそれがあっ
た。
Further, when performing such fuel injection control, in the region where the injection pulse width supplied to the fuel injection valve is small, the injection pulse is, as shown in FIG. 6, due to the mechanical characteristics of the fuel injection valve. The relationship between the width and the fuel injection amount does not have a proportional relationship (hereinafter referred to as a linear region), and the fuel injection amount control in this region may be inappropriate.

【0004】そこで、例えば、実開平3−52459号
明細書に開示されるように、燃料噴射量の下限値を設定
するような制御を行うものが案出された。
Therefore, for example, as disclosed in Japanese Utility Model Laid-Open No. 3-52459, there has been devised a control for setting a lower limit value of the fuel injection amount.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに燃料噴射量の下限値を設定するものにおいては、実
際には、燃料噴射弁の特性、即ち、噴射パルス幅と燃料
噴射量との関係を示す直線性領域が拡大するわけではな
いので、例えば、リーンバーンエンジン、筒内噴射ガソ
リンエンジン又は低フリクション高出力エンジンのよう
な広範囲な直線性領域を必要とする内燃機関に対して
は、常に、適切な燃料噴射量の制御を行うことができ
ず、特に、燃料噴射量の小さい領域では、運転性及び排
気性状の悪化を来すおそれがあった(図6参照)。
However, in the case where the lower limit value of the fuel injection amount is set in this way, the characteristic of the fuel injection valve, that is, the relationship between the injection pulse width and the fuel injection amount is actually used. Since the linearity region shown is not expanded, for internal combustion engines that require a wide linearity region, such as, for example, lean burn engines, direct injection gasoline engines or low friction high power engines, always: Since the fuel injection amount cannot be controlled appropriately, the drivability and the exhaust property may be deteriorated particularly in a region where the fuel injection amount is small (see FIG. 6).

【0006】そこで、本発明は以上のような従来の問題
点に鑑み、燃料噴射弁の所望の噴射特性を得る燃料噴射
制御を行うことで、例えば、広範囲な直線性領域を有す
る燃料噴射制御装置を提供することを目的とする。
In view of the conventional problems as described above, the present invention performs fuel injection control to obtain desired injection characteristics of the fuel injection valve, and thus, for example, a fuel injection control device having a wide linear range. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】このため、請求項1記載
の発明は、図1に示すように、機関運転状態を検出する
運転状態検出手段Aと、検出された機関運転状態に基づ
き機関への燃料噴射量を設定する燃料噴射量設定手段B
と、設定された燃料噴射量に基づき燃料噴射弁Cを介し
て燃料噴射制御を行う燃料噴射制御手段Dと、を含んで
構成される燃料噴射制御装置において、前記燃料噴射弁
Cからの燃料噴射量が所望の噴射特性を有するように補
正する補正量を設定する補正量設定手段Eと、設定され
た補正量に基づき前記燃料噴射量設定手段Bにより設定
された燃料噴射量を補正する燃料噴射量補正手段Fと、
を含んで構成した。
Therefore, according to the invention described in claim 1, as shown in FIG. 1, an operating state detecting means A for detecting an operating state of the engine and an engine operating state detecting means for detecting the operating state of the engine are transmitted to the engine. Fuel injection amount setting means B for setting the fuel injection amount of
And a fuel injection control means D for performing fuel injection control via the fuel injection valve C based on the set fuel injection amount, in a fuel injection control device comprising: Correction amount setting means E for setting a correction amount for correcting the amount to have a desired injection characteristic, and fuel injection for correcting the fuel injection amount set by the fuel injection amount setting means B based on the set correction amount. Quantity correction means F,
It was comprised including.

