JPS5951141A - Electronic fuel injection timing control method of internal-combustion engine - Google Patents

Electronic fuel injection timing control method of internal-combustion engine

Info

Publication number
JPS5951141A
JPS5951141A JP57163648A JP16364882A JPS5951141A JP S5951141 A JPS5951141 A JP S5951141A JP 57163648 A JP57163648 A JP 57163648A JP 16364882 A JP16364882 A JP 16364882A JP S5951141 A JPS5951141 A JP S5951141A
Authority
JP
Japan
Prior art keywords
engine
fuel
fuel injection
timing
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57163648A
Other languages
Japanese (ja)
Inventor
Hironori Bessho
別所 博則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57163648A priority Critical patent/JPS5951141A/en
Publication of JPS5951141A publication Critical patent/JPS5951141A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/155Analogue data processing
    • F02P5/1558Analogue data processing with special measures for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reduce the number of cylinders whose ignition plugs are subjected to direct attack of fuel even if synchronized injection in all cylinders is performed by advancing the injection timing from the ignition timing in an operating range which involves the problem of incomplete firing of the ignition plugs. CONSTITUTION:At a step 110, it is discriminated whether the engine condition is in the operating range which involves the problem of incomplete firing of ignition plugs or not. If YES, at a step 112 it is discriminated whether the varied quantity of sucked air per one revolution of the engine, DELTAQ/N is over a specified value or not. If YES at both the steps 110 and 112, the engine condition shows that it stands in the range which involves the problem of incomplete firing of the ignition plugs. At the next step 113, fuel is injected at a timing which advances from an ignition timing thetaig by (gamma) of a crank angle. The number of the cylinders whose ignition plugs are subjected to direct attack of fuel can be thus reduced.

Description

【発明の詳細な説明】 本光明は、内燃(幾関の電子制御堰わ1哨射方法に係り
、特に、点火16]期全気筒同時噴射方式の電子制御堰
わ1噴射装置を備えた自動車用エンジンに用いるのに好
適な、1ンジン運転状態に応じ−(決定された量の燃料
を、点火時期と同期して、全気筒−斉に噴射丈るように
した内燃機関の電子制御卸燃料噴Q1方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion (electronically controlled weir) detection method, particularly for an automobile equipped with an electronically controlled injector of a simultaneous injection method in all cylinders during the ignition 16 period. An electronically controlled wholesale fuel system for internal combustion engines that injects a determined amount of fuel into all cylinders at the same time in synchronization with the ignition timing, depending on the engine operating conditions. This invention relates to improvements in the injection Q1 method.

自動車エンジン等の内燃機関の燃焼室に所定空燃比の混
合気を供給するyj法の一つに、電子制御ll燃$jl
 IIN (JJ装置を用いるものがある。これは、エ
ンジン内に燃料を噴射するためのインジェクタを、例え
は、エンジンの吸気マニホルドにエンジン気筒数個配設
し、該インジェクタの開弁詩間をエンジン運転状態に応
じて制御することにより、所定の空燃比の混合気がエン
ジン燃焼室に供給されるようにりるものである。
One of the yj methods for supplying a mixture with a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine is an electronically controlled fuel mixture.
IIN (Some JJ devices are used. In this system, injectors for injecting fuel into the engine are installed in several engine cylinders, for example, in the intake manifold of the engine, and the valve opening of the injector is connected to the engine. By controlling the engine according to the operating condition, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber.

この電子制御燃料噴射装置にお(]る燃籾囁躬時明の制
御り法としては、点火時期ど同期して、各気筒のインジ
エクタを全て一斉に開弁する、所謂点火同期全気筒同時
噴射方式が用いられることが多いが、特に、低温始動後
のスロットルバルブ全開−全開が頻繁に繰返されるよう
な場合、例えば4気筒土ンジン−(は、その内の2気筒
の吸気工程中の吸気バルブ間片時にt!i I+噴射が
行われることどなり、噴射燃料が点火プラグを直撃する
ため、点火プラグのくづぶりが発生しやすいという欠点
を有していた。
The most common control method for this electronically controlled fuel injection system is so-called ignition-synchronized all-cylinder simultaneous injection, in which the ignition timing is synchronized and all the injectors of each cylinder are opened at the same time. This method is often used, but especially when the throttle valve is fully opened after a cold start, it is often repeated. When the t!i I+ injection is performed at the time of interruption, the injected fuel directly hits the spark plug, which has the disadvantage that the spark plug is likely to become clogged.

本発明は、前記従来の欠点を解消でるべくなされたもの
C゛、噴射燃料が点火プラグを直撃することによる点火
プラグのく丈ぶりを防止することがCきる内燃機関の電
子制御燃料噴射方法を提供することを目的とりる。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks.The present invention provides an electronically controlled fuel injection method for an internal combustion engine that can prevent the spark plug from becoming stiff due to direct impact of the injected fuel on the spark plug. The purpose is to provide.

