JPS59201457A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59201457A
JPS59201457A JP58075038A JP7503883A JPS59201457A JP S59201457 A JPS59201457 A JP S59201457A JP 58075038 A JP58075038 A JP 58075038A JP 7503883 A JP7503883 A JP 7503883A JP S59201457 A JPS59201457 A JP S59201457A
Authority
JP
Japan
Prior art keywords
electrode
diode
heat dissipation
substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58075038A
Other languages
Japanese (ja)
Inventor
Yoshiharu Yotsumoto
四元 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58075038A priority Critical patent/JPS59201457A/en
Publication of JPS59201457A publication Critical patent/JPS59201457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To obtain a semiconductor device which is small in size and light in weight and has excellent heat dissipating efficiency by a method wherein the 1st conductive pattern is formed on a metal substrate, which is to be a heat dissipating substrate, with a flame spraied insulating layer in between and the 2nd conductive pattern is formed directly on the metal substrate and semiconductor elements are fixed on the two patterns and covered with a sealing cover and prescribed electrodes are protruded from the cover and those parts are molded with plastic. CONSTITUTION:The 1st conductive pattern 27 is formed on a metal substrate 31, which is to be a heat dissipating substrate, with a flame spraied insulating layer 29 in between and the 2nd conductive pattern 28 is formed directly on the substrate 31. Then diodes 4a and 4b are fitted on these patterns 27 and 28 respectively and they are enclosed air-tightly by a cover 38. After that an input electrode 23b, which connects the diodes 4a and 4b, and a rod electrode 25', which is connected to the pattern 27, are drawn out, piercing through the cover 38. After the 2nd and the 1st flat board electrodes 42 and 40 are connected to the electrodes 23b and 25' respectively, these electrode parts are surrounded by a plastic molded part 39 using adhesive 44.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は高い放熱効率の要求される半導体装置に関し
、特に半導体整流装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device that requires high heat dissipation efficiency, and particularly to a semiconductor rectifier.

〔発明の技術的背景〕[Technical background of the invention]

一般に自動車用等の車両には/Sッテリーを充電するた
めの発電機が塔載されている。この発電機は一般に三相
交流用のものが主流であり発電機の出力は整流回路によ
り全波整流される。
Generally, vehicles such as automobiles are equipped with a generator for charging a battery. This generator is generally for three-phase alternating current, and the output of the generator is full-wave rectified by a rectifier circuit.

第1図において三相交流機を構成するス≠1ター接続の
コイル1.2.3の端子は全波整流回路を構成している
第1および第2のダイオード4a、4b、第3および第
4のダイオード5g。
In Fig. 1, the terminals of the coil 1.2.3 of the star ≠ 1 star connection constituting the three-phase alternating current machine are connected to the first and second diodes 4a, 4b, the third and 4 diodes 5g.

5b、第5および第6のダイオード6a、6bよりなる
ダイオード対のそれぞれのダイオードの接続点22.2
3.24に各々接続される。
5b, the connection point 22.2 of each diode of the diode pair consisting of the fifth and sixth diodes 6a, 6b.
3.24 respectively.

そして、第1、第3および第5のダイオード4a r 
5a + 6aのカンード側は共通接続され、この共通
接続点25はバッテリー7の正極側に接続される。また
、第2、第4および第6のダイオード4b 、5b 、
6bのアノード側も共通接続され、この共通接続点26
はバッテリー7の負極側に接続される。また、上記正極
側の共通接続点25と負極側の共通接続点26間には平
滑用のコンデンサ37が接続される。なお図の第5およ
び第6のダイオード6a + 6bの共通接続点24は
、自動車のクコメータに接続するステータ端子STとし
て外部に引き出される。
And the first, third and fifth diodes 4a r
The cand sides of 5a + 6a are commonly connected, and this common connection point 25 is connected to the positive electrode side of the battery 7. In addition, second, fourth and sixth diodes 4b, 5b,
The anode side of 6b is also commonly connected, and this common connection point 26
is connected to the negative electrode side of the battery 7. Further, a smoothing capacitor 37 is connected between the common connection point 25 on the positive side and the common connection point 26 on the negative side. Note that the common connection point 24 of the fifth and sixth diodes 6a + 6b in the figure is drawn out to the outside as a stator terminal ST connected to a car's cocometer.

このように三相交流用の整流装置では発電機のコイル1
.2.3それぞれに発生した交流電圧全3対のダイオー
ドおよびコンデンサ37からなる整流回路で整流し、バ
ッテリー7を充電する。
In this way, in a three-phase AC rectifier, the generator coil 1
.. 2.3 The alternating current voltage generated in each case is rectified by a rectifier circuit consisting of three pairs of diodes and a capacitor 37, and the battery 7 is charged.

第2図は、上記のような発電機および整流回路の概略的
な構造を示す断面図である。図において9は発電機の回
転子1oと一体化したファンであり、1ノは固定子すな
わち第1図のコイル1.2.3を示し、12はこれらを
支える発電機のケース(ハウジング)である。去」は第
1図における第1.第3.第5のダイオード4a 、、
5a 、6thのカンード側が正イ叱側の放熱電極板1
3aに共通に取り付けられた装置と、第2.第4.第6
のダイオード4b 、 5b 。
FIG. 2 is a sectional view showing the schematic structure of the generator and rectifier circuit as described above. In the figure, 9 is a fan integrated with the rotor 1o of the generator, 1 indicates the stator, that is, the coils 1, 2, and 3 in Figure 1, and 12 is the generator case (housing) that supports these. be. 1 in Figure 1. Third. Fifth diode 4a,,
5a, the heat dissipation electrode plate 1 where the cand side of 6th is the positive side
3a, and a device commonly attached to the second. 4th. 6th
diodes 4b, 5b.