【0008】このようにすれば、補正量設定手段により
設定された燃料噴射弁の所望の噴射特性を得る補正量に
基づいて、燃料噴射量補正手段により機関への燃料噴射
量が補正されるので、機関の吸気系に噴射される燃料噴
射特性が所望の特性となる。請求項2記載の発明は、前
記補正量設定手段は、前記燃料噴射量設定手段により設
定された燃料噴射量に基づいて補正量を設定するように
した。
With this configuration, the fuel injection amount correction unit corrects the fuel injection amount to the engine based on the correction amount set by the correction amount setting unit to obtain the desired injection characteristic of the fuel injection valve. The desired fuel injection characteristic is the fuel injection characteristic of the intake system of the engine. According to a second aspect of the invention, the correction amount setting means sets the correction amount based on the fuel injection amount set by the fuel injection amount setting means.

【0009】このようにすれば、燃料噴射量設定手段に
より設定された燃料噴射量に基づいて、燃料噴射弁の噴
射特性を補正する補正量が設定されるので、機関運転状
態に応じた適切な補正量が設定される。請求項3記載の
発明は、前記所望の噴射特性とは、前記燃料噴射弁への
駆動信号と燃料噴射量との関係が略全域に亘り、略一定
の傾きを有する直線性特性とした。
With this configuration, the correction amount for correcting the injection characteristic of the fuel injection valve is set based on the fuel injection amount set by the fuel injection amount setting means, so that it is appropriate for the engine operating state. The correction amount is set. According to the third aspect of the present invention, the desired injection characteristic is a linear characteristic in which the relationship between the drive signal to the fuel injection valve and the fuel injection amount is substantially over the entire range and has a substantially constant inclination.

【0010】このようにすれば、例えば、燃料噴射弁の
噴射特性において存在する非直線性領域をも直線性を有
するようになり直線性領域が拡大するので、燃料噴射量
の制御精度がより向上する。
With this configuration, for example, the non-linear region existing in the injection characteristic of the fuel injection valve also becomes linear and the linear region is expanded, so that the control accuracy of the fuel injection amount is further improved. To do.

【0011】[0011]

【発明の実施の形態】以下、添付された図面を参照して
本発明を詳述する。本発明に係る燃料噴射制御装置の一
実施形態のシステム図を示す図2において、内燃機関1
には、エアクリーナ2、吸気ダクト3及び吸気マニホー
ルド4を介して空気が流入される。そして、吸気ダクト
3には、図示しないアクセルペダルに連動して開閉する
スロットル弁5が介装されており、このスロットル弁5
によって内燃機関1への吸入空気流量Qが制御されるよ
うになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In FIG. 2, which shows a system diagram of an embodiment of a fuel injection control device according to the present invention, an internal combustion engine 1
Air is introduced into the exhaust gas through the air cleaner 2, the intake duct 3, and the intake manifold 4. The intake duct 3 is provided with a throttle valve 5 that opens and closes in conjunction with an accelerator pedal (not shown).
The intake air flow rate Q to the internal combustion engine 1 is controlled by.

【0012】また、スロットル弁5をバイパスして設け
られた補助空気通路6には、アイドル制御弁7が介装さ
れている。このアイドル制御弁7は、マイクロコンピュ
ータを内蔵したコントロールユニット8からの駆動パル
ス信号(開度制御信号)により開度が制御され、この開
度によってアイドル運転時の吸入空気流量Qを制御する
ことで、機関回転速度が所定値になるように制御されて
いる。
Further, an idle control valve 7 is provided in an auxiliary air passage 6 provided by bypassing the throttle valve 5. The opening of the idle control valve 7 is controlled by a drive pulse signal (opening control signal) from a control unit 8 including a microcomputer, and the intake air flow rate Q during idle operation is controlled by this opening. The engine speed is controlled so as to reach a predetermined value.