本発明は、エンジン運転状態に応じて決定された量の燃
料を、点火時期と同期して、全気筒−斉に噴射づるよう
にした内燃機関の電子制御燃料噴射方法において、点火
プラグのくすぶりが問題となる運転領域では、燃料噴射
時期を早め、点火時期よりも前に燃わ1を噴射するよう
にして、噴射燃料が点大プラクを直撃する気筒の数を減
小させるよ−うにして、前記目的を達成したものである
The present invention provides an electronically controlled fuel injection method for an internal combustion engine in which an amount of fuel determined according to the engine operating condition is injected simultaneously into all cylinders in synchronization with the ignition timing. In the problematic operating range, the fuel injection timing is advanced and the fuel is injected before the ignition timing to reduce the number of cylinders in which the injected fuel directly hits large spot plaques. , the above objective has been achieved.

又、前記点火プラグのくすぶりが問題となる運転領域を
、エンジン暖機中の加速時としたものである。
Further, the operating range in which smoldering of the spark plug becomes a problem is during acceleration during engine warm-up.

以F図面を参照して、本発明に係る内燃機関の電子制御
燃料噴射方法が採用された、自動車用1ンジンの吸入空
気量感知式電子制御燃料噴射装置の実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an intake air amount sensing type electronically controlled fuel injection device for a single engine automobile, in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted, will be described in detail with reference to the drawings.

