JPH0614553B2 - Amorphous silicon carbide based semiconductor and manufacturing method thereof - Google Patents

Amorphous silicon carbide based semiconductor and manufacturing method thereof

Info

Publication number
JPH0614553B2
JPH0614553B2 JP58073610A JP7361083A JPH0614553B2 JP H0614553 B2 JPH0614553 B2 JP H0614553B2 JP 58073610 A JP58073610 A JP 58073610A JP 7361083 A JP7361083 A JP 7361083A JP H0614553 B2 JPH0614553 B2 JP H0614553B2
Authority
JP
Japan
Prior art keywords
silicon carbide
based semiconductor
amorphous silicon
semiconductor
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58073610A
Other languages
Japanese (ja)
Other versions
JPS59198780A (en
Inventor
正昭 森
幸久 竹内
謙二 前川
俊明 西沢
康英 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58073610A priority Critical patent/JPH0614553B2/en
Publication of JPS59198780A publication Critical patent/JPS59198780A/en
Publication of JPH0614553B2 publication Critical patent/JPH0614553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System including AIVBIV compounds or alloys, e.g. SiGe, SiC

Description

【発明の詳細な説明】 本発明はアモルファス炭化シリコン(以下「a−Si
C」と記す。)半導体に関する。a−SiC半導体は、
アモルファスシリコンに比べて光学的ギヤツプが大きい
ために、PIN型太陽電池の光入射端面側のP層に使用
され太陽電池の変換効率の向上に寄与している。ところ
が炭素とシリコンの共有結合力は、シリコン−シリコン
の共有結合力に比べて大きいために、炭素原子の存在に
よって理想的なアモルファス構造である、コンティニュ
アスランダムネットワーク構造の形成が阻害される。こ
のため、a−SiC半導体のアモルファス構造の不規則
性がアモルファスシリコン半導体に比べて大きくなり、
帯端ティル準位を形成したりダングリングボンドが多く
生成され、ミッドギャップ準位を形成する。一方、半導
体材料を電子ディバイスとして応用する場合には、一般
的に、移動度が大きく、バンドギャップが明確に区画さ
れ、バンドギャップ内に意図しない局在準位あるいは局
在状態を有しないのが望ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to amorphous silicon carbide (hereinafter referred to as “a-Si
"C". ) Regarding semiconductors. a-SiC semiconductor is
Since the optical gap is larger than that of amorphous silicon, it is used for the P layer on the light incident end face side of the PIN type solar cell and contributes to the improvement of the conversion efficiency of the solar cell. However, since the covalent bond between carbon and silicon is larger than the covalent bond between silicon and silicon, the existence of carbon atoms hinders the formation of an ideal amorphous structure, that is, a continuous random network structure. Therefore, the irregularity of the amorphous structure of the a-SiC semiconductor becomes larger than that of the amorphous silicon semiconductor,
The band edge Till level is formed and many dangling bonds are generated, and the midgap level is formed. On the other hand, when a semiconductor material is applied as an electronic device, it is generally preferable that the mobility is large, the band gap is clearly defined, and there is no unintended localized level or localized state in the band gap. desirable.

発明の目的は、炭素原子をシリコンに混在させることに
よって発生する局在状態密度を減少することを目的とす
る。
An object of the invention is to reduce the localized density of states generated by mixing carbon atoms in silicon.

本発明者等は、かかる目的を達成するために研究を重ね
た結果、a−SiCに、Sn、Ge、Pbのうち1種以
上の元素を微量ドーピングすれば局在状態密度を減少さ
せることができることを発見した。本発明は、かかる発
見の下になされた。
The inventors of the present invention have conducted extensive research to achieve such an object, and as a result, if a-SiC is micro-doped with one or more elements of Sn, Ge, and Pb, the localized state density can be reduced. I discovered that I can do it. The present invention was made under such findings.

即ち、本発明の第一発明は、アモルファス構造の炭化シ
リコン半導体と、該炭化シリコン半導体に、該炭化シリ
コン半導体の局在状態密度をその真性状態よりも減少さ
せる所定ドーピング量でドープされた局在状態密度減少
元素とを有し、前記局在状態密度減少元素は、錫,ゲル
マニウム,鉛のうち少なくとも一種の原子からなること
を特徴とするアモルファス炭化シリコン系半導体からな
る。
That is, the first aspect of the present invention is a silicon carbide semiconductor having an amorphous structure, and the silicon carbide semiconductor is doped with a predetermined amount of doping that reduces the density of localized states of the silicon carbide semiconductor from its intrinsic state. And an element for reducing the density of states, wherein the localized element for reducing the density of states is made of an amorphous silicon carbide-based semiconductor characterized by comprising at least one atom of tin, germanium, and lead.