【0013】さらに、吸気マニホールド4には、各気筒
毎に電磁式の燃料噴射弁9が設けられている。この燃料
噴射弁9は、図示しないプレッシャレギュレータにより
所定圧力に調整された燃料を、コントロールユニット8
からの噴射パルス信号によって機関回転に同期して間欠
的に開弁駆動され、燃料が前記吸入空気と混合してシリ
ンダ内に吸引される。
Further, the intake manifold 4 is provided with an electromagnetic fuel injection valve 9 for each cylinder. The fuel injection valve 9 supplies the fuel whose pressure is adjusted to a predetermined pressure by a pressure regulator (not shown) to the control unit 8
The valve is intermittently driven to open by synchronizing with the engine rotation by the injection pulse signal from the fuel, the fuel is mixed with the intake air and is sucked into the cylinder.

【0014】そして、コントロールユニット8には、燃
料噴射弁9の噴射パルス信号のパルス幅を決定するため
に、機関運転状態を検出する各種センサからの信号が入
力されている。この各種センサとしては、スロットル弁
5の上流に配設され吸入空気流量Qを検出するエアフロ
ーメータ20、クランクシャフトから回転信号を取り出
して機関回転速度Ne を検出する回転速度センサ21、
スロットル弁5に付設されてスロットル弁5のアイドル
位置(全閉位置)でONとなるアイドルスイッチ22、
内燃機関1のウォータジャケット部に設けられ機関温度
を代表する冷却水温度Tw を検出する水温センサ23及
び図示しないバッテリの端子間電圧VBを検出する電圧
センサ24等が設けられている。また、内燃機関1の排
気マニホールド10には、排気中の酸素濃度を検出する
ことによって吸入混合気の空燃比を検出する空燃比セン
サ(以下、O2 センサという)25が介装されている。
The control unit 8 is supplied with signals from various sensors for detecting the engine operating state in order to determine the pulse width of the injection pulse signal of the fuel injection valve 9. As these various sensors, an air flow meter 20 arranged upstream of the throttle valve 5 for detecting the intake air flow rate Q, a rotation speed sensor 21 for extracting a rotation signal from a crankshaft and detecting an engine rotation speed Ne,
An idle switch 22 attached to the throttle valve 5 and turned on at the idle position (fully closed position) of the throttle valve 5,
A water temperature sensor 23 provided in the water jacket of the internal combustion engine 1 for detecting a cooling water temperature Tw representative of the engine temperature, a voltage sensor 24 for detecting a terminal voltage V B of a battery (not shown), and the like are provided. Further, the exhaust manifold 10 of the internal combustion engine 1 is provided with an air-fuel ratio sensor (hereinafter referred to as an O 2 sensor) 25 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas.

【0015】なお、運転状態検出手段は、エアフローメ
ータ20、回転速度センサ21、アイドルスイッチ2
2、水温センサ23、電圧センサ24及びO2 センサ2
5を含んで構成され、また、コントロールユニット8
は、燃料噴射量設定手段、燃料噴射制御手段、補正量設
定手段及び燃料噴射量補正手段としての機能を有してい
る。
The operating state detecting means includes an air flow meter 20, a rotation speed sensor 21, and an idle switch 2.
2, water temperature sensor 23, voltage sensor 24 and O 2 sensor 2
5, including a control unit 8
Has a function as a fuel injection amount setting means, a fuel injection control means, a correction amount setting means, and a fuel injection amount correcting means.

【0016】ここで、従来の燃料噴射制御の概要を説明
すると、コントロールユニット8は、検出された吸入空
気流量Q及び機関回転速度Ne に基づいて基本燃料噴射
量Tp を算出し、冷却水温度Tw 等による補正を行うと
共に、O2 センサ25からの空燃比信号に基づき吸入混
合気の空燃比を理論空燃比に近づけるような空燃比フィ
ードバック制御を行いつつ、最終的な燃料噴射量Ti を
算出し、この燃料噴射量Ti に相当する噴射パルス信号
のパルス幅を燃料噴射弁9に供給する。
Here, the outline of the conventional fuel injection control will be described. The control unit 8 calculates the basic fuel injection amount Tp based on the detected intake air flow rate Q and the engine rotation speed Ne, and the cooling water temperature Tw. And the like, and based on the air-fuel ratio signal from the O 2 sensor 25, the final fuel injection amount Ti is calculated while performing the air-fuel ratio feedback control such that the air-fuel ratio of the intake air-fuel mixture approaches the stoichiometric air-fuel ratio. , The pulse width of the injection pulse signal corresponding to the fuel injection amount Ti is supplied to the fuel injection valve 9.

