JPS5920294A - ロジウム一価カチオン錯体の製造方法 - Google Patents

ロジウム一価カチオン錯体の製造方法

Info

Publication number
JPS5920294A
JPS5920294A JP57131510A JP13151082A JPS5920294A JP S5920294 A JPS5920294 A JP S5920294A JP 57131510 A JP57131510 A JP 57131510A JP 13151082 A JP13151082 A JP 13151082A JP S5920294 A JPS5920294 A JP S5920294A
Authority
JP
Japan
Prior art keywords
olefin
formula
rhodium
complex
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57131510A
Other languages
English (en)
Other versions
JPS636077B2 (ja
Inventor
Hidenori Kumobayashi
雲林 秀徳
Susumu Akutagawa
進 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Takasago Corp
Original Assignee
Takasago International Corp
Takasago Perfumery Industry Co
Takasago Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp, Takasago Perfumery Industry Co, Takasago Corp filed Critical Takasago International Corp
Priority to JP57131510A priority Critical patent/JPS5920294A/ja
Publication of JPS5920294A publication Critical patent/JPS5920294A/ja
Publication of JPS636077B2 publication Critical patent/JPS636077B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、次式(1)、 〔Rh(オレフィン) L:) +X        
(I)〔式中、オレフィンはエチレン、1.6−ブタン
エン、シクロヘキサジエン、ノルボルナジェン、シクロ
オクタ−1,5−ジエンを意味し、Xはago、、BF
、、PF6、Pat6を意味し、Lは次式(l[)、(
’jh ” ” ” (R)2(II)CH3 (式中、Yは−(CH2)3−1−(!H−01(2−
1−0H2−OH2−、、を意味し、Rは低級アルキル
基、シクロアルキル基、アリール基を意味する)で示さ
れる6価すン化合物を意味する〕 で表わされるロジウム−価カチオン錯体の製造方法に関
する。
従来から、多くの遷移金属錯体が有機合成反応の触媒と
して使用されている。特に貴金属錯体は高価であるが、
安定で取扱いが容易であるため、これを触媒として使用
する多く脅威研究がなされておシ、近年ほかの手段では
不可能な有機合成反応が次々と報告されている〔日本化
学会綿「化学総説屋62、有機金属錯体の化学」、26
5−260頁(昭和56年7月60日)〕。
この文献にも記載(268頁)の如く、ロジウム錯体触
媒は、その配位子かどのような構造を有するものが高い
立体選択性を示すかは、従来経験的な要素のみに頼らさ
るを得す、実際に種々化合物を変えて試みてみるまでは
わからない状況であるが、一般にロジウム錯体触媒によ
る不斉水素化では、モノホスフィンよりも、金属にキレ
ート配位が可能なビスホスフィン配位子の方が良好な結
果を与えることが多いとされている。また、ある反応基
質に効果的な不斉配位子が他の基質に対し必ずしも有効
であるとは限らず、それぞれの反応、基質に適合した触
媒全その都度、設計、合成する必要があった。
本発明者は、有機金属錯体触媒の中で、特に不斉水素化
反応、不斉異性化反応に使用されるロジウム錯体触媒を
製造すべく研究を行った。
従来、ロジウム錯体を製造する方法としては、例えば次
のものが知られている。
■Fr)rzuk 、 Bosnichによる[ Rh
(chiraphos)(NBD)]”ato42製造
する方法[:J、 Amm、 Ohem、 Soc、、
 99 。
6266頁(1977))o  ここでchiraph
osは2,6−ビス(ジフェニルホスフィノ)ブタンを
、NBDはノルボルナジェンを表わす(以F1賜じ)O
まず、[Rh(NBD)Ot]2とNBDを窒素気流中
で塩化メチレンに溶かし、これに過塩素酸銀を加え攪拌
した後、溶媒を減圧蒸留して除き、〔Rr+(NBD)
2〕”0404−  f得る。次に、これをchira
p)xosとともに塩化メチレンとテトラヒドロフラン
の混合溶媒にとかし、これにヘキサンを加え、25℃で
1時間、さらに5℃で2時間静置し、析出する[ Rh
(chiraphos(NBD)丁’czo、−を得て
