JPS59198780A - Amorphous silicon carbide series semiconductor - Google Patents

Amorphous silicon carbide series semiconductor

Info

Publication number
JPS59198780A
JPS59198780A JP58073610A JP7361083A JPS59198780A JP S59198780 A JPS59198780 A JP S59198780A JP 58073610 A JP58073610 A JP 58073610A JP 7361083 A JP7361083 A JP 7361083A JP S59198780 A JPS59198780 A JP S59198780A
Authority
JP
Japan
Prior art keywords
doping
silicon carbide
amorphous silicon
semiconductor
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58073610A
Other languages
Japanese (ja)
Other versions
JPH0614553B2 (en
Inventor
Masaaki Mori
正昭 森
Yukihisa Takeuchi
幸久 竹内
Kenji Maekawa
前川 謙二
Toshiaki Nishizawa
西沢 俊明
Yasuhide Okamoto
岡本 康英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58073610A priority Critical patent/JPH0614553B2/en
Publication of JPS59198780A publication Critical patent/JPS59198780A/en
Publication of JPH0614553B2 publication Critical patent/JPH0614553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System including AIVBIV compounds or alloys, e.g. SiGe, SiC

Abstract

PURPOSE:To reduce the density of localized state generated by mixing carbon atoms to silicon by doping the titled semiconductor of amorphous structure with the atom of a kind or more of Sn, Ge and Pb. CONSTITUTION:The irregularity of amorphousness produced by the strong bond of carbon and silicon is alleviated by doping said semiconductor with the atom of a kind or more of Sn, Ge and Pb, the same four-group as silicon, whose radius of covent bond is larger than that of the carbon atom. Here, the doping amount of the doping atom is needed in the amount optimum to reduce said density. For example, since the density of localized level of a-SiC due to dangling bond is 10<17>-10<19> spins/ev.cc, the doping atoms are sufficient at 10<14>- 10<17>/cm<2>. It is at most 0.1% or less at the ratio of atomic numbers, and preferably 0.01-0.001%.

Description

【発明の詳細な説明】 本発明はアモルファス炭化シリコン(以下[a−3t 
Clと記す。)半導体に関する。a −3iC半導体は
、アモルファスシリコンに比べて光学的ギャップが大き
いために、PIN型太陽電池の光入射端面側のP層に使
用され太陽電池の変換効率の向上に寄与している。とこ
ろが炭素どシリコンの共有結合力は、シリコン−シリコ
ンの共有結合力に比べて大きいために、炭素原子の存在
によって理想的なアモルファス構造であるコンティニュ
アスランダムネットワーク構造の形成が阻害される。こ
のため、a−3i(、半導体のアモルファス構造の不規
則性がアモルファスシリコン半導体に比べて大きくなり
、帯端テイル準位を形成したリダングリングボンドが多
く生成され、ミツドギャップ単位を形成りる。一方、半
導体側わ1を電子ディバイスとして応用する場合には、
一般的に、易動度が大きく、バンドギャップが明確に区
画され、バンドギャップ内に意図しない局在準位あるい
は局在状態を有しないのが望ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to amorphous silicon carbide (hereinafter [a-3t
It is written as Cl. ) related to semiconductors. Since the a-3iC semiconductor has a larger optical gap than amorphous silicon, it is used in the P layer on the light incident end face side of a PIN solar cell and contributes to improving the conversion efficiency of the solar cell. However, since the covalent bonding force between carbon and silicon is greater than that between silicon and silicon, the presence of carbon atoms inhibits the formation of a continuous random network structure, which is an ideal amorphous structure. For this reason, the irregularity of the a-3i (a-3i) semiconductor amorphous structure is greater than that of an amorphous silicon semiconductor, and many redundant bonds forming band-edge tail levels are generated, forming mid-gap units. On the other hand, when applying the semiconductor side 1 as an electronic device,
Generally, it is desirable that the mobility is high, the band gap is clearly defined, and there are no unintended localized levels or states within the band gap.