6bのアノード側が負極側の放熱電極板13b罠共通に
取り付けられた装置からなる整流装置で、図の16 a
 * 16bに示す部分はダイオードが配設された部分
を示す。この整流装置13は放熱電極板13b側の部分
はケース12の支持体に固定され放熱電極板13a側は
絶縁体15を介しケース12に固定される。また、整流
装置Lユの3本の入力端子17 a + 17 b r
17c1″l:第1図の接続点22,23.24に相当
し、固定子1ノから引き出されたコイル線1′。
The anode side of 6b is a rectifier consisting of a device commonly attached to the heat dissipation electrode plate 13b trap on the negative side.
*The part shown at 16b shows the part where the diode is provided. The rectifying device 13 has a portion on the heat-radiating electrode plate 13b side fixed to the support of the case 12, and a portion on the heat-radiating electrode plate 13a side is fixed to the case 12 via an insulator 15. In addition, the three input terminals 17 a + 17 b r of the rectifier L
17c1''l: Corresponds to the connection points 22, 23, and 24 in FIG. 1, and coil wire 1' drawn out from the stator 1.

2′、3′七それぞれ接続される。2', 3' and 7 are connected respectively.

例えばファンベルト8などを介して外部の駆動力によシ
回転子1oが回転し固足子内のコイルに三相又流電圧が
発生する。この電圧が上記整流装置±ユによって全波整
流される際に、この整流装置人lはダイオードの順方向
電圧降下によって発熱する。この発熱による整流装置−
L3−の温度上昇を防止するべくケース12には通気孔
が設けられ、ファン9にょシ発生する風で整流装置13
が冷却されるようになっている。
For example, the rotor 1o is rotated by an external driving force via the fan belt 8, etc., and a three-phase current voltage is generated in the coil in the solid foot. When this voltage is full-wave rectified by the rectifier, the rectifier generates heat due to the forward voltage drop of the diode. A rectifying device using this heat generation.
In order to prevent the temperature of L3- from rising, the case 12 is provided with a ventilation hole, and the airflow generated by the fan 9 causes the rectifier 13 to
is now being cooled.

第3図および第4図は第1図における第1乃至第6のダ
イオード4ar4b、5a、5b。
3 and 4 show the first to sixth diodes 4ar4b, 5a, and 5b in FIG. 1.

6a、6bからなる整流回路を一体的に組み込んだ第2
図の整流装置213−を上面側および下面111[から
見た平面図である。捷た、第5図は第3図および第4図
における線a −a’に沿った断面図である。第4図に
おいて、13a、13bはそれぞれ正極側および負極側
の放熱電極板で、この2枚の放熱電極板13a、13b
それぞれに3ケ所ずつ凹状部16a、16bが設けられ
、正極側の放熱電極板13mの3ケ所の凹状部16a内
に第1.第3.第5のダイオード(a。
A second circuit that integrally incorporates a rectifier circuit consisting of 6a and 6b.
It is a top view of the rectifying device 213- shown in the figure, viewed from the upper surface side and the lower surface 111. 5 is a sectional view taken along line a-a' in FIGS. 3 and 4. In FIG. 4, 13a and 13b are heat dissipation electrode plates on the positive and negative electrode sides, respectively, and these two heat dissipation electrode plates 13a and 13b
Three concave portions 16a, 16b are provided in each of the three concave portions 16a, 16b of the positive electrode side heat dissipation electrode plate 13m. Third. Fifth diode (a.

5a、6aがそのカンード側が放?IA箪褪板13aに
電気的接続するように配設される。同様に負極側の放熱
電極板13bの3ケPj「の凹状部16bビ」には第5
図にも示すように第2および第4おように配設される。
5a and 6a are released by the cand side? It is arranged so as to be electrically connected to the IA drawer plate 13a. Similarly, the fifth concave portion 16b of the third Pj of the heat dissipation electrode plate 13b on the negative electrode side is
As shown in the figure, they are arranged in second and fourth positions.

また、第3図および第5図において、18?′i絶縁部
材で、上記ダイオード4a 、5a、6a l 4b 
、5b + 6bの配設さる。上記各ダイオード4 a
+ 5 a r 6a r 4 b r5b 、6bの
放熱基板1 、? a 、 13 bに接続しない方の
電極は電極片4a’、 5a’、 6a’、 4b’。
Also, in Figures 3 and 5, 18? 'i Insulating member, the above diodes 4a, 5a, 6a l 4b
, 5b + 6b are arranged. Each of the above diodes 4a
+ 5 a r 6 a r 4 b r5b, 6b heat dissipation board 1,? The electrodes not connected to a and 13b are electrode pieces 4a', 5a', 6a', and 4b'.

5b’、6b’を介して上記の絶縁部材18から引き出
される。そして対となるダイオード4&。
It is pulled out from the above-mentioned insulating member 18 via 5b' and 6b'. And a pair of diodes 4&.