いる。[Rh(NBD)O/−]2に対する理論収率は
68チである。
■Ojimaらによる[Rh(BPPM)(OOD))
]”O4O,−i製造する方法〔J、Org、Ohem
、、 voz45 、A2314728−4739頁(
1980))。ここでBPPMはN−(tθrt−シト
キシカルボニル)−4−(ジフェニルホスフィノ)−2
−(ジフェニルホスフィノメチル)−ピロリジンを表わ
し、00Dはシクロオクタ−1,5−ジエンを表わす(
以下同じ)。すなわち、あらかじめ合成したRh(CO
D)(アセチルアセトナート)全テトラヒドロフランに
とかし、この溶液の中に、アルゴン気流中、70優過塩
素酸を添加する。混合液を攪拌したのち、テトラヒドロ
フランに溶かしたBPPMを加え、室温で反応させ、ジ
エチルエーテルを加えたのち、固形物を濾過して集め減
圧下で乾燥して目的物を得る。Rh(COD)(アセチ
ルアセトナート)は、D、S工NOU S)1. B、
 KAGAN:Journal of OrganOm
etal、tic  chemlstry、 l l 
4(1976)、325−337頁により〔1(hC6
(COD)〕2とアセチルアセトネートより合成される
。この方法は工業的な実施の面から見れば満足出来るも
のではない。
■(RJBINAP)(NBD))”04O4−全製造
する方法(材囲昭55−、!51937号〕。ここでB
工NAPは2.ン′−ビス(ジフェニルホスフィノ)−
1,1’−ビナンチルを、NBDはノルボルナジェンを
表わす。すなけち(RJNBD)2)”C!/1.0.
−とB工NAPをフラスコにとり、系内金アルゴン置換
し、その甲にテトラヒドロフランと塩化メチレンを加え
、室温で1時間、4パCで2時間放置し、生成した結晶
をあつめ、これを塩化メチレン及びテトラヒドロンラン
から再結晶し目的物を得ている。
このように、ロジウム−価カチオン錯体を製造するには
、ロジウムの中性錯体を触媒前駆体とする方法、陽イオ
ン錯体に配位子を配位させる方法等の種々の方法が試み
られているが、原料のロジウムは勿論、配位子化合物も
高価なものであるので、中間体の製造は云うまでもなく
、目的物をいかに経済的に製造するかが重要なことであ
る。
そこで、本発明者は、触媒性能の優れたロジウム−価カ
チオン錯体を簡単な操作で収率よく製造せんと鋭意研究
を行った結果、本発明を完成した。
すなわち、本発明は、次式(Ill)、(Rhcz(オ
レフィン)n〕2(lII)〔式中、オレフィンは前記
に同じ、nはオレフィンがモノオレフィンの場合は2、
ジオレフィンの場合は1を意味する〕 で表ワされるロジウムオレフィン錯体に前記(1)式で
表わされる6価リン化合物を反応せしめて得た次式(5
)、 Rhaz(、t L/7 イン)L        (
IV)〔式中、オレフィン、Lは前記と同じ〕で表わさ
れるロジウム−価錯体と、次式(V)、MX     
       (V; 〔式中、MはNa、に、Li、Mgの金属を意味し、X
(l−j:前記に同じ〕 で表わされる塩とを、溶媒として水と塩化メチレンを用
い、次式(vl)、 RIR2R3R4Q、Z        (Vl)〔式
中・R1・R2・R3・R4は炭素数1〜16のアルキ
ル基、フェニル基、ベンジル基ヲ意味し、Qは窒素また
はリンを意味し、2はハロゲンを意味する〕 で表わされる四級アンモニウム塩または四級ホスホニウ
ム塩を相間移動触媒として使用し反応せしめてロジウム
−価カチオン錯体(I)を製造する方法である。
本元明方法の原料であるロジウムオレフィン錯体Q11
)は、メタノール、エタノール等の溶媒中で三塩化ロジ
ウムとオレフィンを作用させることにより容易に製造さ
れる〔日本化学金網「新実験化学講座(第12巻)有機
金属化学」(昭51、3.20 )丸善、193頁〕0
本発明錯体中のオレフィンとしては、エチレン、1,3
−ブタジェン、シクロへキサジエン、ノルボルナジェン
、シクロオクタ−1,5−ジエンを用いることができる
。ロジウムオレフィン錯体0IN)ト三価リン化合物(
n)の反応は、常温で両者を混合することにより容易に
反応が進行し、ここに溶媒を用いるときは、次の反応に
使用する塩化メチレンを用いれば好都合である。この際
、溶媒の量は、三価リン化合物値)に対して2〜20倍
量(容t/重量)、好まし、くは10倍量が過当である
三価リン化合物(1)としては、例えは次のものが挙げ
られる。
Pha” (”z)3””h2    CI +6−ビ
ス(ジフェニルホスフィノ)−プロパン〕 OH。
Ph、P−OH−OH2−PPh2   [: l 、
2−ビス(ジフェニルホスフィノ)−プロパン] P”2P  C0H2)4 ”Ph2    C1+ 
4−ビス(ジフェニルホスフィノ)−ブタン〕 フィン)−ブタン〕〔以下 chiraphoeと称す〕 (o−Tot)2P(OH2)、P(0−ToA)2 
 [ビス(1,4−ジオルトトリルホスフィノ)−ブタ
ン〕 Ph2P−(OH2)5  ””h2    [: 1
.5−ビス(ジフェニルホスフィノ)−ペンタン〕 一ビス(ジイソプロピルホスフィ ノ)−ブタン〕 一ブタン〕〔以”7’−’IMOPと称す〕−ビス(シ
ンクロへキシルホスフ イノ)−ブタン〕 〔以下Cy−D工opと称す〕 ロジウム−価錯体θV)と塩(V)との反応は、水と塩