【0017】しかしながら、前述したように、燃料噴射
弁の機構上の特性により燃料噴射量の小さい領域では噴
射量制御精度が悪いので、例えば、リーンバンエンジン
等の広範囲な直線性領域を必要とする内燃機関には十分
対応できなかった。そこで、本発明では、従来の燃料噴
射弁のまま、例えば、広範囲な直線性領域を必要とする
内燃機関に容易に対応できるように、図3に示すフロー
チャートの処理を行うことで、この問題を解決した。以
下、本発明に係る燃料噴射制御について、図3のフロー
チャートを参照しつつ説明する。なお、このフローチャ
ートに示すルーチンは、燃料噴射を行う毎に実行され
る。
However, as described above, since the injection amount control accuracy is poor in a region where the fuel injection amount is small due to the mechanical characteristics of the fuel injection valve, a wide linear region such as a lean bang engine is required. It couldn't cope enough with the internal combustion engine. Therefore, the present invention solves this problem by performing the process of the flowchart shown in FIG. 3 so that the conventional fuel injection valve can be easily applied to, for example, an internal combustion engine that requires a wide linear region. Settled. Hereinafter, the fuel injection control according to the present invention will be described with reference to the flowchart of FIG. The routine shown in this flowchart is executed every time fuel injection is performed.

【0018】ステップ1(図では、S1と略記する。以
下同様)では、本発明に係る燃料噴射弁の噴射特性の補
正を行う前の燃料噴射量Ti0を、以下の過程により算出
する。 (1) エアフローメータ20及び回転速度センサ21によ
り検出した吸入空気流量Q及び機関回転速度Ne に基づ
き、基本燃料噴射量Tp を次式によって算出する。
In step 1 (abbreviated as S1 in the drawing; the same applies hereinafter), the fuel injection amount Ti 0 before correction of the injection characteristic of the fuel injection valve according to the present invention is calculated by the following process. (1) Based on the intake air flow rate Q detected by the air flow meter 20 and the rotation speed sensor 21 and the engine rotation speed Ne, the basic fuel injection amount Tp is calculated by the following equation.

【0019】Tp =K×Q/Ne (K:定数) (2) 回転速度センサ21、アイドルスイッチ22、水温
センサ23により検出した機関回転速度Ne 、アイドル
信号、冷却水温度Tw 及び算出した基本燃料噴射量Tp
等に基づき各種増量係数COEFを、例えば、次式によ
って算出する。 COEF=KTW(水温増量補正)+KAS(始動及び始動
後増量補正)+KAI(アイドル後増量補正)+KMR(混
合比補正係数) ここで、KTW(水温増量補正)は冷却水温度Tw に基づ
く補正、KAS(始動及び始動後増量補正)は機関始動性
及び始動後の機関回転安定性の向上のための冷却水温度
Tw に基づく補正、KAI(アイドル後増量補正)は円滑
な発進を可能とするためのアイドル信号及び冷却水温度
Tw に基づく補正、KMR(混合比補正係数)は機関運転
状態により適合した制御を行うための機関回転速度Ne
及び基本燃料噴射量Tp に基づく補正である。なお、各
種増量係数COEFは前記算出式に限らず、種々の算出
式が知られている。
Tp = K × Q / Ne (K: constant) (2) Engine rotation speed Ne detected by the rotation speed sensor 21, idle switch 22, water temperature sensor 23, idle signal, cooling water temperature Tw and calculated basic fuel Injection amount Tp
Based on the above, various increase factors COEF are calculated by the following equations, for example. COEF = K TW (Water temperature increase correction) + K AS (Start and post-start increase correction) + K AI (Idle increase correction) + K MR (Mixing ratio correction coefficient) where K TW (Water temperature increase correction) is the cooling water temperature Tw correction based on, K aS (starting and post-start increase correction) is corrected based on the coolant temperature Tw for the improvement of the engine rotational stability of the engine startability and after starting, K AI (idle after increasing correction) is smooth A correction based on the idle signal and the cooling water temperature Tw for enabling the vehicle to start, K MR (mixing ratio correction coefficient) is an engine rotation speed Ne for performing control more suitable for the engine operating state.
And the basic fuel injection amount Tp. The various increase factors COEF are not limited to the above calculation formulas, and various calculation formulas are known.