また、本発明の第二発明は、シリコンを含む原料ガス,
炭素を含む原料ガスを分解してアモルファス構造の炭化
シリコン系半導体を成膜するアモルファス炭化シリコン
系半導体の製造方法において、前記分解時に、錫,ゲル
マニウム,鉛のうち少なくとも一種の元素を含む原料ガ
スを、モル比で10-8〜10-4の所定濃度範囲で混合す
ることを特徴としている。
A second invention of the present invention is a raw material gas containing silicon,
In the method for producing an amorphous silicon carbide based semiconductor in which a source gas containing carbon is decomposed to form a silicon carbide based semiconductor having an amorphous structure, in the decomposition, a source gas containing at least one element of tin, germanium and lead is added. , And is mixed in a predetermined concentration range of 10 −8 to 10 −4 in terms of molar ratio.

炭素の共有結合半径は、0.77Åとシリコン共有結合
半径1.18Åに比べて小さく、炭素シリコン間の共有
結合力は、シリコン−シリコン間の共有結合力に比べて
大きい。よって、炭素原子の存在のため、原子構造に、
より大きな不規則性をもたらし、理想的なコンティニュ
アスランダムネットワークから遠ざかり、このため局在
状態密度が上昇する。本発明者等は、シリコンと同じ4
族で、共有結合半径が、炭素原子と比べて大きい他の元
素、錫、ゲルマニウム、鉛の内1種又は2種以上の原子
を炭化シリコン半導体にドーピングすることにより、炭
素とシリコンとの強力な結合によってもたらされたアモ
ルファスの不規則性を緩和し得ることを発見した。ここ
でドーピング原子のドーピング量は、局在状態密度を減
少させるのに最適な量を必要とする。例えばa−SiC
のダングリングボンドによる局在準位密度が1017〜1
19spins/ev・ccであることから、ドーピング原子
は、1014〜1017/cm2であるのが良い。原子数比で
多くとも0.1%以下であり、望ましくは、0.01〜
0.001%である。又、前記の炭化シリコン半導体
は、水素原子又はフッ素等のハロゲン元素によって、ダ
ングリングボンドがターミネートされていることが望ま
しい。本発明のアモルファス炭化シリコン系半導体の製
造方法は、よく知られたグロー放電CVD法によって製
作することができる。即ち、a−SiCはシラン等のシ
リコンハイドライド(SinH2n+2)とメタンエタン等のハ
イドロカーボンをプラズマ分解して作成する。又、Sn
をドーピングする場合には、テトラメチルティン(Sn
(CH)又は、スタナン(SnH)ガスを微量
混合してプラズマ分解、またはグロー放電分解する。上
記ハイドロカーボンについては飽和脂肪族ハイドロカー
ボン(CnH2n+2)、不飽和脂肪族ハイドロカーボン(エ
チレン、プロピレン)、アセチレンを使用できる。ドー
ピングする錫原子に関してSn(CHの他にSn
(C、Sn(CnH2n+1でもよい。
The covalent bond radius of carbon is 0.77Å, which is smaller than the silicon covalent bond radius of 1.18Å, and the covalent bond force between carbon and silicon is larger than the covalent bond force between silicon and silicon. Therefore, due to the existence of carbon atom,
It introduces greater disorder and moves away from the ideal continuous random network, which increases the localized density of states. The present inventors have the same 4
By doping the silicon carbide semiconductor with one or more atoms selected from the group consisting of other elements having a covalent bond radius larger than that of carbon atoms, tin, germanium, and lead, a strong bond between carbon and silicon can be obtained. It has been discovered that the amorphous disorder introduced by the bond can be mitigated. Here, the doping amount of the doping atoms needs an optimum amount for reducing the density of localized states. For example, a-SiC
The localized level density due to the dangling bond of 10 17 -1
Since it is 0 19 spins / ev · cc, the doping atom is preferably 10 14 to 10 17 / cm 2 . The atomic ratio is at most 0.1% or less, preferably 0.01 to
It is 0.001%. Further, it is desirable that the silicon carbide semiconductor has dangling bonds terminated by a hydrogen atom or a halogen element such as fluorine. The amorphous silicon carbide-based semiconductor manufacturing method of the present invention can be manufactured by the well-known glow discharge CVD method. That is, a-SiC is produced by plasma decomposition of silicon hydride (Si n H 2n + 2 ) such as silane and hydrocarbon such as methaneethane. Also, Sn
In the case of doping with
(CH 3 ) 4 ) or stannane (SnH 4 ) gas is mixed in a minute amount and plasma decomposition or glow discharge decomposition is performed. For the hydrocarbon saturated aliphatic hydrocarbon (C n H 2n + 2) , unsaturated aliphatic hydrocarbons (ethylene, propylene), acetylene can be used. In addition to Sn (CH 3 ) 4 for the tin atom to be doped, Sn
(C 2 H 5 ) 4 or Sn (C n H 2n + 1 ) 4 may be used.