化メチレンの混合溶媒中に両省と相間#助触媒(Vl)
を加えて攪拌して反応させる。塩(V)及び相間移動触
媒(VDの童は、ロジウムに対しそれぞれ1〜5倍モル
(好ましくは6倍モル)、V□O0〜ZOモルである。
反応は、5〜60℃の温度で1〜5時間、通常は1.5
時間の攪拌で充分であるが、錯体及び塩(V)の種類に
応じて最適果件が定められる。水と塩化メチレンは大体
等知、に近い混合化が適尚であり、反応系に刀1えると
きに、塩(V)及び相間移動触媒(VDは水に溶解せし
めて使用する。塩(V)としではNa、 K、 Li、
 Mgの過塩素酸塩、ホウ弗化塩、ヘキサフルオロホス
フェイト、ヘキサクロロホスフエイトが用いられ、それ
ぞれ対応する陰性基をロジウム錯体に碑入する。相聞移
動触媒(Vl)としては、通常、文献〔例えば、W、 
P、 Webey、 G、 W、 Gokel共著、田
伏岩夫、西谷孝子共訳「相間移動触媒」■化学同人(1
978−9−5)第1版〕に記載されているもの、例え
ばテトラメチルアンモニウムブロマイド、テトラノ0ロ
ビルアンモニュウムブロマイド、テトラブチルアンモニ
ウムクロライド、テトラブチルアンモニウムヨーダイト
、オクチルトリメチルアンモニウムブロマイド、ラウリ
ルトリメチルアンモニウムブロマイド、ラウリルトリフ
ェニルアンモニウムブロマイド、セチルトリメナルアン
モニウムクロライド、メf ルトリオクチルアンモニウ
ムクロライト、ベンジルトリエチルアンモニウムプロマ
イト、等のごとき四級アンモニウム塩;テトラブチルホ
スホニウムクロライド、テトラブチルホスホニウムブロ
マイド、テトラブチルホスホニウムヨーダイト、ラウリ
ルトリエチルホスホニウムブロマイド、ラウリルトリエ
チルホスホニウムブロマイド、トリオクチルエチルホス
ホニウムブロマイド、プチルトリフェニルホスホニウム
クロライV、ラウリルトリブチルホスホニウムブロマイ
ド、ベンジルトリブチルホスホニウムブロマイド等のご
とき四級ホスホニウム塩が用いられる。反応終了後、反
応物を靜1ηし、分液操作を行い、水層を除き、塩化メ
チレン溶液を水洗した後、減圧蒸留して塩化メチレン全
留去し、目的物を得る。
かくして得たロジウム−価カチオン錯体(1)は、特殊
な有機合成反応、特に不斉水素化反応及び不斉異性化反
応にすぐれた触媒として使用されるものである。
本発明のロジウム−価カチメン錯体の製造方法は、従来
の文献に開示された方法に比べて、配位子の種類の異な
るとの錯体の場合においても共通な操作によp錯体を調
製することができる。また、操作が単純であり、収率よ
く錯体が得らnるので、再結晶のごとき精製工程を省略
出来る。また、欽塩のごとき旨価な試薬を必要とせず、
特殊な溶媒、特にエーテル、n−ヘキサンを使用しなく
てもよい等の特長を有する。
次に、実施例および参考例によって本発明5r:説明す
る。
実施例1゜ [Ph(COD) ((−1−J−BINAP))”(
itoiの製造50Q dの4つ目フラスコにシールド
攪拌器、@A度計を付け、ジクロルビス(シクロオクタ
−1゜5−ジエン)ロジウム(RhO4(COD))+
 0.6159(1,25ミリモル)と(→−BINA
P 1.555 &(2,5ミ!Jモル)を入れ、窒素
置換の後に氷水にて外部より律動し、屋素下にて蒸留し
た塩化メチレン’120m1k加え、つづいて週塩素酸
ソーダ0、92 & (7,5ミリモル) k 7 b
 meの水に溶解したものと、ラウリルブチルホスポニ
ウムプロマイド0.123 、? ([J、 25ミリ
モル)を12.5−にとかしたものを加えた後、5〜1
o0cにて1時間60分攪拌し反応させた。反応終了後
、静置し、分液操作を行い水IVlliを取り除き、塩
化メチレン溶液を100 mlの蒸留水にて洗浄し、分
液した後、塩化メチレンを20〜30 Torr 、 
25〜30 ”Cにて留去し5、次で同温度で11’o
rrで1B時間乾燥し、1:’Ph(COD)((カー
BINAP)〕”01O42,29、!i’を得た。こ
れは[Rh0t(OOD)]2に対し収率は98.6%
であった0 元素分析: 計算値 0 66.95   H4,75実験値 U 
 66.68   H4,69実施例2 実施列1におけるラウリルトリブチルホスホニウムブロ
マイド0.123 gにかえて、ラウリルトリメチルア
ンモニウムブロマイド0.077g(0,25ミ!、I
モル)を使用した以外は実施例1と同様に操作し、[R
h(C!0D)((+)−BINAP))”0/−0,
−2,322を得たつ収率995%であった。
実施例3 実施例2と同様にしてベンジルトリエチルアンモニウム
ブロマイド0.034 g(0,125ミリモル)全使
用し、(E、h(coD)((−+−)−BINAP 
))”Ct04〜2.6DJを得た。収率98.7%で
あった。
実施例4 実施例2と同様妊してベンジルトリブチルホスホニウム
ブロマイド0.111N(0,3ミリモル)を使用し、
(Rh(aoDX(+)−BINAP)〕+ato、 
 2.28 、!i’を得た。収49Z8チであった。
実施例5 (Rh(COD) ((+)−り工op))”azo、
−の製造実施例1と同様な反応装置に、窒素気流下でジ
クロルビス(シクロオクタ−1,5−ジエン)ロジウム
0.615”& (1,25ミリモル)と(→D工OF
1.245.9(2,bミリモル)を入れ蟹素置換後、