本発明の目的は、炭素原子をシリコンに混在させること
によって発生する局在状態密度を減少することを目的と
する。
An object of the present invention is to reduce the density of localized states generated by mixing carbon atoms in silicon.

本発明者等は、かかる目的を達成するために研究を重ね
た結果、a−3i(:、に、Sn、GO,Pbのうち1
種以上の元素を微量ドーピングすれば局在状態密度を減
少さぜることができることを発見した。本発明は、かか
る発見の下になされた。
As a result of repeated research to achieve this objective, the present inventors have discovered that one of Sn, GO, and Pb in a-3i(:,
We discovered that the density of localized states can be reduced by doping small amounts of more than one species. The present invention was made based on this discovery.

即ち、本発明はアモルファス構造の炭化シリコン半導体
に、 錫、ゲルマニウム、鉛のうち1種又は2種以上の原子を
ドーピングしたことを特徴とするアモルファス炭化シリ
コン系半導体からなる。
That is, the present invention comprises an amorphous silicon carbide-based semiconductor characterized by doping an amorphous silicon carbide semiconductor with one or more atoms selected from tin, germanium, and lead.

炭素の共有結合半径は、0.77人とシリコンの共有結
合半径1.18人に比べて小さく、炭素シリコン間の共
有結合力は、シリコン−シリコン間の共有結合力に比べ
て大きい。よって、炭素原子の存在のため、原子構造に
、より大きな不規則性をもたらし、理想的なコンティニ
ュアスランダムネットワークf)s rら遠ざかり、こ
のため局在状態密度がト昇りる。本発明者等は、シリコ
ンと同じ4族で、共有結合半径が、炭素原子と比へて大
きい池の元素、錫、ゲルマニウム、鉛の内1種又は2種
以上の原子を炭化シリコン半導イホにドーピングするこ
とにより、炭素とシリコンとの強力な結合によってもた
らされたアモルファスの不規則性を緩和し得ることを発
見した。ここで1−一ビング原子のドーピング量は、局
在状態密度を減少さUるのに最適な量を必要とする。例
えばa −3i Cのタンクリングボンドによる局在i
1(位密度が101q    I9゜ 〜10 5plnS /eV−CGであることから、ビ
ー1午     1’1 ピング原子は、10〜10  /Cm2であるのが良い
。原子数比で多(とも0.1%以下であり、望ましくは
、0.01〜0.001%である。又、前記の炭化シリ
コン半導体は、水素原子又はフッ素等のハロゲン元素に
J:って、タンクリングボンドがターミネートされてい
ることが望ましい。本発明のアモルファス炭化シリコン
系半導体の製造方法は、よく知られたグロー放電CVD
法によって製作づることかできる。即ち、a−SICは
シラン等のシリコンハイドライド< s r7L+−+
27ケ、)とメタンエタン等のハイドロカーボンをプラ
ズマ分解して作成する。又、Snをドーピングづる場合
には、テトラメチルティン(Sn  (CH3) a 
)又は、スタナン<sn H4)ガスを微量混合してプ
ラズマ分解、またはグロー放電分解する。上記ハイドロ
カーボンについては飽和脂肪族ハイドロカーボン(へH
2□2)、不飽和脂肪族ハイドロカーボン(エチレン、
プロピレン)、アヒチレンを使用できる。ドーピングす
る錫原子に関しては5n(CI−13)4の他にSn 
 (C2H5)4.5nins /ev−ccの局在状
態密度を有し、真性アモルファスシリコンの局在状態密
度101”〜10spins /ev・CCに比べて大
きなものであった。しかし、本発明のように錫、ゲルマ
ニウム、鉛等の他の4族元素の1種又は2種以上を適量
ドーピング+4  。
The covalent bond radius of carbon is 0.77 mm, which is smaller than the covalent radius of silicon, 1.18 mm, and the covalent bond force between carbon and silicon is larger than the covalent bond force between silicon and silicon. Therefore, the presence of carbon atoms brings about greater irregularity in the atomic structure, moving away from the ideal continuous random network f)sr, thereby increasing the local state density. The present inventors have incorporated one or more atoms of tin, germanium, and lead, which belong to the same group 4 as silicon and have a larger covalent bond radius than carbon atoms, into silicon carbide semiconductors. They discovered that by doping with carbon, it is possible to alleviate the amorphous disorder caused by the strong bond between carbon and silicon. Here, the doping amount of 1-1 Bing atoms needs to be an optimum amount to reduce the local state density. For example, localization i due to tank ring bond of a −3i C
1 (Since the atomic density is 101q I9° ~ 10 5 plnS /eV-CG, it is preferable that the number of B 1 '1 ping atoms is 10 ~ 10 /Cm2. 1% or less, preferably 0.01 to 0.001%.Also, the silicon carbide semiconductor has a hydrogen atom or a halogen element such as fluorine terminated with a tank ring bond. The method for manufacturing an amorphous silicon carbide semiconductor of the present invention is preferably performed using the well-known glow discharge CVD method.
It can be manufactured according to the law. That is, a-SIC is a silicon hydride such as silane < s r7L+-+
It is created by plasma decomposition of hydrocarbons such as methane and ethane. In addition, when doping Sn, tetramethyltin (Sn (CH3) a
) or stannane<sn H4) A trace amount of gas is mixed and plasma decomposition or glow discharge decomposition is performed. Regarding the above hydrocarbons, saturated aliphatic hydrocarbons (H
2□2), unsaturated aliphatic hydrocarbons (ethylene,
propylene) and ahitylene can be used. Regarding the doping tin atoms, in addition to 5n (CI-13)4, Sn
(C2H5) has a localized state density of 4.5 nins/ev-cc, which is larger than that of intrinsic amorphous silicon, which has a localized state density of 101'' to 10 spins/ev-cc. Doping with an appropriate amount of one or more of other group 4 elements such as tin, germanium, and lead +4.