従来のa−SiC半導体は、1016〜1017spins/ev
・cc局在状態密度を有し、真性アモルファスシリコンの
局在状態密度1014〜1015spins/ev・ccに比べて大
きなものであった。しかし、本発明のように錫、ゲルマ
ニウム、鉛等の他の4族元素の1種又は2種以上を適量
ドーピングすれば局在状態密度を1016spins/ev・ccに
減少させることができた。このため、本発明のアモルフ
ァス炭化シリコン系半導体素子を用いて製作した太陽電
池は高効率のものが得られた。即ち、開放電圧をVOC
短絡電流をISCとすれば、3mWの螢光燈下において、
OC=700mV、ISC=60μA/cm2、AM1太陽
光下においては、VOC=900mV、ISC=16mA/
cm2であり、変換効率8.08%であった。又、アモル
ファス薄膜FETに使用することもでき、これを用いた
FETを試作したところオン、オフ比が10以上のも
のが得られた。
Conventional a-SiC semiconductor has 10 16 to 10 17 spins / ev
It has a cc localized state density and is larger than the localized state density of intrinsic amorphous silicon of 10 14 to 10 15 spins / ev · cc. However, the local density of states could be reduced to 10 16 spins / ev · cc by doping an appropriate amount of one or more elements of other Group 4 elements such as tin, germanium and lead as in the present invention. . Therefore, a solar cell manufactured using the amorphous silicon carbide based semiconductor device of the present invention has high efficiency. That is, the open circuit voltage is V OC ,
If the short-circuit current is I SC , under a fluorescent lamp of 3 mW,
V OC = 700 mV, I SC = 60 μA / cm 2 , and under AM1 sunlight, V OC = 900 mV, I SC = 16 mA /
It was cm 2 , and the conversion efficiency was 8.08%. Further, it can also be used for an amorphous thin film FET, and when an FET using this was prototyped, an ON / OFF ratio of 10 7 or more was obtained.

実施例 本実施例は錫元素をドーピングしたa−SiC半導体実
施例である。
Example This example is an example of an a-SiC semiconductor doped with tin element.

本実利例では基板ガラス上にアモルファス炭化シリコン
系半導体から成る薄膜を形成したものである。用いた材
料は、シランガス(SiH)、メタンガス(C
)、テトラメチルティン(Sn(CH)ガス
を用いた。混合ガスの比率はSiH:CH=65:
35とし、ドーピング原子として錫(Sn)を選び、テ
トラメチルティン(Sn(CHをモル比で10
−2〜10-8までの範囲で各種ドーピングした試料を作
成した。又、この混合ガスはアルゴン又は水素ガスで1
0倍に希釈され、その他の条件は、流量30〜60scc
m、内圧0.3〜0.5Torr、基板温度200〜300
℃、RF電力10〜20ワット電力密度0.014〜
0.028W/cm2)である。この様な条件のプラズマ
CVD法によって薄膜状のアモルファス炭化シリコン系
半導体を作成した。
In this practical example, a thin film made of an amorphous silicon carbide based semiconductor is formed on a substrate glass. The materials used were silane gas (SiH 4 ), methane gas (C
H 4 ) and tetramethyltin (Sn (CH 3 ) 4 ) gas were used. The mixed gas ratio is SiH 4 : CH 4 = 65:
35, tin (Sn) was selected as a doping atom, and tetramethyltin (Sn (CH 3 ) 4 was used in a molar ratio of 10).
Various doped samples were prepared in the range of −2 to 10 −8 . In addition, this mixed gas is argon or hydrogen gas.
Diluted to 0 times, other conditions are flow rate 30-60scc
m, internal pressure 0.3 to 0.5 Torr, substrate temperature 200 to 300
C, RF power 10 to 20 watts Power density 0.014 to
0.028 W / cm 2 ). A thin film amorphous silicon carbide-based semiconductor was produced by the plasma CVD method under such conditions.