4bおよび5 a 、 5 、bおよび6a、6bそれ
ぞれが直列に接続されるように、上記絶縁部材18上に
3枚の電極導出板19,20.21が設けられ、第1の
電極導出板19において電極片4 a’、 4 b’が
接続され、同様に、第2の電極導出板20には電極片5
 g′、 5 b’が、第3の電極導出板2ノには電極
片6a′、6b′がそれぞれ接続される。こnらの各電
極導出板19 、20゜21それぞれには第1図の接続
点23,23゜24にそれぞれ相当する入力端子22 
a H23ar24aが設けられ、この各入力端子22
&。
Three electrode lead-out plates 19, 20, 21 are provided on the insulating member 18 so that 4b, 5a, 5, b and 6a, 6b are connected in series, and the first electrode lead-out plate 19 The electrode pieces 4 a' and 4 b' are connected to the electrode pieces 4 a' and 4 b', and similarly, the electrode piece 5 is connected to the second electrode lead-out plate 20.
g' and 5b', and electrode pieces 6a' and 6b' are connected to the third electrode lead-out plate 2, respectively. Each of these electrode lead-out plates 19 and 20゜21 has an input terminal 22 corresponding to the connection point 23 and 23゜24 in Fig. 1, respectively.
a H23ar24a is provided, and each input terminal 22
&.

23a、24mに前述のコイルl r 2 + 3それ
ぞれの一端が接続される。25.26は、ダイオードの
整流出力の取り出される出力端子で、それぞれ前記正極
9111の放熱電極板13Lおよび負極側の放熱電極板
13bVc取り着けられ、第1図のバッテリの正極側お
よび負極側に接続される。
One end of each of the aforementioned coils l r 2 + 3 is connected to 23a and 24m. Reference numerals 25 and 26 denote output terminals from which the rectified output of the diode is taken out, which are respectively attached to the heat dissipating electrode plate 13L of the positive electrode 9111 and the heat dissipating electrode plate 13bVc of the negative electrode side, and are connected to the positive and negative electrode sides of the battery shown in FIG. be done.

〔背景技術の問題点〕[Problems with background technology]

上述のような構成の従来の半導体整流装置は第2図のフ
ァン9により発生する風により冷却される構造となって
いるが、風速の小さな場合(例えば自動車のアイドリン
グ時)或いは周囲温度の高い場合においては整流装置の
温度上昇を充分に制限できない。このため、整流装置の
表面積をできるだけ広くし、ダイオードを分散させて配
設する必要があった。また、発電機のケースに設けられ
た通気孔からの風を受けやすいように整流装置の表面形
状を平面的に広けだものにしており、例えば鉄製の放熱
電極板では平面面積が50t1n2もあシ、その重量も
約133gと重いものであった。さらに放熱板の放熱効
果を高めるために熱伝導性の良い銅材料を使用する場合
にはさらに重量がlく万る。これに伴ない、整流装置1
Bがケース()・ウジング)12内に取り着けられる発
電機自体も形状および重量を太きくする必要があった。
The conventional semiconductor rectifier configured as described above has a structure in which it is cooled by the wind generated by the fan 9 shown in FIG. In this case, it is not possible to sufficiently limit the temperature rise of the rectifier. For this reason, it was necessary to make the surface area of the rectifier as wide as possible and to dispose the diodes in a dispersed manner. In addition, the surface shape of the rectifier is made wide in plan so that it can easily catch the wind from the ventilation holes provided in the generator case. Also, it was heavy at about 133g. Furthermore, when a copper material with good thermal conductivity is used to enhance the heat dissipation effect of the heat sink, the weight is further increased. Along with this, rectifier 1
The generator itself, in which B is installed in the case ( )/Using ) 12, also had to be thick in shape and weight.

また、半導体素子の極部的な発熱を防止するためにダイ
オードのチ、yプ面積を広くする場合もあるが、この場
合にはシリコンチップと鉄或いは銅などの放熱板との熱
膨張率の差により歪が生じ、シリコンテ、ツノと金属電
極との接合面における熱疲労が増大し、チップが割れや
すくなり、信頼性の低下を招く。さらに、チップ面積を
犬きくするほど価格も上昇する。
In addition, in some cases, the diode chip area is widened to prevent local heat generation of the semiconductor element, but in this case, the coefficient of thermal expansion between the silicon chip and the heat sink made of iron or copper, etc. The difference causes distortion, which increases thermal fatigue at the bonding surface between the silicon tip and the metal electrode, making the chip more likely to crack and reducing reliability. Furthermore, the price increases as the chip area increases.

また、上記例では正極側放熱電極板13aは絶縁体15
を介し発電機に取り付ける必要があるdこのため、整流
装置Lユの発電機内における占有空間が大きくなる。し
かも、発電機のケース12と整流装置ε13との接触面
積が狭く、特に正極側放熱電極板13hはケース12と
直接接触してい々V)ため、熱膜引上負極側放熱電極板
13bよりも広くする必要があった。以上のような事情
により、従来の整流装置では、冷却効率の限界から電流
容量を55A以上にすることが困難であった。
Further, in the above example, the positive electrode side heat dissipation electrode plate 13a is made of an insulator 15.
Therefore, the space occupied by the rectifier L within the generator increases. Moreover, the contact area between the generator case 12 and the rectifier ε13 is small, and in particular, the positive electrode side heat dissipation electrode plate 13h is in direct contact with the case 12 (V), so that the hot film pull-up negative electrode side heat dissipation electrode plate 13b is It needed to be wider. Due to the above-mentioned circumstances, in the conventional rectifier, it is difficult to increase the current capacity to 55 A or more due to the limit of cooling efficiency.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような点に鑑みなされたもので、信頼
性などの装置の緒特性を劣イヒ烙せることなく小型、軽
量で放熱効果の高V)”流装置などの半導体装置全提供
しようとするものである。
This invention was made in view of the above points, and aims to provide all semiconductor devices such as small, lightweight, and highly effective heat dissipating devices without deteriorating the device's characteristics such as reliability. That is.