すれば局在状態密度を10 5pans /evccに
減少させることができた。このため、本発明のアモルフ
ァス炭化シリコン系半導体素子を用いて製作した太陽電
池は高効率のものが得られた。即ち、開放電圧をVoc
、短絡電流を■SCとづれぽ、3mWの蛍光燈下におい
て、Voc= 7001n V、1sc=60μA/c
m2、AM1太陽光下におイT G、Jl、Voc=9
00m V、 I sc= 16m△/C1112テあ
り、変換効率8.08%であった。又、アモルファス薄
膜FETに使用することもでき、これを用い/jF E
 ’1−を試作したところオン、オフ比が10′7以上
のものが得られた。
By doing so, the localized state density could be reduced to 10 5 pans/evcc. Therefore, a highly efficient solar cell was obtained using the amorphous silicon carbide semiconductor element of the present invention. That is, the open circuit voltage is Voc
, the short circuit current is set to ■SC, under a 3mW fluorescent light, Voc = 7001n V, 1sc = 60μA/c
m2, AM1 Under sunlight T G, Jl, Voc=9
00 mV, Isc=16mΔ/C1112te, and the conversion efficiency was 8.08%. It can also be used for an amorphous thin film FET, using this /jF E
When '1- was produced as a prototype, an on/off ratio of 10'7 or more was obtained.

実施例 本実施例は錫元素をドーピングしたa−8IC半導体実
施例である。
Embodiment This embodiment is an example of an a-8 IC semiconductor doped with tin element.