【0020】(3) O2 センサ25により検出した空燃比
に基づき、排気通路に介装した三元触媒(図2では図示
せず)が有効に作用するように、空燃比フィードバック
制御を行う際の空燃比フィードバック補正係数αを算出
する。 (4) 電圧センサ24により検出したバッテリ端子間電圧
B に基づき、電圧補正TS を算出する。
(3) When performing air-fuel ratio feedback control so that the three-way catalyst (not shown in FIG. 2) interposed in the exhaust passage works effectively based on the air-fuel ratio detected by the O 2 sensor 25. The air-fuel ratio feedback correction coefficient α is calculated. (4) The voltage correction T S is calculated based on the battery terminal voltage V B detected by the voltage sensor 24.

【0021】(5) 以上算出した基本燃料噴射量Tp 、各
種増量係数COEF、空燃比フィードバック補正係数α
及び電圧補正TS に基づき、燃料噴射量Ti0を次式によ
って算出する。 Ti0=Tp ×COEF×α+TS なお、以上説明したステップ1の処理が、燃料噴射量設
定手段に相当する。
(5) Basic fuel injection amount Tp calculated above, various increase factors COEF, air-fuel ratio feedback correction factor α
The fuel injection amount Ti 0 is calculated by the following equation based on the voltage correction T S and the voltage correction T S. Ti 0 = Tp × COEF × α + T S The process of step 1 described above corresponds to the fuel injection amount setting means.

【0022】ステップ2では、本発明に係る燃料噴射弁
の所望の噴射特性としての直線性を得る直線性補正係数
LNを、図4に示すようなマップを参照することで算出
する。この直線性補正係数KLNは、使用する燃料噴射弁
の単体特性から、例えば、予め実験により求めた値をマ
ップに設定したものを使用する。なお、ここで参照され
るマップは、図4に示すように常に直線性を有するもの
とは限らず、使用する燃料噴射弁の単体特性によっては
ランダムな値となることもある。このステップ2の処理
が、補正量設定手段に相当する。
In step 2, the linearity correction coefficient K LN for obtaining the linearity as the desired injection characteristic of the fuel injection valve according to the present invention is calculated by referring to the map shown in FIG. As the linearity correction coefficient K LN , for example, a value obtained by an experiment in advance is set in a map from the single characteristic of the fuel injection valve used. The map referred to here does not always have linearity as shown in FIG. 4, and may have random values depending on the single characteristics of the fuel injection valve used. The process of step 2 corresponds to the correction amount setting means.