本実施例は、第1図に示すごとく、エアクリーナ(図示
省略)により取入れられた吸入空気の流量を検出するた
めのエアフローセンサ12と、スロットルボディ14に
配設され、運転席に配設されたアクセルペダル(図示省
略)ど連動して開閉するようにされた、吸入空気の流量
を制御するためのスロットルバルブ16と、該スロット
ルバルブ16の全開状態を検出するための、スロットル
バルブ全開時にオンとなるアイドルスイッチ18と、吸
気干渉を防止するためのザージタンク20ど、エンジン
10の各気筒に対応して吸気マニホルド22に配設され
た、エンジン10の各段・気ボー1〜に向けて加圧燃料
を間欠的に噴射するためのインジェクタ24と、吸気バ
ルブ26を介してエンジン10の各気筒の燃焼室10a
に導入された混合気に着火り−るための点火プラク28
と、排気バルブ30を介し゛C排出される排気カス中の
酸累淵度から、排気空燃比の目標空燃比(例えば理論空
燃比)に対り゛るリーン−リッチ状態を検知するための
、排気マニホルド32の下流側に配設された酸素濃度セ
ンサ(02センザと称する)34と、排気管36の途中
に配設された、排気ガス中の有害成分であるHC,GO
,’NOxを同時に浄化り−るための三元触媒コンバー
タ38と、点火コイル/10から与えられる高圧の点火
二次信号をエンジン10の各気筒の点火プラグ28に配
電−するための、エンジン゛10のクランク軸の回転と
連動して回転りるノスI〜リビ」−夕軸42a¥有づる
デストリピユータ/I2と、該デストリピユータ42に
内蔵された、前記】゛ストリビュータ軸42aの回転(
二1.a; U ’l’ 、クランク軸が例えば30°
、360′°回転りる毎に回転角信号を出力するクラン
ク角しンリ/I4、/I6と、1ンジン10のシリンダ
ブ目ツク1()bに配設された、1ンジン冷ムIJ水濡
を検知り−るだめの水)晶ヒンリ°48と、前記エアフ
ローセンリー12出力の吸入空気量と前記クランク角ヒ
ンリ44出力の回転角信号から求められるエンジン回転
;*度に応じて、エンジン一工程当りの基本噴射時間を
篩用するとともに、これを、前記水温センリ48出ツノ
のエンジン冷却水温等に応じて補正し、更に、空燃比フ
ィードバック条件成立時は、前記02セン勺34出力か
ら検出される空燃比の状態に応じて前記基本噴射時間を
補正することによ゛つて実行噴射時間を決定して、例え
は4番気筒の点火時期と同期して、全インジェクタ24
に一斉に開弁時間信号を出力するエンジン制御装置52
とを備えた自動車用4気筒エンジン10の点火同期全気
筒同時噴射方式の吸入空気量感知式電子制御燃料噴射装
置において、前記エンジン制御装置52内で、エンジン
暖機中の加)*時は、燃料噴射時期を所定クランク角γ
(例えばγ=5〜10°CA)たけ早め、点火時期より
も前に全インジェクタ24に一斉に開弁時間信号を出力
するようにして、IIJ!tIi)l燃料が点火プラグ
28を直撃する気筒の数を1気筒だけに減小さゼるよう
にしたものであるっ 前記土ンジン制御側1)2は、第2図に;Y細に小りご
とく、各種演算処理を行うための、例えばマイク1]グ
l−1t!ツリーからなる中央処理装置(MP(Jど称
する)60と、前記エアノロ−廿ンリ12出力、前記0
2 tンザ34出力、前記水itxン→ノア18出力等
のノアプログ信号を順次デジタル信号に変換して取込む
ための、アナログマルチプレク4ノ機能を有り゛るアナ
ログ−デジタル変換器(A/D変換器ど称4る)64と
、前記クランク角はンリ−44,46の出力、前記アイ
ドルスイツヂ18の出力等を取込むための入出力ポート
(I710ポー1−・ど称する)66と、M l) U
 60における演算データ等を一時的に記憶するだめの
ランダムアクヒスメしり(RA Mと称する〉68と、
制御プログラムや各種データ等を記憶づるためのリード
オンリーメしり(ROMと称づる)70と、前記M P
U 60にJ3りる演算結果に応じて、前記インジエク
タ24に聞弁時間信月を出力するだめの入出カポ−1〜
<I10ボートと称づる)72と、前記各構成機器間を
接続して、データ及び命令の転送等を(ラ−うための]
センバス74(から構成されている。
As shown in FIG. 1, this embodiment includes an air flow sensor 12 for detecting the flow rate of intake air taken in by an air cleaner (not shown), a throttle body 14, and a sensor installed in the driver's seat. A throttle valve 16 for controlling the flow rate of intake air, which is opened and closed in conjunction with an accelerator pedal (not shown), and a throttle valve 16 that is turned on when the throttle valve is fully open, for detecting the fully open state of the throttle valve 16. The idle switch 18 and the surge tank 20 for preventing intake interference are installed in the intake manifold 22 corresponding to each cylinder of the engine 10 to pressurize the air cylinders 1 to 1 of each stage of the engine 10. The combustion chamber 10a of each cylinder of the engine 10 is connected to an injector 24 for intermittently injecting fuel and an intake valve 26.
Ignition plaque 28 for igniting the air-fuel mixture introduced into the
and for detecting the lean-rich state of the exhaust air-fuel ratio relative to the target air-fuel ratio (for example, the stoichiometric air-fuel ratio) from the degree of acid accumulation in the exhaust gas discharged through the exhaust valve 30. An oxygen concentration sensor (referred to as 02 sensor) 34 disposed on the downstream side of the exhaust manifold 32, and an oxygen concentration sensor (referred to as 02 sensor) disposed in the middle of the exhaust pipe 36, which detects HC and GO, which are harmful components in the exhaust gas, are disposed in the middle of the exhaust pipe 36.
,' A three-way catalytic converter 38 for simultaneously purifying NOx, and an engine for distributing a high-pressure ignition secondary signal given from the ignition coil/10 to the spark plugs 28 of each cylinder of the engine 10. 10, which rotates in conjunction with the rotation of the crankshaft 42a, and a distributor/I2 that rotates in conjunction with the rotation of the crankshaft 42a, and the rotation of the distributor shaft 42a built in the distributor 42.
21. a; U 'l', crankshaft is, for example, 30°
, a crank angle control /I4, /I6 that outputs a rotation angle signal every time it rotates 360'°, and a first engine cooling rim IJ water wetter installed at the cylinder tab 1()b of the first engine 10. The engine speed is determined from the rotation angle signal of the output of the crank angle angle 44; The basic injection time per process is used as a sieve, and this is corrected according to the engine cooling water temperature of the water temperature sensor 48, etc., and furthermore, when the air-fuel ratio feedback condition is satisfied, it is detected from the 02 sensor 34 output. The effective injection time is determined by correcting the basic injection time according to the state of the air-fuel ratio, and for example, all injectors 24 are synchronized with the ignition timing of the No. 4 cylinder.
An engine control device 52 that outputs a valve opening time signal all at once.
In the intake air amount sensing type electronically controlled fuel injection system of an ignition synchronized all cylinder simultaneous injection method for a four-cylinder automobile engine 10, which is equipped with Set the fuel injection timing to the specified crank angle γ.
(For example, γ = 5 to 10° CA), and output the valve opening time signal to all injectors 24 at the same time before the ignition timing, and IIJ! tIi) The number of cylinders in which the fuel directly hits the spark plug 28 is reduced to only one cylinder.The engine control side 1) 2 is shown in Fig. 2; For example, microphone 1] group l-1t! is used to perform various arithmetic operations. A central processing unit (MP (J) 60 consisting of a tree, the air flow controller 12 output, the 0
An analog-to-digital converter (A/D) with 4 analog multiplex functions to sequentially convert and input the Noah program signals such as the 2 txn 34 output and the water itxn → Noah 18 output into digital signals. a converter (referred to as 4) 64, an input/output port (referred to as I710 port 1) 66 for receiving the outputs of the crank angle converters 44, 46, the output of the idle switch 18, etc.; M l) U
A random access memory (referred to as RAM) 68 for temporarily storing calculation data etc. in 60;
A read-only memory (referred to as ROM) 70 for storing control programs and various data, etc., and the M P
The input/output capo 1 to 1 outputs the listening time signal to the injector 24 according to the calculation result of U60 and J3.
(referred to as I10 boat) 72 and each of the above-mentioned component devices to transfer data and instructions, etc.
Senbus 74 (consisting of.