本実施例では基板ガラス上にアモルファス炭化シリコン
系半導体から成る薄膜を形成したものである。用いた材
料は、シランカス(Sit−I4)、メタンガス(CH
4)、テトラメチルティン(Sn  (Cf−I3) 
4 )ガスを用いた。混合カスの比率はSi Ha :
CHa=65:35とし、ドーピング原子として錫(S
n )を選び、テトラメチルディン(Sn  (CH3
)aをモル比で10−2〜1O−3までの範囲で各種ド
ーピングした試料を作成した。又、この混合ガスはアル
ゴン又は水素ガスで10倍に稀釈され、その他の条件は
、流a30〜5 Q SCCm、内圧0.3〜0.5T
orr 、基板温度200〜300℃、RF電力10〜
20ワット(電力密度0.014〜0.028W/cm
2)である。この様な条件のプラズマCVD法によって
薄膜状のアモルファス炭化シリコン系半導体を作成した
In this example, a thin film made of an amorphous silicon carbide semiconductor is formed on a glass substrate. The materials used were silancus (Sit-I4), methane gas (CH
4), Tetramethyltin (Sn (Cf-I3)
4) Gas was used. The ratio of the mixed residue is Si Ha:
CHa=65:35, and tin (S
n ) and tetramethyldine (Sn (CH3
) Samples were prepared in which various types of a were doped at molar ratios ranging from 10-2 to 1O-3. Also, this mixed gas was diluted 10 times with argon or hydrogen gas, and the other conditions were a flow rate of 30 to 5 Q SCCm, and an internal pressure of 0.3 to 0.5 T.
orr, substrate temperature 200~300℃, RF power 10~
20 Watts (power density 0.014-0.028W/cm
2). A thin film-like amorphous silicon carbide semiconductor was produced by plasma CVD under these conditions.

その試料について局在状態密度を測定した結果を第1図
に示す。このグラフから明らかなように真正アモルファ
ス炭化シリコン系半導体は、1019桁の局在状態密度
を有しているが、錫をドーピングするに従って局在状態
密度は減少し、最小値16゜ 1Q  5plnS /ev−ccを記録した後、局在
状態密度は上昇する。このことから錫がドーピングされ
ることにより、共有結合力の大きな炭素原子の効果に基
づく結晶構造の不規則性が錫元素の僅かな混入により緩
和されたものと思われる。このグラフから錫の添加割合
は10−6〜10−5が最も望ましいことが分った。こ
の1「1の1〜−ピンク用に16 ・ 対して局在状態密度は10 5p1ns /ev−cc
ど、ドーピングしないものに比べて約11(J以」−減
少りることができた。
Figure 1 shows the results of measuring the local density of states for the sample. As is clear from this graph, the true amorphous silicon carbide-based semiconductor has a localized state density of 1019 orders of magnitude, but as tin is doped, the localized state density decreases, and the minimum value is 16°1Q 5plnS /ev After recording −cc, the localized state density increases. From this, it seems that by doping with tin, the irregularity of the crystal structure due to the effect of carbon atoms having a large covalent bond force is alleviated by the small amount of tin mixed in. From this graph, it was found that the most desirable tin addition ratio was 10-6 to 10-5. For this 1 "1 of 1 ~ - 16 for pink, the localized state density is 10 5p1ns /ev-cc
It was possible to reduce the amount by about 11 (J or more) compared to that without doping.

第2実施例 第2実施例はアモルファス炭化シリ−」ン系半導体を用
いて薄膜形状に構成した太陽電池に関づるものである。
Second Embodiment The second embodiment relates to a solar cell constructed in the form of a thin film using an amorphous silicon carbide semiconductor.

そのアモルファス太陽電池の4M成断面図を第2図に示
す。厚さ200〜500μmのステンレスSUS基板2
の上にアモルフシ・ス人陽電i′I!!層をN型、I型
、P型と堆積形成した。その上には透明導電膜(1王0
)10が1000人員空蒸着によって形成されている。
A 4M cross-sectional view of the amorphous solar cell is shown in FIG. Stainless steel SUS substrate 2 with a thickness of 200 to 500 μm
On top of Amorphusi Sujin Yoden i'I! ! Layers were deposited as N type, I type, and P type. On top of that is a transparent conductive film (1 king 0
) 10 is formed by 1000 person empty deposition.