【0023】ステップ3では、燃料噴射量Ti0及び直線
性補正係数KLNに基づいて、最終的な燃料噴射量Ti を
次式によって算出する。 Ti =Ti0×KLN なお、このステップ3の処理が、燃料噴射量補正手段に
相当する。ステップ4では、算出した最終的な燃料噴射
量Ti に相当する噴射パルス信号のパルス幅を燃料噴射
弁9に供給し、燃料噴射を行う。このステップ4の処理
が、燃料噴射制御手段に相当する。
In step 3, the final fuel injection amount Ti is calculated by the following equation based on the fuel injection amount Ti 0 and the linearity correction coefficient K LN . Ti = Ti 0 × K LN The process of step 3 corresponds to the fuel injection amount correction means. In step 4, the pulse width of the injection pulse signal corresponding to the calculated final fuel injection amount Ti is supplied to the fuel injection valve 9 to perform fuel injection. The process of step 4 corresponds to the fuel injection control means.

【0024】なお、本実施形態に示す燃料噴射制御にお
いては、吸入空気流量Q及び機関回転速度Ne に基づい
て基本燃料噴射量Tp を算出したが、この方法に限ら
ず、例えば、スロットル弁下流側の吸入負圧に基づき基
本燃料噴射量Tp を算出する、いわゆるDジェトロ方式
の内燃機関にも適用可能である。以上説明した燃料噴射
制御を行えば、例えば、図6に示す燃料噴射弁の噴射特
性を有する燃料噴射弁に補正を行うことで、図5に示す
ように、直進性領域が拡大し、リーンバーンエンジン等
の広範囲な直線性領域を必要とする内燃機関にも対応で
きるようになる。
In the fuel injection control shown in this embodiment, the basic fuel injection amount Tp is calculated on the basis of the intake air flow rate Q and the engine rotation speed Ne. However, the present invention is not limited to this method. The present invention is also applicable to a so-called D-Jetro internal combustion engine that calculates the basic fuel injection amount Tp based on the intake negative pressure. If the fuel injection control described above is performed, for example, by correcting the fuel injection valve having the injection characteristics of the fuel injection valve shown in FIG. 6, the straight-ahead region is expanded and the lean burn is performed as shown in FIG. It becomes possible to cope with an internal combustion engine that requires a wide linear range such as an engine.

【0025】また、例えば、従来では適切な制御が行え
なかった燃料噴射量の小さい領域であっても、燃料噴射
量の適切な制御が行えるようになるので、吸入混合気の
空燃比を理論空燃比に近づけることができ、機関運転性
及び排気性状の向上を図ることもできる。さらに、燃料
噴射弁の単体特性に基づいて所望の噴射特性を得る補正
量を設定しているので、燃料噴射弁の車両適合実験を必
要とせず、適用工数の低減化、即ち、コストダウンを図
ることもできる。
Further, for example, even in a region where the fuel injection amount is small, which could not be properly controlled in the past, the fuel injection amount can be appropriately controlled. The fuel ratio can be brought close to, and the engine operability and the exhaust property can be improved. Further, since the correction amount for obtaining the desired injection characteristic is set based on the single characteristic of the fuel injection valve, the vehicle adaptation experiment of the fuel injection valve is not required, and the application man-hour is reduced, that is, the cost is reduced. You can also

【0026】[0026]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、燃料噴射弁の所望の噴射特性を得る補正量
に基づいて機関の吸気系に噴射される燃料噴射量が補正
されるので、従来では適切な制御が行えなかった燃料噴
射量領域であっても、適切な制御が行えるようになり、
例えば、適合させるのが困難であったリーンバンエンジ
ン等の広範囲な直線性領域を必要とする内燃機関にもき
わめて容易に対応できるようになる。また、例えば、燃
料噴射量の小さい領域であっても、吸入混合気の空燃比
を理論空燃比に近づけることができ、機関運転性及び排
気性状の向上を図ることができる。さらに、燃料噴射弁
の単体特性に基づいて所望の噴射特性を得る補正量を設
定しているので、燃料噴射弁の車両適合実験を必要とせ
ず、適用工数の低減化、即ち、コストダウンを図ること
もできる。
As described above, according to the invention described in claim 1, the fuel injection amount injected into the intake system of the engine is corrected based on the correction amount for obtaining the desired injection characteristic of the fuel injection valve. Therefore, it becomes possible to perform appropriate control even in the fuel injection amount region where the conventional cannot perform appropriate control.
For example, it becomes extremely easy to cope with an internal combustion engine that requires a wide linear region such as a lean van engine that has been difficult to adapt. Further, for example, even in the region where the fuel injection amount is small, the air-fuel ratio of the intake air-fuel mixture can be brought close to the stoichiometric air-fuel ratio, and the engine drivability and the exhaust property can be improved. Further, since the correction amount for obtaining the desired injection characteristic is set based on the single characteristic of the fuel injection valve, the vehicle adaptation experiment of the fuel injection valve is not required, and the application man-hour is reduced, that is, the cost is reduced. You can also