〔発明の概要〕[Summary of the invention]

すなわちこの発明に係る半導体装1叶では、金属板の一
方の表面に溶射絶縁層が形成され、この溶射絶縁層上に
設けられた第1の導電JI′f7 ノ4ターンとこの溶
射絶縁層が形成されない部位に設けられた第2の導電層
ノリーンとを有する放熱基板を用い、この放熱基板の上
記第1およびン↓2の導電層パターンにそれぞれ例えば
ダイメ゛−ドなどの半導体素子を配設し、さらにこの半
導体素子を乾燥雰囲気により封止する封止用力・ぐ−を
放熱基・板に取り付けるとともに上記半導侶ζ素子の所
定の部位と電気的接続し封止用力・、F−の外部へ引き
出される端子電極を設けたものである。例えば自動車用
の整流装置では上記放熱基板のうち溶射絶縁層上の第1
の導電層パターン上にカソード共通となるダイオードの
カソード側を取着するとともに上記放熱基板の第2の導
電層パターン上にアノード共通となるダイオードのアノ
ード側を取着し、上記各ダイオードのカソードおよびア
ノードに′電気的に接続する入力端子および出力端子を
取り付け、上記放熱基板と一体となって乾慄界囲気でダ
イオードを気密封止する封止用カバーを設けたものであ
る。
That is, in the first semiconductor device according to the present invention, a sprayed insulating layer is formed on one surface of the metal plate, and the first conductive JI'f7 no.4 turn provided on the sprayed insulating layer and the sprayed insulating layer are Using a heat dissipation substrate having a second conductive layer provided in a portion where it is not formed, a semiconductor element such as a die-made semiconductor element is disposed on each of the first and second conductive layer patterns of this heat dissipation substrate. Furthermore, a sealing force/group for sealing this semiconductor element in a dry atmosphere is attached to the heat dissipation substrate/board and electrically connected to a predetermined portion of the semiconductor ζ element. It is equipped with a terminal electrode that is drawn out to the outside. For example, in a rectifier for automobiles, the first
The cathode side of the diode, which has a common cathode, is attached on the conductive layer pattern of the heat sink, and the anode side of the diode, which has a common anode, is attached on the second conductive layer pattern of the heat dissipation substrate, and the cathode and An input terminal and an output terminal that are electrically connected to the anode are attached, and a sealing cover that is integrated with the heat dissipation board and hermetically seals the diode in a dry shivering atmosphere is provided.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例につき例えば自
動車用の整流装置の場合を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention, for example, a rectifier for an automobile, will be described below with reference to the drawings.

第6図に示すように厚みが例えば1.5fiのアルミニ
ウムよりなる基板31の表面を例えばサンドブラスト処
理により粗面化する。このサンドブラスト処理はその後
に溶射形成される層の密着強度を大きく左右するためそ
の条件は慎重に設定する必要があり、ここではその表面
粗さを1.0−20μmに設定する。
As shown in FIG. 6, the surface of a substrate 31 made of aluminum and having a thickness of, for example, 1.5 fi is roughened by, for example, sandblasting. Since this sandblasting treatment greatly influences the adhesion strength of the layer that will be thermally sprayed afterwards, the conditions must be carefully set, and here the surface roughness is set to 1.0-20 μm.

次に粗面化された基板31の表面にセラミ、ツク例えば
At2o、 (アルミナ)全選択的にプラズマ溶射して
50〜150μmの厚みの溶射絶縁層29を形成する。
Next, a thermal spray insulating layer 29 having a thickness of 50 to 150 .mu.m is formed on the roughened surface of the substrate 31 by selectively plasma spraying a ceramic material such as At2O (alumina).

次に絶縁層29および基板31の表面に銅を選択的に溶
射して50〜150μmの厚みの第1乃至第3の溶射金
属層27゜2B 、 J Oを形成し電極を兼ねた放熱
基板エユを得る。ここで上記第1の金属層27全上記絶
縁層29上に溶射形成し、第2の溶射金属層28および
第3の溶射金属層30を上記基板3ノ上に溶射形成する
。なお、溶射金属層27゜28.30の溶射方法として
はプラズマ溶射。
Next, copper is selectively sprayed onto the surfaces of the insulating layer 29 and the substrate 31 to form the first to third sprayed metal layers 27°2B and 27JO having a thickness of 50 to 150 μm, thereby forming a heat dissipating substrate unit that also serves as an electrode. get. Here, the first metal layer 27 is entirely sprayed on the insulating layer 29, and the second sprayed metal layer 28 and the third sprayed metal layer 30 are sprayed on the substrate 3. The spraying method for the sprayed metal layer 27°28.30 is plasma spraying.