氷冷下で塩化メチレン120me金加え、均一溶液とし
た後、過塩系酸ソーダO192,9(7,5ミリモル)
を75−の水にとかしたものと、ベンジルトリエチルア
ンモニウムプロマイ)’0.068g(0,25ミリモ
ル)を1ン一の水にとかしたものを加え、5〜IO’C
にて2時間反応させ、反応終了後、実施例1と同様な操
作を行い、[Rh(COD)((+)DIOF)、J”
(3tQ4”−2,0gを得た。このものの収率は[R
h0z(00]))2J2に対し990%であった。
元素分析: 計算値 C579、H5,48 実験値 057.86、 H5,48 実施例6 (Rh(NBI)) ((28、38)−chirap
hos ))+0404−の製造実施例1と同様な反応
装置に、ジクロルビス(ノルボルナジェン)ロジウム〔
Rhaz(ID):120、576 、!il’ (1
,25ミリモル)と(2”+38)−OhiraphO
e 王Ll 65 、!i’ (2,5ミリモル)ヲ入
し、猪素置換後、氷冷下、塩化メチレン100mtを加
え、つづいて過塩素酸ソーダ0.92 g(7,5ミリ
モル)’1i=80−の水にとかしたものとラウリルト
リメチルアンモニウムブロマイド0.0875.9(0
25ミリモル)を10−の水にとかしたものを加え、5
°Cにて1時間60分攪拌して反応させ、反応終了後実
施例1と同様な操作により[Rh(NBD)(、(2s
 、 3 s )−chlraphos))”czo4
5.87 gを得た。
これは(RhO6(NBD):) 2に対する収率98
.8%であった。
元素分析: 計算値 0 58.29  、 H499実験値 0 
58.21  、 )14.93実施例7 (:Rh(シクロヘキ+j−1,3−ジエン)((→B
BINAP)”PF6−の製造 実施例1と同様な装置にジクロルビス(シクロヘキサー
1.ろ−ジエン)ロジウム(Rhaz(Q ):) 2
0.546!!(1,25ミリモル)と、(→−B工N
AP1、5559(2,5ミ!Jモル)を入れ窒素置換
の後に、氷冷F1堪化メナレノ12 On+7!を加え
、つづいてカリウムへキサフルオロホスフェート168
g(7,5ミl)モル)を100−の水にとかしたもの
と、ペノゾルトリゾチルホスホニウムブロマイト009
ろ&(0,25ミリモル)を10rnlの水にとかした
ものを加え、10℃にて1時間50分攪拌し、反応終了
後は実施例1と同様な操作により(Rh(シクロ−・キ
サ−1,6−ジエン)((→−BINAP))”PF6
−2.38gを得た。これは〔hhoz(O))2に対
する収率998チであった。
元素分析: 計遭−値 063.1(S 、 H4,21実験値 0
 63.21  、H4,17実施例8 (Rh(COD)((→−BINAP)〕”BF、−の
製造実施例1と同様な装置にジクロルビス(シクロオク
タ−1,5−ジエン)ロジウム0.61!M(1,25
ミリモル)と(−+)−BINAP 1.555 g(
2,5ミIJモル)を入れ、窒素置換の後に、水冷下、
塩化メチレン120m’に加えて均一にし、次にホウフ
ッ化ソーダ0.824 、!7 (7,5ミリモル)k
 100 mlの水にとかしたものと、ラウリルトリブ
チルホスホニウムブロマイド0.123g(0,25ミ
リモル)を12−の水にとかしたものを加え、5°Cに
て1時間50分反応させた後、実施例1と同様な操作に
よ!l) [:I(h(シフロスフタ−1,5−ジエン
)((+)−BINAP))”BF42.27 gを得
たOこれは[RhC/1.(COD):]、に対する収
率98.0係であった。
元素分析: 計算値 C67,8B 、 H4,78実験値 067
.85 、 H4,72実施例9 (Rh(NBD)((→−Cy−DIOP))+O4O
,−の製造実施例1と同様な装置にジクロルビス(ツル
ボナシエン)ロジウム0.576 g(1,25ミリモ
ル)と(→−Oy−DIOP1305g(2,5ミリモ
ル)を力11え、次に氷冷上塩化メチレン120mei
加えて均一にし、つづいて過塩素酸ソーダ0.92 &
 (7,5ミリモル) k 75 rn/!の水にとか
したものとラウリルトリブチルホスホニウムブロマイド
0.123 &(O25ミリモル)ff、12.5−の
水にとかしたものを加え、7 ”v fcで2時間反応
させ、反応終了後実施例1と同様な操作により[:Rh
(NBD)((→−07−D l0p))+cto、−
2,01!!を得た。これは[Rh04(NBD ):
]2に対する収率980%でめった。
元素分析: 計算値 0 55.85  、 H7,84実験値 0
 55.33 、 H786実施例10 実施例1と同様な装置に蟹素気流下、ロジウムエチレン
錯体[)jhot(O)]□=OH2)2)20.48
62 &(1,25ミリモル)と(+)−BINAP 
1.555 fj (2,5ミリモル)を入れ、水冷下
、塩化メチレン120−を加え、つづいて過塩素酸ソー
ダ0.92.9(75ミリモル)を70mgの水にとか
したものと、ラウリルトリブチルホスホニウムプロマイ
)”0.123F(0,25ミリモル)を12−の水に
とかしたものを加え、5〜15°Cにして2時間反応さ
せ、終了後実施例1と同様に操作し、〔R畝CH2=C
H2)2(+)−,5INAp))”czo、−2,0
99を得た。これはCRh04(OH2=CH2)2〕