アモルファス半導体層のJ「積はプラズマCVD法によ
った。13゜56 M f−(zの高周波放電によりQ
 、1〜1LO1’rの内圧のもとで行なわれた。N型
半導体層4にはアモルファスシリコンに燐をドーピング
してN型に形成したものである。即ち、成分比は5it
−14:BH3=100:0.5〜3で、前実施例と同
様な条件で厚さ300〜500人に作成した。
The J product of the amorphous semiconductor layer was determined by the plasma CVD method.
, under an internal pressure of 1 to 1LO1'r. The N-type semiconductor layer 4 is formed by doping amorphous silicon with phosphorus to form an N-type semiconductor layer. That is, the component ratio is 5it
-14:BH3=100:0.5-3, and a thickness of 300-500 was prepared under the same conditions as in the previous example.

次に、1型半導体層6はシランSizトIsを同じにう
にプラズマCVD法によって5000〜7000人堆積
させて形成した。さらに、P型半導体層8を本発明のア
モルファスシリコンティンカーバイド(a −8t S
n C: H)で2000〜4000人の厚さに構成し
た。この層の形成にはSi   tl  4  :  
CH4:  3n   (CH3)   4 〜0. 
 3 〜0゜97:0.8〜0.03+10−’ 〜1
dl (7)範囲で各種jfI積したものを製作した。
Next, the type 1 semiconductor layer 6 was formed by depositing 5,000 to 7,000 silanes by the same plasma CVD method. Furthermore, the P-type semiconductor layer 8 is made of amorphous silicon tinkerbide (a-8t S
n C: H) to a thickness of 2,000 to 4,000 people. For the formation of this layer, Si tl 4 :
CH4: 3n (CH3) 4 ~0.
3 ~0°97:0.8~0.03+10-' ~1
Various jfI products were manufactured in the dl (7) range.

そして、P型にづるために82Hsのガスを全体の量に
対して0.02〜1%混入してドーピングした。
Then, in order to make it P type, 0.02 to 1% of 82Hs gas was mixed in with respect to the total amount for doping.

これらの条件で作成した結果、5it−14:0M4〜
0.65:0.35でジボランのドープ徂0゜1%、5
n(CH3)aのドープalo−6とした時太陽電池の
素子性能を測定した結果、3mW螢光燈を照射した場合
の開放起電力は700m V。
As a result of creating under these conditions, 5it-14:0M4~
0.65: 0.35 doping of diborane 0.1%, 5
As a result of measuring the element performance of the solar cell when using n(CH3)a doped alo-6, the open electromotive force when irradiated with a 3 mW fluorescent light was 700 mV.

短絡電流G;&60mA/cnuであった、又、FF=
60%、AMlの太陽光の照射にa′3いては解放電圧
が0.9V、短絡電流は16 m A /’cm2テあ
り、変換効率にJ′3いて8.08%という高効率のも
のが得られた。
Short circuit current G; was &60mA/cnu, and FF=
60%, AMl sunlight irradiation with a'3 has an open voltage of 0.9V, a short circuit current of 16 mA/'cm2, and a conversion efficiency of J'3 with a high efficiency of 8.08%. was gotten.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は錫のドーピング量に対するa−3i C:Hの
局在状態密度の測定結果をグラフに表したものである。 第2図は本発明の実施例に係る太陽電池の構成を示した
構成図である。 2・・・ステンレス基板  4・・・N型半導体層6・
・・I型半導体層   8・・・P型半導体層10・・
・透明導電膜層 特許出願人   日本電装株式会礼 代理人  弁理士  大川穴 同   弁理士  藤谷修 同   弁理士  丸山明夫
FIG. 1 is a graph showing the measurement results of the local state density of a-3i C:H with respect to the tin doping amount. FIG. 2 is a block diagram showing the structure of a solar cell according to an embodiment of the present invention. 2... Stainless steel substrate 4... N-type semiconductor layer 6.
...I type semiconductor layer 8...P type semiconductor layer 10...
・Transparent conductive film layer patent applicant Nippondenso Co., Ltd. Rei agent Patent attorney Ana Do Okawa Patent attorney Shudo Fujitani Patent attorney Akio Maruyama