前記I10ボート66内には、周知の速度信号形成回路
が設けられており、前記クランク角セン1)44出力の
クランク角30’毎のパルス信号がら、エンジン10の
回転速度を表わすデジタル信号を形成するようにされて
いる。
A well-known speed signal forming circuit is provided in the I10 boat 66, and forms a digital signal representing the rotational speed of the engine 10 from the pulse signal for every crank angle 30' of the crank angle sensor 1) 44 output. It is made to be.

前記クランク角ヒンサ46出力のクランク角360°毎
のパルス信号は、クランク角30’毎の前記パルス信号
と協働して、燃料噴射パルス幅演算のための割込み要求
信号、燃料噴射開始信号、および、気筒マリ別信号等の
形成に利用される。
The pulse signal for every 360 degrees of crank angle output from the crank angle hinger 46 works together with the pulse signal for every 30' crank angle to generate an interrupt request signal for fuel injection pulse width calculation, a fuel injection start signal, and , used to form cylinder-specific signals, etc.

前記+:< o M70内には、メイン処理ルーテンプ
[」クラム、燃料噴射パルス幅演紳用の割込み処理ルー
ブ−ンブ[」グラム、各種補正係数演算用の割込み処理
ルーブンプログラム、J3よび、その他のプログラム、
更に、それらの演算処理に必要な種々のデータが予め記
憶されている。
The +:<o M70 contains a main processing routine program, a main processing routine program for fuel injection pulse width control, an interrupt processing routine program for calculating various correction coefficients, J3, and others. program,
Furthermore, various data necessary for these calculation processes are stored in advance.

前記1 、、/ Oポート72内には、プリセッタブル
タウンカウンタおよびレジスタ等を含む周知の燃1’l
噴0・j制御回路が設けられており、〜I l〕U 6
0から送り込まれる燃料噴射パルス幅に関するデジタル
信号から、そのパルス幅を有する噴射パルス信号を形成
り′るようにされ′Cいる。この噴射パルス信号は、例
えば4番気筒の点火時期と同期して、あるいは、前記点
火時期より所定クランク角γだけ壁い時期に、駆動回路
(図示省略)を介して全インジェクタ24に同時に送り
込まれ、これらをイ」剪り−る。これにより、噴射パル
ス信号のパルス幅に応じた量の燃わ1が噴射uしめられ
ることになる。
The port 72 includes a well-known fuel cell including a presettable town counter and a register.
A jet 0/j control circuit is provided, and ~I l]U 6
An injection pulse signal having the pulse width is generated from a digital signal relating to the fuel injection pulse width sent from zero. This injection pulse signal is sent to all the injectors 24 simultaneously via a drive circuit (not shown), for example, in synchronization with the ignition timing of the No. 4 cylinder, or at a timing a predetermined crank angle γ apart from the ignition timing. , prune these. As a result, the amount of fuel 1 corresponding to the pulse width of the injection pulse signal is injected.

なお、このエンジン制御装置52としては、前記のよう
な構成と異なる種々の構成のものを用いることができる
。例えば、I10ボー1〜66内に速度信号形成回路を
設けることなく、所定クランク角用のパルス信号を直接
MPU60が受取り、Vノドウェア(連1隻化号を形成
づるごとく構成り゛ろaどもiiJ能である。又、I1
0ボート72内に塩1:1噴〔1・1制御回路を設(〕
ることなく、ソフトウニi)により、噴射パルス幅に相
当する時間だけ、ii 11+の論理値となる信号を形
成−づることく構成づることも可能である。
Note that, as this engine control device 52, devices having various configurations different from the above configuration can be used. For example, without providing a speed signal forming circuit in I10 boards 1 to 66, the MPU 60 directly receives a pulse signal for a predetermined crank angle, and the MPU 60 is configured as if it were a V node. Also, I1
1:1 salt spray inside boat 72 [1:1 control circuit installed]
It is also possible to use the software i) to create a signal that has a logical value of ii 11+ for a period of time corresponding to the injection pulse width.