2に対し収率95.0%であった。
元素分析値: 計算値 0 65.41  、H4,54実験値 0 
65.49 、 H4,65実施例11 実施例1におけるラウリルブチルホスホニウムブロマイ
ド0.123 gにかえて、メチルトリオフ(Rh (
COD ) ((+)−B工NhP)〕”cto、−2
,23’、!T’を得た。収率95.8%0 実施例12 実施例゛1におけるラウリルブチルホスホニウムブロマ
イド0.123 、?にかえて、テトラブテルアンモニ
ウムヨーダイド0.1859 (0,5ミリモル)を使
用した以外は実施例1と同様に操作しく’ah(aoD
)((−り−B工Nhp)〕+ato、” 2.19 
gを得た。収率94.1%。
実施例13 実施例1と同様な装置に、窒素気流下ジクロルビス(シ
クロオクタ−1,5−ジエン)ロジウム0.615g(
1,25ミリモル)と、(→−B工NAP1、555 
Jl (2,5ミリモル)を入れ、次に氷冷下地化メチ
レン120−を加えて攪拌し反応させ、つづいて過塩素
酸リチウム0.32.!i’(3ミリモル)を100−
の水に溶解したものと、エチルトリオクチルホスホニウ
ムプロマイト0.063 & (0,25ミリモル)を
16−にとかしたものを加えた後、5〜10℃で2時間
攪拌し、反応終了後実施例1と同様に操作し、(Rh 
(C0D)((→−B工NAF’)J+Cjt04−2
.25yII:得た。収率96.5%。
実施例14 実施例1におけるラウリルトリブチルホスホニウムブロ
マイド0.125 gにかえてテトラゾチルホスホニウ
ムクロライド0.147 、!i’ (0,5ミリモル
)を使用した以外は実施例1と同様に操作して(Rh(
C!0D)(+)−)3工IJAP))”CtO,−2
,30、@を得た。収率98.7%。
実施例15 実施例1と同様な装置に窒素気流下ジクロルビス(シク
ロオクタ−1,5−ジエン)ロジウム0.615g(1
,25ミリモル)と(+)−B工NAP1.56&(2
,5ミリモル)を入れ、水冷下、塩化メチレン80 m
lを加えて均一溶液とした後に過塩素酸マグネシウム0
.247g(2ミリモル)を150−の水にとかしたも
のと、オクテルトリノエニルホスボニウムブロマイ)’
0.182.5’ ((3,4ミリ%ル)を10−の水
にとかしたものを加えて、以下実施例1と同様に操作し
、(Rh(coD)(→−B工NhPy3”cto、−
2,22M+’を得た。収率95.0%。
参考例1 (不斉J−4性化反応) 上記実施例1で得た[flh(COD) ((+) −
BiNAP)]”(]!to、−0932!(1ミリモ
ル)を窒素置換を行った反応器にとり、テトラヒドロフ
ラン1000 diJDえて均一にした後、N、N−ジ
エチルf ラニルア≧ン2U40−をガロえ、80°C
にて15時間反応させた。終了後テトラヒドロフランを
留去し、ついでl 、Torrの減圧下で蒸留して純度
98,5%のt−シト目ネラールエナミン1597.!
i”k得た。
エナミンの旋光度は〔α〕;f、4 +76.97°で
アリエナミンの光学純度は99.2%であった。
参考例2 (不斉水素化反応) 上記実施例6で得た[Rh(NBDX(2S l 3 
S) −chiraphos))+0t04  o、 
007211 (0,01ミリモル)を含むエタノール
溶液5−と、エタノール15m1を望素気流下に耐圧容
器にとり水素ガスで容器を置換した後に室温、1′g4
/crn水素圧で60キ 分間攪拌し、次に6−メドシー4−アセトキシアセトア
ミドケイ皮酸(日本化学余線「新実験化学講座(第14
巻)有機化合物の合成と反応」(昭53、2.20 )
丸善p−1687に記載の方法により合成した)王1;
#を加え、1.7Ky/cm2の水素圧、25゛Cの温
度で水素酩加を行い、水素吸収鈑により反応の完結度を
調べた。反応終了後、Fryzuk。
Bosnich ; J、Amm、chem、 soc
、、 99 (1977) P6266に記載の、イオ
ン交換樹脂を用いて触媒全分離する処理により、(E)
−Dopaの誘導体、すなわち(R)−6−メドキシー
4−アセトキンフェニルアラニン1.1yを得た。これ
は収率97係、不斉収率83弼であった。
参考例6 (不斉水素化反応) 上記実施例9で得た[Rh(NBD)((−) −0y
−DIOP):]”C1”4 9.5 mW (0,0
12ミリモル)ト、N −ヘンシルフェニルグリオキシ
ルアミド575q(2,4ミリモル)を50mの三方コ
ック付ナスフラスコに秤取して、系内金充分水素ガスで
置換し、次にこの中にインプロピルアルコール5 ml
を加えて40°Cに保ち、撹拌下、水素添加全行い、約
6時[]41後、水素の吸収が止まった彼、1Qmeの
エタノールを加えて撹拌しながらDowex−50WX
2 (ダウケミカルカンバー社製カチオン父換樹脂)2
gを加え、更に20分間攪拌し、固型物を戸別して除き
、P液をエーテル−水で抽出し、エーテルJWt’を硫
酸マグネシウムにて乾燥し、減圧下エーテルを留去し、
目的物のN−ペンシルマンデル7ミ)’558■1また
。このものの旋光度は〔α]マ8+28.9゜(C= 
1.48 chat3)であった。
以上 出願人 篩砂香料工業株式会社 l 酔h−−ト 弁理士 小 野 信 夫[パート′ 薯〆;   、1 1.・1.; (−番 2φ