アーク溶射、フレーム溶射などがある。There are arc spraying, flame spraying, etc.

上記のようにして、放熱基板−43f形成した後、この
放熱基板土ユの第1の溶射金属層27上に第1.第3.
第5のダイオード4a、5a。
After forming the heat dissipation board 43f as described above, a first sprayed metal layer 27 is formed on the heat dissipation board 43f. Third.
Fifth diode 4a, 5a.

6aのカソード側と棒状電極25′の一部とをそれぞれ
ろう付は固定する。同様に第2の溶射金属層28上に第
2.第4.第6のダイオード4b。
The cathode side of the electrode 6a and a part of the rod-shaped electrode 25' are fixed by brazing. Similarly, a second sprayed metal layer 28 is formed on the second sprayed metal layer 28. 4th. Sixth diode 4b.

5b 、6bそれぞれのアノード側をろう付は固定する
。捷た、前記第3の溶射絶縁層30上にはコンデンサ用
グランド端子26をろう付は固定する。また隣り合った
第1のダイオード4aのアノードと第2のダイオード4
bのカソードとをL字型をなした第1人力電極22bの
水平部分にろう付は固定する。同様に、第3のダイオー
ド5aのアノードと第4のダイオード5bのカソードと
をL字型の第2人力電極23bで接続し、第5のダイオ
ード6aのアノードと第6のダイオード6bのカソード
とを第3人力電極24b7il−用いて接続して、三相
交流用の整流回路を形成する。なお、第3人力電極24
bの突出部分ST’はステータ用端子電極である。
The anode sides of 5b and 6b are fixed by brazing. A capacitor ground terminal 26 is fixed by brazing onto the twisted third thermally sprayed insulating layer 30. In addition, the anode of the adjacent first diode 4a and the second diode 4
The cathode b is fixed to the horizontal portion of the L-shaped first human-powered electrode 22b by brazing. Similarly, the anode of the third diode 5a and the cathode of the fourth diode 5b are connected by the L-shaped second manual electrode 23b, and the anode of the fifth diode 6a and the cathode of the sixth diode 6b are connected. The third human power electrode 24b7il is connected to form a three-phase alternating current rectifier circuit. In addition, the third human power electrode 24
The protruding portion ST' of b is a stator terminal electrode.

続いて、887図に示すように棒状電極25、第1乃至
第3人力電極22b 、23b 、24b。
Next, as shown in Figure 887, the rod-shaped electrode 25 and the first to third human-powered electrodes 22b, 23b, 24b.

ステータ端子用電極ST’、コンデンサ用グランド端子
26′ヲ機械的な外力から保護するためにアルミニウム
あるいは合成樹脂からなる封止用カバー38を放熱基板
土ユに樹脂部材で接着或いは加熱圧着によって固着する
。この際に、4・セ状電極25′、入力電極22b 、
23b 、24b。
In order to protect the stator terminal electrode ST' and the capacitor ground terminal 26' from mechanical external force, a sealing cover 38 made of aluminum or synthetic resin is fixed to the heat dissipation board with a resin material or by heat pressure bonding. . At this time, four circular electrodes 25', input electrodes 22b,
23b, 24b.

ステータ端子用電極ST’%”よびコアテアVRVl”
ランド端子26それぞれの垂直部分の一部はカバー38
から出た状態になる。さらにこのカッ々−38には内部
の空気を抜き乾ツヤ雰囲気を封入する目的で通気孔が設
けられ、この通気孔には、後述するAイブ状部品、96
が取り着けられる。
Stator terminal electrode ST'%" and core tear VRVl"
A portion of the vertical portion of each land terminal 26 is covered with a cover 38.
It will be in a state where it has come out of. Furthermore, a ventilation hole is provided in this cutter 38 for the purpose of removing the air inside and enclosing a dry gloss atmosphere.
can be installed.

続いて、第8図および第8図のa −a’線に沿った断
面図の第9図に示すように力・−?−38上にプラスチ
ックモールド部品39を積載し、接着剤44で固定する
。そしてこのプラスチ、yクモールド部品39に取り着
けられた第1平板電極40および第2平板電極41それ
ぞれに棒状電極25′およびステータ用端子電極ST’
をろう付けする。また、パイプ状部品36途前−ピカ/
々−38の通気孔に7ヤイブ状部品36をさし込み固定
し、上記プラスチックモールド部品39の上面の入力電
極22b 、2Jb 、24b、コンデンサ用グランド
端子26′、ツクイブ状部品36の引き出される部位に
絶縁性樹脂部月42を流し込みイI!II化をせる。
Subsequently, as shown in FIG. 8 and FIG. 9, which is a cross-sectional view taken along line a-a' in FIG. A plastic molded part 39 is placed on -38 and fixed with adhesive 44. Then, a rod-shaped electrode 25' and a stator terminal electrode ST' are attached to the first flat plate electrode 40 and the second flat plate electrode 41, respectively, which are attached to this plastic molded part 39.
to braze. In addition, pipe-shaped parts 36 on the way - Pika /
Insert and fix the 7-braided part 36 into the ventilation holes of the plastic molded part 39, the input electrodes 22b, 2Jb, 24b, the capacitor ground terminal 26', and the part from which the twig-shaped part 36 is drawn out. Pour the insulating resin part 42 into it! Make it II.