以下作用を説明する。The action will be explained below.

MPU60は、そのメイン処理ルーチンの途中で、エン
ジンの回転速度Nを表わづ最新のデータを、I10ポー
ト66から取込み、RAM68に格納する。又、A/D
変換器64からのA/D変換完了割込みにより、エンジ
ンの吸入空気流量Qを表ねり一最新のデータ、02セン
リ−32の出力電圧に対応した値を有する最新のデータ
、および、エンジン冷All水温丁HWを表わす最新の
データを取込み、RA M 68に格納する。
During its main processing routine, the MPU 60 takes in the latest data representing the engine rotational speed N from the I10 port 66 and stores it in the RAM 68. Also, A/D
By the A/D conversion completion interrupt from the converter 64, the latest data indicating the intake air flow rate Q of the engine, the latest data having a value corresponding to the output voltage of 02 Century-32, and the engine cooling water temperature are displayed. The latest data representing the HW is taken in and stored in the RAM 68.

M l〕U60は、ついで、所定クランク角麿位置で生
じる割込み要求信号に応じて、第3図に示すような処理
ルーチンを実行し、燃料噴射パルス幅τの締出を行う。
M1] U60 then executes a processing routine as shown in FIG. 3 in response to an interrupt request signal generated at a predetermined crank angle position, and limits the fuel injection pulse width τ.

この種の処理ルーチンは周知であるが、その内容につC
1て簡単に説明する。M t)U3Oは、まず、ステッ
プ101において、RAM68より吸入空気流IQおよ
びエンジン回転速+Q NのデータをIIM込み、ステ
ップ102で、次式を用い(、基本噴射パルス幅τ0を
算出4−る。
This type of processing routine is well known, but its contents are
1 will be briefly explained. Mt) U3O first inputs the data of intake air flow IQ and engine speed +QN from RAM 68 in step 101, and in step 102 calculates the basic injection pulse width τ0 using the following formula. .

Z−04−1<  ・ Q、・ N         
・・・ ・・・ ・・・  (1)ごご(Kは定数(゛
ある。
Z-04-1<・Q,・N
・・・ ・・・ ・・・ (1) Gogo (K is a constant (゛).

つい(・、ステップ103に進み、前記基本噴射パルス
幅τ0、ノイードバツク補正係数Cfb、冷J111水
温111W等に応して定まるその池の補正係数Co i
43よO・インジエクタ2/Iの無効噴q1時間に相当
づる賄τVを用いて、次式により、最終的な実i)噴q
1パルス幅τを算出する。
Then, the process proceeds to step 103, where the correction coefficient Co i of the pond is determined according to the basic injection pulse width τ0, the noise back correction coefficient Cfb, the cold J111 water temperature 111W, etc.
43, the final actual i) injection q is calculated by the following formula using the voltage τV corresponding to the ineffective injection q1 hour of the O injector 2/I.
Calculate one pulse width τ.

τ←τo−cfb・Go十τV・・・・・・(2〉一つ
い(、ステップ104に進み、算出した実行Di Q=
1パルス幅τに相当づるデータを、I10ポート72の
レジスタにセラ1〜して、このルーチンを柊、I7!l
Iる。
τ←τo−cfb・Go×τV... (2> One (, Proceed to step 104 and calculate the calculated execution Di Q=
Data corresponding to one pulse width τ is loaded into the register of I10 port 72, and this routine is executed by Hiiragi, I7! l
I.

父、本発明に係る燃料噴射時期の決定は、第4図に7j
スリような処理ルーチンに従って行われる。
Father, the determination of fuel injection timing according to the present invention is shown in Fig. 4 at 7j.
It is carried out according to a processing routine similar to pickpocketing.