Claims (1)

  1. 【特許請求の範囲】 1、 次式(I)、 [:Rh(、オレフィン)Ll”x−(I)〔式中、オ
    レフィンはエチレン、1,6−ブタジェン、シクロヘキ
    サジエン、ノルボルナジェン、シクロオクタ−1,5−
    ジエンを意味し、Xはato4、BF2、PF6、PO
    4,を意味し、Lは次式(It)(R)2 ”−Y P
     (R)2       (II)(式中、Yは−(C
    H2)3−1−〇H−OH2−1 (CH2)4−1を
    意味し、Rは低級アルキル基、シクロアルキル基、アリ
    ]ル基を意味する)で示される6価リン化合物を意味す
    る〕 で表わされるロジウム−価カチオン錯体を製造する方法
    において、次式(至)、 [Rh07(オレフづン)n)2        01
    D〔式中、オレフィンは前記に同じ、nはオレフィンが
    モノオレフィンの場合は2、ジオレフィンの場合は1を
    表わす〕 で表わされるロジウムオレフィン錯体に前記(II)式
    で表わされる611IIIリン化合物を反応せしめて得
    た次式(Iv)、 RhC6(オレフィン)L        (Iv)〔
    式中、オレフィン、Lは前記と同じ〕で表わされるロジ
    ウム−価錯体と、次式(V)、MX         
        (V)〔式中、MはNa、に、Li、Mgの金
    属を意味し、Xは前記に同じ〕 で表わされる塩とを、溶媒として水と塩化メチレンを用
    い、次式(Vl) 。 RIR2R3R4Qz(VD 〔式中、R1、R2、R3、R4は炭素数1〜16のア
    ルキル基、フェニル基、ベンシル基を意味し、Qは窒素
    またはリンを意味し、2はハロゲンを意味する〕 で表わされる四級アンモニウム塩または四級ホスホニウ
    ム塩を相聞移動触媒として使用し反応せしめることを特
    徴とするロジウム−価カチオン錯体(1)の製造方法。
JP57131510A 1982-07-28 1982-07-28 ロジウム一価カチオン錯体の製造方法 Granted JPS5920294A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131510A JPS5920294A (ja) 1982-07-28 1982-07-28 ロジウム一価カチオン錯体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131510A JPS5920294A (ja) 1982-07-28 1982-07-28 ロジウム一価カチオン錯体の製造方法