その試料について局在状態密度を測定した結果を第1図
に示す。このグラフから明らかなように真性アモルファ
ス炭化シリコン系半導体は、1017桁の局在状態密度を
有しているが、錫をドーピングするに従って局在状態密
度は減少し、最小値1016spins/ev・ccを記録した
後、局在状態密度は上昇する。このことから錫がドーピ
ングされることにより、共有結合力の大きな炭素原子の
効果に基づく結晶構造の不規則性が錫元素の僅かな混入
により緩和されたものと思われる。このグラフから錫の
添加割合がモル比で10−8〜10−4のとき局在状態
が減少し、さらに10−6〜10−5が最も望ましいこ
とが分った。この値のドーピング量に対して局在状態密
度は1016spins/ev・ccと、ドーピングしないものに
比べて約1桁減少することができた。
The results of measuring the density of localized states of the sample are shown in FIG. As is clear from this graph, the intrinsic amorphous silicon carbide-based semiconductor has a localized state density of 10 17 digits, but the localized state density decreases as tin is doped, and the minimum value of 10 16 spins / ev・ Local density of states increases after recording cc. From this, it is considered that the doping of tin alleviates the irregularity of the crystal structure due to the effect of the carbon atom having a large covalent bond force due to the slight mixing of tin element. From this graph, it was found that the localized state decreased when the addition ratio of tin was 10 −8 to 10 −4 in terms of molar ratio, and 10 −6 to 10 −5 was most desirable. With respect to the doping amount of this value, the localized density of states was 10 16 spins / evcc, which could be reduced by about an order of magnitude as compared with the undoped one.

第2実施例 第2実施例はアモルファス炭化シリコン系半導体を用い
て薄膜形状に構成した太陽電池に関するものである。そ
のアモルファス太陽電池の構成断面図を第2図に示す。
厚さ200〜500μmのステンレスSUS基板2の上
にアモルファス太陽電池層をN型、I型、P型と堆積形
成した。その上には透明道電膜(ITO)10が100
0Å真空蒸着によって形成されている。アモルファス半
導体層の堆積はプラズマCVD法によった。13.56
MHzの高周波放電により0.1〜1torrの内圧のもと
で行なわれた。N型半導体層4にはアモルファスシリコ
ンに燐をドーピングしてN型に形成したものである。即
ち、成分比はSiH:BH=100:0.5〜3
で、前実施例と同様な条件で圧さ300〜500Åに作
成した。
Second Example A second example relates to a solar cell formed in a thin film shape using an amorphous silicon carbide based semiconductor. FIG. 2 shows a sectional view of the structure of the amorphous solar cell.
Amorphous solar cell layers of N type, I type and P type were deposited and formed on a stainless steel SUS substrate 2 having a thickness of 200 to 500 μm. On top of that, 100 transparent ITO film 10 is formed.
It is formed by 0Å vacuum deposition. The amorphous semiconductor layer was deposited by the plasma CVD method. 13.56
It was performed under the internal pressure of 0.1 to 1 torr by the high frequency discharge of MHz. The N-type semiconductor layer 4 is formed by doping N into the amorphous silicon by doping phosphorus. That is, the component ratio is SiH 4 : BH 3 = 100: 0.5 to 3
Then, the pressure was 300 to 500Å under the same conditions as in the previous example.