4)1いて、放熱基板−L」−は熱伝導性が良好である
反面溶射絶縁層29が多孔質で耐湿性に劣るため、・ぐ
イブ状部品36の上部より放熱基板旦とカバー38とで
囲まれた中空部分の空気を抜き出し乾燥窒素あるいは乾
燥空気を導入した後上記、Fイゾ状部品36の開口端を
閉塞する。
4) Although the heat dissipation board L'' has good thermal conductivity, the thermally sprayed insulating layer 29 is porous and has poor moisture resistance. After extracting the air from the hollow portion surrounded by and introducing dry nitrogen or dry air, the open end of the F-shaped part 36 is closed.

以上のよう圧して製造した整流装置では、プラスチ、ク
モールド部品39から引き出された入力電極22b 、
23b 、24bそれぞれが三相交流の入力S’:t4
子となり、放熱基板旦の裏囲の基板3ノが臂流出力の負
極仙1出力端となり、第1平板屯極40が整流出力の正
極側出力端となる。なお肌8図では第1図のコンデンサ
37に相当する平滑用コンデンサは図示していない。
In the rectifier manufactured by pressurizing as described above, the input electrode 22b drawn out from the plasti-Kumold part 39,
23b and 24b are each three-phase AC input S': t4
The substrate 3 on the back side of the heat dissipation board becomes the negative output end of the arm flow output, and the first flat plate end pole 40 becomes the positive output end of the rectified flow output. In Figure 8, a smoothing capacitor corresponding to the capacitor 37 in Figure 1 is not shown.

第10図ふ・よび第11図は上記の整流装置の発電機へ
の取着状態ヲ示す断面図および平面図の一部である。図
において、本発明による桔流装Jンfけ整流装置の裏面
の放熱基板43が負極すなわちグラン’t−?部位に設
定さね正極か露出していない/こめ、従来のように絶h
t体を介してケース12に浮かせて取り付ける必要かな
く、ケース12に密ノ、へ1古1Tされる。寸だ、入力
?fj、極22b。
FIGS. 10 and 11 are a sectional view and a partial plan view showing how the rectifying device is attached to the generator. In the figure, the heat dissipation board 43 on the back side of the flow rectifier according to the present invention is the negative electrode, that is, the ground't-? If the positive electrode is not set on the part, it is not exposed/exposed, as in the conventional case.
There is no need to float it on the case 12 via a T body, and it can be attached to the case 12 closely. Dimensions, input? fj, pole 22b.

23b 、24bの垂1b一部分がコイルノ、2I3そ
れぞれの−V’itA fllllと接続され、ゾラス
チ、ツクモールド郡品39の第1平板軍4(’Jj41
’)は図示しなV)がバッテリーの正極側端子しζ接続
される。
A part of the vertical 1b of 23b and 24b is connected to the -V'itA fllll of Koilno and 2I3, respectively, and the 1st plate army 4 ('Jj41
') is connected to the positive terminal of the battery (V), not shown.

〔発明の効果〕〔Effect of the invention〕

このように本発明VCよる装置1イでは、発′IR磯の
ケース12にアルミニウムなどからなる放熱基4反エユ
の裏面を密着固定できる41τ造となっているため、フ
ァン9の回転数が少ない場合でも膜流装置aU、この装
!疫からの熱が発f’li、機のケース12に直接熱伝
達され、さらにファン9の(1]しII+、により発生
する風でケース12が冷却されるため、効率的に冷却さ
れる。本実施例によれtie。
As described above, in the device 1B according to the VC of the present invention, the number of rotations of the fan 9 is low because the back surface of the heat dissipating base 4 made of aluminum or the like can be tightly fixed to the case 12 of the IR rock. Even if the membrane flow device aU, this equipment! The heat from the air is directly transferred to the case 12 of the machine, and the case 12 is further cooled by the wind generated by the fans 9 (1) and (II+), so that the case 12 is efficiently cooled. According to this embodiment.

発電機に堆層した状態での熱抵抗が64℃/Wで整流出
力が65Aの半導体装が1.装u′1.を実現でき、捷
たダイオード4a、  a、6aとダイ第一部4b 、
5b 、6bとの間の温度差は5℃以下にできることが
確認された。
A semiconductor device with a thermal resistance of 64°C/W and a rectified output of 65A when stacked in a generator is 1. Attachment u'1. The diodes 4a, a, 6a and the first part of the die 4b can be realized.
It was confirmed that the temperature difference between 5b and 6b could be reduced to 5°C or less.

さらに、発電機に取着した状態での整流装置の放熱特性
が良好なため、整流装置自体を大型化させる必要がなく
、第10図および第11図に示すように発電機のケース
12への取付面積を大幅に縮小することができた。例え
ば従来の装置では発電機への取付面積が50 cm2程
度であったものを24crn2程度に、また重量も13
3g程度のものから44.!ilに小型軽量化できるよ
うになった。これに伴い発電機のケース12の小型軽量
化をも実現できる。
Furthermore, since the rectifier has good heat dissipation characteristics when attached to the generator, there is no need to increase the size of the rectifier itself, and as shown in FIGS. We were able to significantly reduce the installation area. For example, with conventional equipment, the installation area to the generator was about 50 cm2, but it has been reduced to about 24 crn2, and the weight is 13 cm2.
From about 3g to 44. ! It has become possible to make the il smaller and lighter. Accordingly, the generator case 12 can be made smaller and lighter.