Publications (2)

Publication Number Publication Date
JPS5920294A true JPS5920294A (ja) 1984-02-01
JPS636077B2 JPS636077B2 (ja) 1988-02-08

Family

ID=15059716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131510A Granted JPS5920294A (ja) 1982-07-28 1982-07-28 ロジウム一価カチオン錯体の製造方法

Country Status (1)

Country Link
JP (1) JPS5920294A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127949A (ja) * 1984-07-17 1986-02-07 Takasago Corp 光学活性なエナミンの製造法
JPS6182558A (ja) * 1984-04-28 1986-04-26 Daicel Chem Ind Ltd 受付システム
EP0246194A2 (de) * 1986-05-16 1987-11-19 Ciba-Geigy Ag Iridiumkomplexe und deren Verwendung
JPS6446356A (en) * 1987-08-13 1989-02-20 Fujitsu Ten Ltd Telephone system for mobile body
JPH01133453A (ja) * 1987-11-19 1989-05-25 Tokyo Electric Co Ltd ファクシミリ装置
JPH0213346U (ja) * 1988-07-11 1990-01-26
WO2014038665A1 (ja) 2012-09-07 2014-03-13 高砂香料工業株式会社 光学活性2,3-ジヒドロファルネサールの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182558A (ja) * 1984-04-28 1986-04-26 Daicel Chem Ind Ltd 受付システム
JPS6127949A (ja) * 1984-07-17 1986-02-07 Takasago Corp 光学活性なエナミンの製造法
JPS6343380B2 (ja) * 1984-07-17 1988-08-30 Takasago Perfumery Co Ltd
EP0246194A2 (de) * 1986-05-16 1987-11-19 Ciba-Geigy Ag Iridiumkomplexe und deren Verwendung
EP0246194A3 (en) * 1986-05-16 1989-07-26 Ciba-Geigy Ag Complexes of iridium and their use
JPS6446356A (en) * 1987-08-13 1989-02-20 Fujitsu Ten Ltd Telephone system for mobile body
JPH01133453A (ja) * 1987-11-19 1989-05-25 Tokyo Electric Co Ltd ファクシミリ装置
JPH0213346U (ja) * 1988-07-11 1990-01-26
WO2014038665A1 (ja) 2012-09-07 2014-03-13 高砂香料工業株式会社 光学活性2,3-ジヒドロファルネサールの製造方法