【0027】請求項2記載の発明によれば、燃料噴射弁
の噴射特性を補正する補正量が燃料噴射量設定手段によ
り設定された燃料噴射量、即ち、機関運転状態に基づい
て設定されるので、機関運転状態に応じた適切な補正量
が設定でき、その結果、機関運転性及び排気性状のさら
なる向上を図ることができる。請求項3記載の発明によ
れば、例えば、燃料噴射弁の噴射特性において存在する
非直線性領域をも直線性を有するようになるので、より
広範囲な直線性領域を有するようになり、燃料噴射量の
制御精度がより向上する。
According to the second aspect of the present invention, the correction amount for correcting the injection characteristic of the fuel injection valve is set based on the fuel injection amount set by the fuel injection amount setting means, that is, the engine operating state. Therefore, an appropriate correction amount can be set according to the engine operating state, and as a result, the engine operability and the exhaust property can be further improved. According to the third aspect of the present invention, for example, the non-linear region existing in the injection characteristic of the fuel injection valve also becomes linear, so that a wider linear region is obtained and the fuel injection is performed. The amount control accuracy is further improved.

【0028】以上の効果に加えて、本発明は、燃料噴射
制御のプログラムを変更するだけで容易に実現されるの
で、コストアップを伴わず、燃費の改善を図ることも可
能である。
In addition to the above effects, the present invention can be easily realized only by changing the program for fuel injection control, so that it is possible to improve fuel efficiency without increasing costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のクレーム対応図FIG. 1 is a diagram corresponding to claims of the present invention.

【図2】 本発明に係る燃料噴射制御装置の一実施形態
を示すシステム図
FIG. 2 is a system diagram showing an embodiment of a fuel injection control device according to the present invention.

【図3】 同上の燃料噴射制御を示すフローチャートFIG. 3 is a flowchart showing a fuel injection control of the above.

【図4】 同上の燃料噴射弁の所望の噴射特性としての
直線性を得る直線補正係数の一例を示す線図
FIG. 4 is a diagram showing an example of a linear correction coefficient for obtaining linearity as a desired injection characteristic of the fuel injection valve of the above.

【図5】 同上の直線補正係数による効果を示す線図FIG. 5 is a diagram showing the effect of the linear correction coefficient of the above.

【図6】 燃料噴射弁の噴射特性を示す線図FIG. 6 is a diagram showing an injection characteristic of a fuel injection valve.

【符号の説明】[Explanation of symbols]