また、放熱基板−Lノーの溶射絶縁層29上にダイオー
ド4a、5a、6aを乾燥雰囲気で封止することにより
、溶射絶縁層29の欠点である吸湿による耐電圧劣化を
防止し、信頼性を高めることができた。
In addition, by sealing the diodes 4a, 5a, and 6a on the thermally sprayed insulating layer 29 of the heat dissipation board-L in a dry atmosphere, deterioration of withstand voltage due to moisture absorption, which is a drawback of the thermally sprayed insulating layer 29, is prevented and reliability is improved. I was able to increase it.

なお、上記実施例では自動軍用の整流装置の場合につき
述べたがこの発明は上記実施例に限定されるものではな
い。半導体素子の発熱が問題となるものでは、半導体素
子を気密封止するパッケージの一部として7′0射放熱
基板を用いこの基板、ヒの適宜溶射絶縁層を介して形成
された溶射4φ゛屯ノロ上に半導体素子をマウントし、
パッケージの外部に引き出された入出力幼子を設けて半
導体素子を乾燥雰囲気で気密封止すれば1、?ッケージ
の一部となる熱伝導性の高い放熱基板が放熱体として作
用するため効果的である。
Incidentally, although the above embodiment has been described in the case of an automatic military rectifier, the present invention is not limited to the above embodiment. For devices where heat generation from the semiconductor element is a problem, a 7'0 heat dissipating substrate is used as part of the package that hermetically seals the semiconductor element, and a thermally sprayed 4φ diaphragm is formed on this substrate via an appropriate thermally sprayed insulating layer. Mount the semiconductor device on the glue,
If an input/output device is provided outside the package and the semiconductor element is hermetically sealed in a dry atmosphere, 1? This is effective because the highly thermally conductive heat dissipating substrate that is part of the package acts as a heat dissipator.

また上記実施例では放熱基板を負極側出力端として利用
したが、半導体素子を放熱基板上の溶射絶縁層を介して
配設し、放熱基板’t ’j!i気的に浮かせるように
してもよい。
Further, in the above embodiment, the heat dissipation board was used as the negative output terminal, but the semiconductor element was disposed via the thermally sprayed insulating layer on the heat dissipation board. It may also be made to float.

以上のようにこの発明によれば装置の緒特性を劣化させ
ることなく小型幅部で放熱効果の商い半導体装+1を提
供できる。
As described above, according to the present invention, it is possible to provide a semiconductor device +1 with a small width portion and high heat dissipation effect without deteriorating the device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三和交流用整ZAシ装V1の回路を示すν1、
第2図は自動車用発電機への従来の半導体装置〆の取着
状態を示す断面図、第3図および第4図は従来の整流装
置vの構造を示す分解図、第5図は従来の整流製的、の
断面図、第6図乃至第8図り、この発明の一実施例に係
る半導体装置を組立工程順に示す斜視図、第9図はこの
発明の一実施例に係る半導体装置の断面図、第10図お
よび第11図はこの発明に係る半導体装置の発電機への
取り付は状態f、説明する断面図および一17面図であ
る。 4 a 、 4 b 、 5 a 、  5 b 、 
 6 a  、 6 b ・・−ダイオード、22b 
、23b 、24b・・入カフji極、25′・・・棒
状電極、26′・・コーンデンサ用グランド端子、27
,28..30・・溶射金属層、29・・・溶射絶縁層
、31・・・基板、36・・りぐイブ状部品、38・・
・カバー、39・・・プラスチックモールド部品、40
・・・第1平板電極、41・・・第2平板電極、42・
・・絶縁性樹脂部月、44・・・接着剤。 出願人代理人  弁理士 鈴 江 武 彦第6図 第7図 第8図 第9図 第10図 町丁1 第11図
Figure 1 shows the circuit of Sanwa AC ZA system V1, ν1,
Figure 2 is a sectional view showing how a conventional semiconductor device is attached to an automobile generator, Figures 3 and 4 are exploded views showing the structure of a conventional rectifier v, and Figure 5 is a conventional 6 to 8 are perspective views showing a semiconductor device according to an embodiment of the present invention in the order of assembly steps, and FIG. 9 is a sectional view of a semiconductor device according to an embodiment of the present invention. 10 and 11 are a cross-sectional view and a 117-plane view illustrating a state f in which a semiconductor device according to the present invention is attached to a generator. 4a, 4b, 5a, 5b,
6a, 6b...-diode, 22b
, 23b, 24b... Input cuff ji pole, 25'... Rod-shaped electrode, 26'... Ground terminal for cone capacitor, 27
, 28. .. 30...Thermal sprayed metal layer, 29...Thermal sprayed insulating layer, 31...Substrate, 36...Rig-like part, 38...
・Cover, 39...Plastic molded parts, 40
...first flat electrode, 41...second flat electrode, 42.
...Insulating resin part, 44...Adhesive. Applicant's Representative Patent Attorney Takehiko Suzue Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Town 1 Figure 11

Claims (3)