次に、I型半導体層6はシランSiを同じように
プラズマCVD法によって5000〜7000Å堆積さ
せて形成した。さらに、P型半導体層8を本発明のアモ
ルウァスシリコンティンカーバイド(a−SiSnC:
H)で2000〜4000Åの厚さに構成した。この層
の形成にはモル比でSiH:CH:Sn(CH
=0.3〜0.97:0.8〜0.03:10−2
10−8の範囲で各種堆積したものを製作した。そし
て、P型にするためにBのガスを全体の量に対し
て0.02〜1%混入してドーピングした。
Next, the I-type semiconductor layer 6 was formed by depositing silane Si 2 H 6 in the same manner by a plasma CVD method at 5000 to 7,000 Å. Further, the P-type semiconductor layer 8 is formed on the amorphous silicon tin carbide (a-SiSnC:
H) to a thickness of 2000 to 4000Å. To form this layer, SiH 4 : CH 4 : Sn (CH 3 ) is used in a molar ratio.
4 = 0.3 to 0.97: 0.8 to 0.03: 10 -2 to
Various deposits were produced in the range of 10 −8 . Then, in order to obtain a P-type, 0.02 to 1% of B 2 H 6 gas was mixed and doped with respect to the total amount.

これらの条件で作成した結果、SiH:CH=0.
65:0.35でジボランのドープ量0.1%、Sn
(CHのドープ量10−6とした時太陽電池の素
子性能を測定した結果、3mW螢光燈を照射した場合の
開放起電力は700mV、短絡電流は60mA/cm2
あった、又、FF=60%、AM1の太陽光の照射にお
いては開放電圧が0.9V、短絡電流は16mA/cm2
であり、変換効率において8.08%という高効率のも
のが得られた。
As a result of creating under these conditions, SiH 4 : CH 4 = 0.
65: 0.35, diborane doping amount 0.1%, Sn
When the element performance of the solar cell was measured when the doping amount of (CH 3 ) 4 was 10 −6 , the open electromotive force was 700 mV and the short-circuit current was 60 mA / cm 2 when a 3 mW fluorescent lamp was irradiated. In addition, FF = 60%, open circuit voltage is 0.9V, and short circuit current is 16mA / cm 2 in AM1 sunlight irradiation.
The conversion efficiency was as high as 8.08%.

【図面の簡単な説明】[Brief description of drawings]