すな4つら、まづ“ステップ109で゛、前記水温1t
?ンリ4B出力のエンジン冷却水温T HW等のエンジ
ン状態を表ねり因子(以下、エンジン状態因子と称する
)を人力し、ステップ110で、該」−ンジン状態因子
が点火プラグ28のくすぶりが問題となる運転領域にあ
るか否か、例えば、エンジン冷ム11水濡王II Wが
所定温度α未満のエンジンBJi II中であか否かを
判定する。判定結果が正である場合には、ステップ11
1に進み、エンジン−回転当りの吸入空気量の変化量へ
〇/N等の加速状態を表わす因子(以F1加速状態因子
と称する)を入力し、ステップ112そ、該加速状態因
子が点火プラグ28のくずぶりが問題となる運転領域に
あるか否か、例えは、エンジン−回転当りの吸入空気間
の変化m△Q/Nが所定値βを越えているか否かを判定
り−る。判定結果が正である場合、すなわち、エンジン
状態因子、加速状態因子のいずれも、点火プラグ28の
くすぶりが問題となる運転領域ζあることを示している
詩には、ステップ113に進み、エンジン運転状態に応
じて決定されている点火時期θigから所定クランク角
γを引いた伯を燃ね噴射時期θ[1として、このルーチ
ンを終了づる。一方、前出ステップ110あるいは11
2にお(〕る判定結果が否である時、リ−なわち、エン
ジン状態因子あるいは加速状態因子のいずれか一方が、
点火プラク2Bのり一ツふりが問題となる運転領域をは
ずれ℃いる時には、ステップ114に進み、エンジン運
転状態に応じて決定されている点火時期θigをそのま
ま燃r1噴剣時1111θ[iとしく、このルーチンを
終了する。
First, in step 109, the water temperature is 1t.
? A factor (hereinafter referred to as an engine condition factor) indicating the engine condition such as the engine cooling water temperature T HW of the engine output of 4B is manually input, and in step 110, it is determined that the engine condition factor indicates that the smoldering of the spark plug 28 is a problem. It is determined whether or not the engine BJi II is in the operating range, for example, whether the engine cold rim 11 is in the engine BJi II at a temperature lower than a predetermined temperature α. If the determination result is positive, step 11
Step 1, enter a factor representing the acceleration state (hereinafter referred to as F1 acceleration state factor) such as 〇/N to the amount of change in intake air amount per engine revolution, and step 112, the acceleration state factor is the spark plug. 28 is in a problematic operating range, for example, it is determined whether the change mΔQ/N between engine and intake air per rotation exceeds a predetermined value β. If the determination result is positive, that is, if both the engine condition factor and the acceleration condition factor indicate that there is an operating range ζ in which smoldering of the spark plug 28 is a problem, the process proceeds to step 113, and the engine operation is performed. The fuel injection timing θ[1 is determined by subtracting the predetermined crank angle γ from the ignition timing θig determined according to the state, and this routine ends. On the other hand, step 110 or 11
When the judgment result in 2 () is negative, that is, either the engine condition factor or the acceleration condition factor is
When the ignition plaque 2B glue drift is out of the problematic operating range, the process proceeds to step 114, where the ignition timing θig determined according to the engine operating condition is changed to 1111θ[i when the fuel r1 is injected, Exit this routine.

本実施例にJ5ける、エンジン10の各気筒の工程と、
エンジン暖機中の加速時によ夕ける点火時期θi (l
 J3よび燃18I哨Q′J峙期θfiの関係の一例を
第5図に承り。図から明らかなごとく、第5図に示づよ
うな状態では、点火時期θigの断点″c1番気筒およ
び2番気筒が吸気工程にあり、この点火時期θigに同
期して、従来のように全気筒−斉に燃料哨用を行うと、
@射燃yf31が1番気筒および2番気筒の2気筒の点
火プラグ28を直撃す゛ることとなり、点火プラグのく
づふりが問題となっていたのにQl l、、木光明によ
る燃料噴射01期θ[iによれば、噴q]燃オ81が点
火プラグ28を直撃づる気筒は2香気間のみどなり、1
香気゛筒は、噴射燃料の1撃による点火−/ラグ28の
くすふりがllノられている。
The process of each cylinder of the engine 10 in J5 in this embodiment,
Ignition timing θi (l
Figure 5 shows an example of the relationship between J3 and 18I Q'J time θfi. As is clear from the figure, in the state shown in Fig. 5, the 1st and 2nd cylinders are in the intake stroke at the breakpoint of ignition timing θig, and in synchronization with this ignition timing θig, the When all cylinders are checked for fuel at the same time,
@The fuel injection yf31 directly hit the spark plugs 28 of the 1st and 2nd cylinders, and there was a problem with the spark plugs shaking. According to θ[i, the cylinder in which the fuel 81 directly hits the spark plug 28 has a gap between two aromas, 1
The incense cylinder is ignited by a single blow of injected fuel and the lug 28 is ignited.

なJ3前前記施例においては、点火プラクのくすふりが
問題となる運転領域を判断するためのエンジン状態因子
がエンジン冷却水温1’ 1−1Wどされ、加速状態因
子がエンジン−回転当りの吸入空気量) の変化量△Q/Nどされていたが、エンジン状態因子や
加速状態因子の種類は、これに限定されず、例えば、加
速状態因子どして、エンジン回転速度の変化Ii△Nや
燃わl@躬パルス幅の変化量△τを用いることも可能で
ある。
In the above-mentioned example before J3, the engine condition factor for determining the operating range where spark plaque smog is a problem is the engine cooling water temperature 1'1-1W, and the acceleration condition factor is the engine intake per rotation. However, the types of engine condition factors and acceleration condition factors are not limited to these, and for example, the change in engine rotational speed Ii △N can be expressed as an acceleration condition factor. It is also possible to use the amount of change Δτ in the pulse width.