【特許請求の範囲】[Claims] (1)放熱基板と女る金属基板の一方の表面に溶射絶縁
層が形成されこの溶射絶縁層上に第1の導電層パターン
が形成され上記溶射絶縁層が形成されない部位に第2の
導電層ツクターンが形成された放熱基板と、上記第1の
導電層パターンおよび第2の導電層ノeターンのそれぞ
れの上に取着された半導体素子と、上記半導体素子を乾
燥算囲気で気密封止する封止用カバーと、上記半導体素
子に電気的に接続され上記制止用カバーより外部に引き
出された端子電極とを具備することを特徴とする半導体
装置。
(1) A sprayed insulating layer is formed on one surface of the heat dissipation board and the metal substrate, a first conductive layer pattern is formed on the sprayed insulating layer, and a second conductive layer is formed on the area where the sprayed insulating layer is not formed. The heat dissipation substrate on which the turn is formed, the semiconductor element attached on each of the first conductive layer pattern and the second conductive layer turn, and the semiconductor element are hermetically sealed in a dry atmosphere. A semiconductor device comprising: a sealing cover; and a terminal electrode electrically connected to the semiconductor element and drawn out from the restraining cover.
(2)上記半導体素子が複数のダイオードであり、第1
.第3.第5のダイオードの一方の電極部が上記第1の
導電層ieターンに固定接続され、第2.i4.第6の
ダイオードの他方の電極部が上記第2の導電層パターン
に固定接続されるとともに、入力側の端子電極のうち第
1のものが上記第1のダイオードの他方電極と第2ノタ
イオードの一方電極とに接続され、同様に入力側の第2
の端子電極が上記第3のダイオードの他方電極と第4の
ダイオードの一方電極とに接続され、入力側の第3の端
子電極が第5のタイオードの他方電極と第6のダイオー
ドの一方電極とに接続され、上記放熱基板の裏面が上記
ダイオードからなる回路の他方電極側の出力端子電極を
構成していることを特徴とする特許請求の範囲第1項記
載の半導体装置。
(2) The semiconductor element is a plurality of diodes, and the first
.. Third. One electrode portion of the fifth diode is fixedly connected to the first conductive layer ie turn, and the second. i4. The other electrode portion of the sixth diode is fixedly connected to the second conductive layer pattern, and the first terminal electrode on the input side is connected to one of the other electrode of the first diode and the second diode. Similarly, the second electrode on the input side
A terminal electrode is connected to the other electrode of the third diode and one electrode of the fourth diode, and a third terminal electrode on the input side is connected to the other electrode of the fifth diode and one electrode of the sixth diode. 2. The semiconductor device according to claim 1, wherein the semiconductor device is connected to the heat dissipating substrate, and the back surface of the heat dissipation substrate constitutes an output terminal electrode on the other electrode side of the circuit including the diode.
(3)上記放熱基板は、その他方の表面が外部ケースと
の接触面となっていること全特徴とする特許請求の範囲
第1項または第2項記載の半導体装置。
(3) The semiconductor device according to claim 1 or 2, wherein the other surface of the heat dissipation substrate is a contact surface with an external case.
JP58075038A 1983-04-28 1983-04-28 Semiconductor device Pending JPS59201457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075038A JPS59201457A (en) 1983-04-28 1983-04-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075038A JPS59201457A (en) 1983-04-28 1983-04-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59201457A true JPS59201457A (en) 1984-11-15

Family

ID=13564630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075038A Pending JPS59201457A (en) 1983-04-28 1983-04-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59201457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333643U (en) * 1986-08-21 1988-03-04
JP2002295392A (en) * 2001-03-30 2002-10-09 Tsurumi Mfg Co Ltd Electrolytic corrosion preventive method and device of spindle when underwater rotating machine is operated

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746662A (en) * 1980-09-04 1982-03-17 Toshiba Corp Semiconductor rectifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746662A (en) * 1980-09-04 1982-03-17 Toshiba Corp Semiconductor rectifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333643U (en) * 1986-08-21 1988-03-04
JPH0447972Y2 (en) * 1986-08-21 1992-11-12
JP2002295392A (en) * 2001-03-30 2002-10-09 Tsurumi Mfg Co Ltd Electrolytic corrosion preventive method and device of spindle when underwater rotating machine is operated

Similar Documents

Publication Publication Date Title
US4232238A (en) Rectifier assembly for AC generators for use with vehicles
US4604643A (en) Semiconductor rectifier device
US3979659A (en) Automotive alternator rectifier bridges
JP5971333B2 (en) Power converter
US4538169A (en) Integrated alternator bridge heat sink
US6914357B2 (en) Electric machine with integrated power electronics
US6560167B1 (en) Thermoelectric generation unit and portable electronic device using the unit
WO2016031317A1 (en) Power semiconductor device and power semiconductor device production method
JP5861846B2 (en) Power converter and manufacturing method thereof
CN100385652C (en) Semiconductor device
JPS59201457A (en) Semiconductor device
US3476985A (en) Semiconductor rectifier unit
JPS622587A (en) Hybryd integrated circuit for high power
JP2005513760A (en) Electronic module and assembly method thereof
JP4961398B2 (en) Semiconductor device
TWM593659U (en) Packaging structure for directly exporting thermal energy of electronic components
JPS5943094B2 (en) semiconductor equipment
JPH08204068A (en) Semiconductor device of module structure
JPS6076179A (en) Thermoelectric converter
JP2633762B2 (en) Full-wave rectifier
JPH0434827B2 (en)
WO2019221242A1 (en) Power semiconductor module
JPS62200754A (en) Rectifier of ac generator for vehicle
JPS59224149A (en) Attaching structure of heating electronic element
JPS6159661B2 (en)