Also Published As

Publication number Publication date
JPS636077B2 (ja) 1988-02-08

Similar Documents

Publication Publication Date Title
Cullen et al. Ferrocene-containing metal complexes
Mayer et al. Synthesis, reactions, and electronic structure of low-valent rhenium-oxo compounds. Crystal and molecular structure of Re (O) I (MeC. tplbond. CMe) 2
Trost et al. The enantioselective addition of alkyne nucleophiles to carbonyl groups
Jonas Reactive organometallic compounds obtained from metallocenes and related compounds and their synthetic applications
Ledger et al. Pincer Phosphine Complexes of Ruthenium: Formation of Ru (P− O− P)(PPh3) HCl (P− O− P= xantphos, DPEphos,(Ph2PCH2CH2) 2O) and Ru (dppf)(PPh3) HCl and Characterization of Cationic Dioxygen, Dihydrogen, Dinitrogen, and Arene Coordinated Phosphine Products
Yang et al. Versatile syntheses of optically pure PCE pincer ligands: Facile modifications of the pendant arms and ligand backbones
Imamoto Synthesis and applications of high-performance P-chiral phosphine ligands
Appleton et al. Rhodium (I) complexes of ferrocenylphosphines as efficient asymmetric catalysts. The structure of Fe (η5-C5H3 (P (CMe3) 2-1, 3)(η5-C5H3 (CHMeNMe2) P (CMe3) 2-1, 2)
JP2736947B2 (ja) 水溶性なスルホン酸アルカリ金属塩置換ビナフチルホスフイン遷移金属錯体及びこれを用いた不斉水素化法
JP2008517001A (ja) 新規ビスホスファン触媒
Baysal et al. Synthesis and characterizations of 3, 3′-bis (diphenylphosphinoamine)-2, 2′-bipyridine and 3, 3′-bis (diphenylphosphinite)-2, 2′-bipyridine and their chalcogenides
JPS5920294A (ja) ロジウム一価カチオン錯体の製造方法
EP0271310A2 (en) Ruthenium-phosphine complexes
Ning et al. One-pot synthesis of Mo0 dinitrogen complexes possessing monodentate and multidentate phosphine ligands
US8455671B2 (en) Ruthenium complexes with (P—P)-coordinated ferrocenyldiphosphine ligands, process for preparing them and their use in homogeneous catalysis
Jia et al. Synthesis and characterization of ruthenium acetate complexes containing triphosphines
Cadierno et al. An Easy Entry to Dimers [{RuX (μ-X)(CO)(P⌒ P)} 2](X= Cl, Br; P⌒ P= 1, 1 ‘-Bis (diphenylphosphino) ferrocene, 1, 1 ‘-Bis (diisopropylphosphino) ferrocene) from η3-Allylruthenium (II) Derivatives [RuX (η3-2-C3H4R)(CO)(P⌒ P)](R= H, Me): Efficient Catalyst Precursors in Transfer Hydrogenation of Ketones
Fan et al. Synthesis and structural study of an unsymmetrical aliphatic benzamidinato ligand and its use in the formation of selected Cu (I), Mg (II) and Zr (IV) complexes
Balakrishna et al. Aminophosphines derived from morpholine and N-methylpiperazine: Synthesis, oxidation reactions and transition metal complexes
US5919962A (en) Process for preparing ruthenium-phosphine complex
Pelagatti et al. Synthesis, characterization, and reactivity toward MeI of carbonyl Rh (I) complexes containing a PNO hydrazonic ligand
Arita et al. Preparation of Mo and W Complexes Containing a New Linear Tetradentate Phosphine Ligand meso-o-C6H4 (PPhCH2CH2PPh2) 2 from Dinitrogen Complexes trans-[M (N2) 2 (Ph2PCH2CH2PPh2) 2](M= Mo, W)
Takei et al. Novel catalytic hydrogenolysis of silyl enol ethers by the use of acidic ruthenium dihydrogen complexes
Gogoi et al. Synthesis and Mechanism of Chiral and Achiral Schiff Base and Their Metal Complexes
Chiffey et al. Synthesis and Properties of the Transition Metal Complexes of a Tritertiary Stibine, 1, 1, 1-Tris ((diphenylstibino) methyl) ethane. Structure of fac-[Mo (CO) 3 {MeC (CH2SbPh2) 3}]