又前記実施例においては、本発明が、吸入空気量感知式
電子制御燃料噴射装置を備えた自動車用4気筒エンジン
に適用されていたが、本発明の適用範囲は、これに限定
されず、吸気管圧力感知式等、他の方式の電子制御燃料
噴射装置を備えた自動車用多気筒エンジン、あるいは、
一般の多気筒土ンジンにも同様に適用できることは明ら
かである。本発明を、自動車用6気筒エンジンに適用し
た場合の、各気筒にd’3ける工程と、エンジン暖機中
の加速時にd3ける点火時期θigおよび燃利噴04時
期θfiの関係の一例を第6図に示づ。図から明らかな
どどく、従来のように6tLt気筒の点火時期θigに
同期して燃料を噴射した場合には、1f#気筒、2番気
筒および4番気筒の3気筒C噴用燃判が点火プラグを直
撃リ−るおそれがあるのに対し、本発明により点火1期
θigより所定クランク角γたlJ早い燃料11i川時
期θ[iに燃料を噴射リ−るよ弓にした場合には、1番
気筒で噴射燃料が点火プラクを直撃することが避けられ
ている。
Furthermore, in the above embodiments, the present invention was applied to a four-cylinder automobile engine equipped with an electronically controlled fuel injection device that senses the amount of intake air; however, the scope of application of the present invention is not limited thereto; Automotive multi-cylinder engines equipped with other types of electronically controlled fuel injection devices, such as pipe pressure sensing type, or
It is clear that the present invention can be similarly applied to general multi-cylinder engine engines. An example of the relationship between the process of applying d'3 to each cylinder and the ignition timing θig and fuel injection timing θfi at d3 during acceleration during warm-up of the engine when the present invention is applied to a six-cylinder automobile engine is shown below. Shown in Figure 6. It is clear from the figure that when fuel is injected in synchronization with the ignition timing θig of the 6tLt cylinder as in the past, the fuel for the 3-cylinder C injection of the 1f# cylinder, the 2nd cylinder, and the 4th cylinder is the spark plug. However, according to the present invention, when the fuel is injected at the predetermined crank angle γ and lJ earlier than the ignition 1 stage θig, the fuel is injected at the timing θ[i]. This prevents the injected fuel from directly hitting the spark plaque in the number cylinder.

以上説明した通り、本発明によれば、点火プラグのくり
ぶりが問題となる運転領域で、噴射撚わ1が点火プラグ
を直撃づる気筒の数を減小させることが可能どなり、従
つC1点火プラグのくψぶりから北生りる、もたつき、
息つき、バックノアイ曳7、始動イ・能等の運転性能上
の不具合を防ぐことがiiJ能となるという優れた効果
を右りる。
As explained above, according to the present invention, in the operating range where spark plug burr is a problem, it is possible to reduce the number of cylinders in which the injection twist 1 directly hits the spark plug, and therefore the C1 ignition From the plug's clenching, Kita's life is slow and sluggish.
The excellent effect of iiJ function is achieved by preventing driving performance problems such as shortness of breath, back no eye pull 7, and start failure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の電子制()11燃1
’l哨剣方法が採用された、自動車用4気筒土ンジンの
点火同期全気筒同時噴射方式の吸入望気量感知式電子制
御燃わ1噴!)J装置の実施例の構成を承り、一部ブロ
ック線図を含む断面図、第2図は、前記実施例で用いら
れているエンジン制御装置の構成を示リーブロック線図
、第3図は、同じく、燃料噴射パルス幅を決定するだめ
のクランク角度割込み処理ルーチンの要部を示す流れ図
、第4図は、同じく、燃料噴射時期を決定す゛るための
処理ルーブンを示づ流れ図、第5図は、前記実施例にお
ける、各気筒の工程と、点火時期および燃料噴射時期の
関係の一例を示す線図、第6図は、本発明に係る内燃機
関の電子制御燃料噴射方法を自動車用6気筒エンジンに
適用した場合の、各気筒の工程と、点火時期および燃料
噴射時期の関係の一例を示す線図である。 10・・・エンジン、  12・・・エアフローセン1
ノ、24・・・インジェクタ、42・・・デストリピユ
ータ、44.46・・・クランク角セン4ノ、48・・
・水温しンザ、 52・・・エンジン制io装置。 代理人  高  矢    論 (ばか1名) 第3 図 第4FA
FIG. 1 shows an electronic control ( ) 11 combustion 1 of an internal combustion engine according to the present invention.
A 4-cylinder automobile engine with ignition synchronization and simultaneous injection in all cylinders with intake air flow sensing and electronically controlled fuel injection! ) A sectional view including a partial block diagram of the configuration of the embodiment of the J device, FIG. 2 is a block diagram showing the configuration of the engine control device used in the above embodiment, and FIG. Similarly, FIG. 4 is a flowchart showing the main part of the crank angle interrupt processing routine for determining the fuel injection pulse width, FIG. 4 is a flowchart showing the processing routine for determining the fuel injection timing, and FIG. , a diagram showing an example of the relationship between the process of each cylinder, ignition timing, and fuel injection timing in the above embodiment; FIG. FIG. 2 is a diagram showing an example of the relationship between the process of each cylinder, ignition timing, and fuel injection timing when applied to the present invention. 10...Engine, 12...Air flow sensor 1
ノ, 24...Injector, 42...Distributor, 44.46...Crank angle sensor 4ノ, 48...
・Water temperature, 52...Engine control IO device. Agent Takaya Ron (one idiot) Figure 3 4FA