第1図は錫のドーピング量に対するa−SiC:Hの局
在状態密度の測定結果をグラフに表したものである。第
2図は本発明の実施例に係る太陽電池の構成を示した構
成図である。 2……ステンレス基板、4……N型半導体層 6……I型半導体層、8……P型半導体層 10……透明導電膜層
FIG. 1 is a graph showing the measurement results of the localized density of states of a-SiC: H with respect to the doping amount of tin. FIG. 2 is a configuration diagram showing the configuration of the solar cell according to the embodiment of the present invention. 2 ... Stainless substrate, 4 ... N-type semiconductor layer 6 ... I-type semiconductor layer, 8 ... P-type semiconductor layer 10 ... Transparent conductive film layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 謙二 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 西沢 俊明 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 岡本 康英 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Maekawa 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihon Denso Co., Ltd. (72) Toshiaki Nishizawa 1-1-1-1 Showa-cho, Kariya city, Aichi Nidec Corporation Co., Ltd. (72) Inventor Yasuhide Okamoto 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】アモルファス構造の炭化シリコン半導体
と、 該炭化シリコン半導体に、該炭化シリコン半導体の局在
状態密度をその真性状態よりも減少させる所定ドーピン
グ量でドープされた局在状態密度減少元素とを有し、 前記局在状態密度減少元素は、錫,ゲルマニウム,鉛の
うち少なくとも一種の原子からなることを特徴とするア
モルファス炭化シリコン系半導体。
1. A silicon carbide semiconductor having an amorphous structure, and a localized state density-reducing element doped in the silicon carbide semiconductor with a predetermined doping amount for reducing the localized state density of the silicon carbide semiconductor from its intrinsic state. The amorphous silicon carbide-based semiconductor, wherein the localized state density reducing element comprises at least one atom of tin, germanium, and lead.
【請求項2】前記所定ドーピング量は、原子数比で多く
とも0.1%であることを特徴とする特許請求の範囲第
1項記載のアモルファス炭化シリコン系半導体。
2. The amorphous silicon carbide based semiconductor according to claim 1, wherein the predetermined doping amount is 0.1% in atomic number ratio at most.
【請求項3】前記所定ドーピング量は、原子数比で0.
01〜0.001%であることを特徴とする特許請求の
範囲第1項記載のアモルファス炭化シリコン系半導体。
3. The predetermined doping amount is 0.
The amorphous silicon carbide based semiconductor according to claim 1, wherein the content is 01 to 0.001%.
【請求項4】前記炭化シリコン半導体は、水素又はハロ
ゲン元素のうち、少なくとも1種以上の元素により、ダ
ングリングボンドがターミネートされていることを特徴
とする特許請求の範囲第1項乃至第3項の何れかに記載
のアモルファス炭化シリコン系半導体。
4. The silicon carbide semiconductor has dangling bonds terminated by at least one element selected from hydrogen and halogen elements. 5. The amorphous silicon carbide based semiconductor according to any one of 1.
【請求項5】シリコンを含む原料ガス,炭素を含む原料
ガスを分解してアモルファス構造の炭化シリコン系半導
体を成膜するアモルファス炭化シリコン系半導体の製造
方法において、 前記分解時に、錫,ゲルマニウム,鉛のうち少なくとも
一種の元素を含む原料ガスを、モル比で10-8〜10-4
の所定濃度範囲で混合することを特徴とするアモルファ
ス炭化シリコン系半導体の製造方法。
5. A method for producing an amorphous silicon carbide-based semiconductor, which comprises decomposing a source gas containing silicon and a source gas containing carbon to form a silicon carbide-based semiconductor having an amorphous structure, wherein tin, germanium, lead are used during the decomposition. Of the raw material gas containing at least one of these elements in a molar ratio of 10 -8 to 10 -4
A method for producing an amorphous silicon carbide based semiconductor, characterized in that the amorphous silicon carbide based semiconductor is mixed in a predetermined concentration range.
【請求項6】前記所定濃度範囲は、モル比で10-6〜1
-5に設定されていることを特徴とする特許請求の範囲
第5項記載のアモルファス炭化シリコン系半導体の製造
方法。
6. The predetermined concentration range is a molar ratio of 10 −6 to 1
The method for producing an amorphous silicon carbide based semiconductor according to claim 5, wherein the method is set to 0 -5 .
JP58073610A 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof Expired - Lifetime JPH0614553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073610A JPH0614553B2 (en) 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073610A JPH0614553B2 (en) 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS59198780A JPS59198780A (en) 1984-11-10
JPH0614553B2 true JPH0614553B2 (en) 1994-02-23

Family

ID=13523271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073610A Expired - Lifetime JPH0614553B2 (en) 1983-04-26 1983-04-26 Amorphous silicon carbide based semiconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0614553B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762571A (en) * 1980-10-03 1982-04-15 Nippon Telegr & Teleph Corp <Ntt> Solar battery
JPS5779672A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Photoresponsive amorphous alloy and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779672A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Photoresponsive amorphous alloy and method of producing same
JPS5762571A (en) * 1980-10-03 1982-04-15 Nippon Telegr & Teleph Corp <Ntt> Solar battery

Also Published As

Publication number Publication date
JPS59198780A (en) 1984-11-10

Similar Documents

Publication Publication Date Title
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
US4385200A (en) Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
US4598164A (en) Solar cell made from amorphous superlattice material
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPH0653151A (en) Amorphous silicon thin film and solar cell applying the same
JPH0544198B2 (en)
JPH0122991B2 (en)
JPH0614553B2 (en) Amorphous silicon carbide based semiconductor and manufacturing method thereof
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JP2688219B2 (en) Photoelectric conversion element
JPS59101879A (en) Thin film solar battery
JPH0364973A (en) Photovoltaic element
Ohashi et al. High performance hydrogenated amorphous silicon solar cells made at a high deposition rate by glow discharge of disilane
JPS632385A (en) Multilayer structure p-type silicon film and solar cell
JPH01161777A (en) Manufacture of amorphous semiconductor solar cell
JPH06260665A (en) Amorphous solar cell
JPS60142575A (en) Photovoltaic element
JPH0376020B2 (en)
KR100368737B1 (en) Amorphous silicon solar cell having fine crystalline silicon layer containing chlorine and method for manufacturing the same
JPH04321277A (en) Formation of amorphous silicon thin film and manufacture of photoelectromotive device using the same
JPS59125618A (en) Coating method of carbon added amorphous silicon
JPH0714072B2 (en) Method for manufacturing photoelectric conversion element