Claims (1)

【特許請求の範囲】 〈1)′アモルファス構造の炭化シリコン半導体に、 錫、ゲルマニウム、鉛のうち1種又は2種以上の原子を
ドーピングしたことを特徴とするアモルファス炭化シリ
コン系半導体。 (2)前記ドーピング原子の量は、原子数比で、多くと
も、0.1%であることを特徴とする特許請求の範囲第
1項記載のアモルファス炭化シリコン系半導体。 (3)前記炭化シリコン半導体は、水素又は、ハロゲン
元素のうち、少なくとも1種以上の元素により、ダング
リングボンドがターミネートされていることを特徴とす
る特許請求の範囲第1項又は第2項記載のアモルファス
炭化シリコン系半導体。
[Scope of Claims] <1)' An amorphous silicon carbide-based semiconductor characterized in that an amorphous silicon carbide semiconductor is doped with one or more atoms of tin, germanium, and lead. (2) The amorphous silicon carbide semiconductor according to claim 1, wherein the amount of the doping atoms is at most 0.1% in terms of atomic ratio. (3) The silicon carbide semiconductor has a dangling bond terminated with at least one element selected from hydrogen and a halogen element. Amorphous silicon carbide semiconductor.
JP58073610A 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof Expired - Lifetime JPH0614553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073610A JPH0614553B2 (en) 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073610A JPH0614553B2 (en) 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS59198780A true JPS59198780A (en) 1984-11-10
JPH0614553B2 JPH0614553B2 (en) 1994-02-23

Family

ID=13523271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073610A Expired - Lifetime JPH0614553B2 (en) 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0614553B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762571A (en) * 1980-10-03 1982-04-15 Nippon Telegr & Teleph Corp <Ntt> Solar battery
JPS5779672A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Photoresponsive amorphous alloy and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779672A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Photoresponsive amorphous alloy and method of producing same
JPS5762571A (en) * 1980-10-03 1982-04-15 Nippon Telegr & Teleph Corp <Ntt> Solar battery

Also Published As

Publication number Publication date
JPH0614553B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
JP2719230B2 (en) Photovoltaic element
JP2008153646A (en) Manufacturing method of semiconductor device
JPS59108370A (en) Photovoltaic device
Dwivedi et al. Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells
Kim et al. Low defect interface study of intrinsic layer for c-Si surface passivation in a-Si: H/c-Si heterojunction solar cells
US20120318339A1 (en) Solar cell employing an enhanced free hole density p-doped material and methods for forming the same
JPH02191322A (en) Method of producing p-type carbon-doped amorphous silicon
JPH04266066A (en) Photoelectromotive force element
JPS59198780A (en) Amorphous silicon carbide series semiconductor
Benigno et al. Effect of intrinsic layer energy gap and thicknesses optimization on the efficiency of pin amorphous silicon solar cell
JPH0122991B2 (en)
JP2846639B2 (en) Amorphous solar cell
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPS62159475A (en) Amorphous silicon solar cell
Ohashi et al. High performance hydrogenated amorphous silicon solar cells made at a high deposition rate by glow discharge of disilane
JP2688219B2 (en) Photoelectric conversion element
JPS59101879A (en) Thin film solar battery
JPH0444366A (en) Amorphous semiconductor solar battery
JPS632385A (en) Multilayer structure p-type silicon film and solar cell
JPS61242085A (en) Amorphous silicon photoelectric conversion element
JPS618979A (en) Manufacture of photovoltaic device
Arya et al. Effect of superlattice doped layers on the performance of a-Si: H pin solar cells
Burte et al. Inversion layer solar cells on chemically vapor‐deposited polycrystalline silicon thin films
Wadibhasme et al. Low temperature deposition of device-quality silicon thin films for flexible PV application
Ding et al. Temperature dependence of the optical gap of diamond-like carbon films investigated by a piezoelectric photothermal spectroscopy