Claims (1)

【特許請求の範囲】 (’I )エンジン運転状態に応じて決定された量の燃
わIを、点火時期と同期して、全気筒−斉に噴[m・j
するようにした内燃1幾関の電子制御燃料噴射装置にお
い(、点火プラグのくづぶりが問題となる運転1負域(
は、燃料噴射時期を早め、点火時期よりも前に燃わ1を
囁Q1リ−るようにして、噴fJJ燃斜が点火プラクを
直撃する気筒の数を減小さけるようにしたことを特(牧
どづ′る内燃機関の電子制御燃料噴射方法。 (2)前記点火プラグのくづぶりが問題どなる運転領域
が、エンジン暖機中の加速時である特6′[請求の範囲
第1項に記載の内燃(幾関の電子制御燃イ8111凸川
力法。
[Claims] ('I) The amount of combustion I determined according to the engine operating condition is injected simultaneously from all cylinders in synchronization with the ignition timing [m・j
In an electronically controlled fuel injection system for internal combustion, which is designed to
The company is special in that the fuel injection timing is advanced and the fuel injection timing is advanced so that the fuel 1 whispers Q1 ahead of the ignition timing, thereby reducing the number of cylinders in which the injection fJJ combustion angle directly hits the spark plaque. (Electronically controlled fuel injection method for an internal combustion engine by Makidozu. Internal combustion (Ikuseki's electronically controlled combustion 8111 Riki Dekogawa method) as described in Section 1.
JP57163648A 1982-09-20 1982-09-20 Electronic fuel injection timing control method of internal-combustion engine Pending JPS5951141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57163648A JPS5951141A (en) 1982-09-20 1982-09-20 Electronic fuel injection timing control method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57163648A JPS5951141A (en) 1982-09-20 1982-09-20 Electronic fuel injection timing control method of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5951141A true JPS5951141A (en) 1984-03-24

Family

ID=15777931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57163648A Pending JPS5951141A (en) 1982-09-20 1982-09-20 Electronic fuel injection timing control method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5951141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162236U (en) * 1984-04-05 1985-10-28 日産自動車株式会社 Internal combustion engine fuel injection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162236U (en) * 1984-04-05 1985-10-28 日産自動車株式会社 Internal combustion engine fuel injection system

Similar Documents

Publication Publication Date Title
JP2009287532A (en) Fuel injection control device for internal combustion engine
JPS6338537B2 (en)
JPH0742595A (en) Abnormality deciding device for internal combustion engine
JP3758235B2 (en) Intake control device for internal combustion engine
JPS5951141A (en) Electronic fuel injection timing control method of internal-combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP2535884B2 (en) Fuel supply system abnormality detection device for internal combustion engine
JPH0544538A (en) Air-fuel ratio control method and device for multicylinder internal combustion engine
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JPS6065249A (en) Fuel injection method of internal-combustion engine
JPH0742604A (en) Fuel injection timing controller of internal combustion engine
JPS6125943A (en) Fuel-injection controller of internal-combustion engine
JPS60209644A (en) Fuel injection control device for internal-combustion engine
JP3513882B2 (en) Engine fuel control device
JPS61190146A (en) Fuel injection controller of internal-combustion engine
JPS6125944A (en) Fuel-injection controller of internal-combustion engine
JPS5990740A (en) Starting of air-fuel ratio control of internal-combustion engine
JPH0799108B2 (en) Fuel injection control method for internal combustion engine
JPH0893536A (en) Method for controlling fuel injection
JPS6165037A (en) Air-fuel ratio control system for internal-combustion engine
JP2004190592A (en) Controller for internal combustion engine
JPH05180094A (en) Purge introduction control device
JPS6324142B2 (en)