1 内燃機関 8 コントロールユニット 9 燃料噴射弁 20 エアフローメータ 21 回転速度センサ 22 アイドルスイッチ 23 水温センサ 24 電圧センサ 25 O2 センサ1 Internal Combustion Engine 8 Control Unit 9 Fuel Injection Valve 20 Air Flow Meter 21 Rotational Speed Sensor 22 Idle Switch 23 Water Temperature Sensor 24 Voltage Sensor 25 O 2 Sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】機関運転状態を検出する運転状態検出手段
と、検出された機関運転状態に基づき機関への燃料噴射
量を設定する燃料噴射量設定手段と、設定された燃料噴
射量に基づき燃料噴射弁を介して燃料噴射制御を行う燃
料噴射制御手段と、を含んで構成される燃料噴射制御装
置において、 前記燃料噴射弁からの燃料噴射量が所望の噴射特性を有
するように補正する補正量を設定する補正量設定手段
と、設定された補正量に基づき前記燃料噴射量設定手段
により設定された燃料噴射量を補正する燃料噴射量補正
手段と、を含んで構成されたことを特徴とする内燃機関
の燃料噴射制御装置。
1. An operating state detecting means for detecting an engine operating state, a fuel injection amount setting means for setting a fuel injection amount to the engine based on the detected engine operating state, and a fuel based on the set fuel injection amount. In a fuel injection control device including fuel injection control means for performing fuel injection control via an injection valve, a correction amount for correcting the fuel injection amount from the fuel injection valve to have a desired injection characteristic. And a fuel injection amount correction unit for correcting the fuel injection amount set by the fuel injection amount setting unit based on the set correction amount. Fuel injection control device for internal combustion engine.
【請求項2】前記補正量設定手段は、前記燃料噴射量設
定手段により設定された燃料噴射量に基づいて補正量を
設定することを特徴とする請求項1記載の内燃機関の燃
料噴射制御装置。
2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the correction amount setting means sets the correction amount based on the fuel injection amount set by the fuel injection amount setting means. .
【請求項3】前記所望の噴射特性とは、前記燃料噴射弁
への駆動信号と燃料噴射量との関係が略全域に亘り、略
一定の傾きを有する直線性特性であることを特徴とする
請求項1又は2に記載の内燃機関の燃料噴射制御装置。
3. The desired injection characteristic is a linear characteristic in which a relationship between a drive signal to the fuel injection valve and a fuel injection amount is substantially over the entire range and has a substantially constant inclination. A fuel injection control device for an internal combustion engine according to claim 1 or 2.
JP1996896A 1996-02-06 1996-02-06 Fuel injection control device of internal combustion engine Pending JPH09209803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996896A JPH09209803A (en) 1996-02-06 1996-02-06 Fuel injection control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1996896A JPH09209803A (en) 1996-02-06 1996-02-06 Fuel injection control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09209803A true JPH09209803A (en) 1997-08-12

Family

ID=12013999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1996896A Pending JPH09209803A (en) 1996-02-06 1996-02-06 Fuel injection control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09209803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182647B1 (en) 1997-12-25 2001-02-06 Hitachi, Ltd. Fuel injection control apparatus and fuel injection method
US9719458B2 (en) 2013-09-09 2017-08-01 Nissan Motor Co., Ltd. Fuel injection control device of engine and fuel injection control method of engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182647B1 (en) 1997-12-25 2001-02-06 Hitachi, Ltd. Fuel injection control apparatus and fuel injection method
US9719458B2 (en) 2013-09-09 2017-08-01 Nissan Motor Co., Ltd. Fuel injection control device of engine and fuel injection control method of engine

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
JP4065784B2 (en) Control device for internal combustion engine
JPH09209803A (en) Fuel injection control device of internal combustion engine
JP3504067B2 (en) Engine control device
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JPH0823324B2 (en) Engine fuel control device
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JPH0932537A (en) Control device of internal combustion engine
JPH1136926A (en) Cylinder injection type engine
JP2551378Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JPH0340336B2 (en)
JP3627658B2 (en) Fuel injection control device for internal combustion engine
JPH0643481Y2 (en) Fail-safe device for electronic control unit of internal combustion engine
JP3599378B2 (en) Throttle valve control device for internal combustion engine
JPH01305144A (en) Fuel injection controller of internal combustion engine
JP2609126B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH09242654A (en) Ignition timing controller for engine
JPH11173218A (en) Egr rate estimation device for engine
JP3622229B2 (en) Engine fuel control device
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JP2870356B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP2631580B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH0686831B2 (en) Air-fuel ratio learning controller for internal combustion engine