JPS59196716A - Adsorption and desorption of organic gas - Google Patents

Adsorption and desorption of organic gas

Info

Publication number
JPS59196716A
JPS59196716A JP58069628A JP6962883A JPS59196716A JP S59196716 A JPS59196716 A JP S59196716A JP 58069628 A JP58069628 A JP 58069628A JP 6962883 A JP6962883 A JP 6962883A JP S59196716 A JPS59196716 A JP S59196716A
Authority
JP
Japan
Prior art keywords
adsorbent
desorption
gas
tube
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58069628A
Other languages
Japanese (ja)
Inventor
Fumio Kimura
文男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58069628A priority Critical patent/JPS59196716A/en
Publication of JPS59196716A publication Critical patent/JPS59196716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of an adsorbent caused by the decomposition and polycondensation of a residual polar solvent, by using an inorg. adsorbent to which a liquid phase is preliminarily adhered while desorbing the org. gas adsorbed therewith by microwave dielectric heating. CONSTITUTION:The chemical characteristics possessed by an adsorbent is almost removed by using an adsorbent (adhering adsorbent) wherein a liquid phase is preliminarily adhered to 0.5-60% of the pore volume thereof and the temp. control of the adhering adsorbent in a desorbing tube is achieved by controlling microwave power by using the temp. of desorbed gas and/or the temp. of carrer gas in the tube approximate to an desorbing temp. as indice because coefficient of heat conductivity of the carrier gas and the filled adsorbent moved through the desorbing tube. In addition, as the liquid phase of the adhering adsorbent, alkylene glycohl phthalic ester is used with alcohol and polyalkylene glycol with ketone.

Description

【発明の詳細な説明】 本発明は有機性ガスを成層・11児4(1する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stratifying an organic gas.

有6性ガスは活性炭・アルミナ・ゼオライト・シリカゲ
ル等の吸着剤を用いて吸イ↑した後、不活性ガス、水蒸
気により脱着している。有機性ガスは疎水性有機性ガス
と親木性イーJ’ 4G性ガスをさす。
The hexavalent gases are absorbed using adsorbents such as activated carbon, alumina, zeolite, and silica gel, and then desorbed by inert gas and water vapor. Organic gas refers to hydrophobic organic gas and tree-philic EJ' 4G gas.

親水性有機性ガス(以後極性溶剤と呼称す)を水と分離
する回収費がか\る欠点がある。不活性ガスを使用する
と、ガスの然茶紹、が小さく、大谷?+tの加熱ガスを
流してはじめて脱消エネルギーを供給出来ることになる
が、そのだめのエネルギー消費による回収費がかさむ欠
点がある。
The drawback is that the recovery cost of separating the hydrophilic organic gas (hereinafter referred to as polar solvent) from water is high. When using inert gas, the gas temperature is small and Otani? Although it is possible to supply the dequenching energy only by flowing +t of heated gas, there is a drawback that the recovery cost is high due to the waste energy consumption.

有機性ガスを吸着した吸着剤にマイクロ波誘電加熱によ
り、細孔内の有機性ガス(溶(砂になっている)が加熱
され、スチーム等の熱媒体上の接〆なしで、簡単に高濃
度のイア機作ガスを脱着出来ることは公知である。〔バ
ラチル・コロンゲス 研究所Chem & News 
−U S A P 23、June 21 (1982
) )極性溶剤が水蒸気と混合している場合は水蒸気に
対する無機系吸着剤の吸着量が極性溶剤の2〜数倍に達
することがあるから、吸着・脱着を繰返して回収した極
性溶剤例水が混合または溶解し、回収極性溶剤をそのま
\再使用出来なくなる。水蒸気と極性溶剤との混合ガス
を水蒸気のみ選択吸着する無機系吸着剤に通じ、水蒸気
を除いた後、残る極性溶剤は別の無機系吸着剤で除去す
る。両者の吸着剤を別々にマイクロ波誘電加熱して、別
々に脱着することにより、水を含まない極性溶剤を回収
出来るが、水蒸気を除去する施設、処理費が余分にいる
ことになる。
The organic gas (dissolved (in the form of sand)) in the pores is heated by microwave dielectric heating on the adsorbent that has adsorbed the organic gas, and it can easily be heated to high temperatures without contact with a heat medium such as steam. It is known that it is possible to desorb a high concentration of IA mechanical gas. [Barachir Kolonges Research Institute Chem & News
-USAP 23, June 21 (1982
)) When a polar solvent is mixed with water vapor, the amount of water vapor adsorbed by the inorganic adsorbent may reach two to several times that of the polar solvent. Mix or dissolve, making it impossible to reuse the recovered polar solvent as is. The mixed gas of water vapor and polar solvent is passed through an inorganic adsorbent that selectively adsorbs only water vapor, and after removing the water vapor, the remaining polar solvent is removed by another inorganic adsorbent. Although it is possible to recover a polar solvent that does not contain water by separately heating the two adsorbents with microwave dielectrics and desorbing them separately, this requires additional equipment and processing costs to remove water vapor.

マイクロ波誘電加熱による脱着時間は、熱媒体による加
熱を利用して脱着する場合の11Klo分に対し1〜1
0分でよく、脱着筒の規模が域〜hoと小さく、エネル
ギー消費が熱媒体による加熱脱着にくらべ%以ドに低下
する。
The desorption time using microwave dielectric heating is 1 to 1 Klo minutes compared to 11 Klo minutes when desorption is performed using heating with a heat medium.
The desorption time is only 0 minutes, the scale of the desorption tube is as small as 0 to 100000 minutes, and the energy consumption is reduced by more than 10% compared to thermal desorption using a heat medium.

無機系吸着剤はアルミナ、シリカゲル、シリカ−う古・
トリー友 アルミナグル、活性ボーキツ゛イト、合成および天然ゼ
オライト、活性白土をさす。無機系吸着剤は誘電率が小
さく加熱されにくいが、利j孔内に吸着された極性溶剤
は誘電率が犬きく、発熱し易いから、高濃度で脱着出来
る利点かある。
Inorganic adsorbents include alumina, silica gel, silica
Tree friends refer to alumina glue, activated bokite, synthetic and natural zeolites, and activated clay. Inorganic adsorbents have a low dielectric constant and are difficult to heat, but polar solvents adsorbed in the holes have a low dielectric constant and easily generate heat, so they have the advantage of being able to be desorbed at high concentrations.

ti性溶剤は、アルコール、ヒドロオキシ芳香族化合物
、クトン、エーテル、アルデヒド、エステル、ハロゲン
化炭化水素、ハロゲン芳査族、芳香極性溶剤が無機系O
1j、扁剤(以後吸油′剤と呼称す)に吸着されると、
両者の化学親和性が大きく、極性溶剤が吸着剤表面に吸
着保持され、マイクロ波誘電加熱により、訓点以上に昇
温されても脱着されないで残留する。その残+11極性
溶剤′Mは吸着く 量の30%以上に達することがへない。更に残留極性溶
剤をマイクロ波誘電加熱すると部分分解、または重縮合
し、ついには1汲廿性能が%以下に低下する欠点がある
Ti-based solvents include alcohols, hydroxyaromatic compounds, chthons, ethers, aldehydes, esters, halogenated hydrocarbons, halogenated aromatic solvents, and aromatic polar solvents that are inorganic.
1j, when adsorbed by a flattening agent (hereinafter referred to as an oil-absorbing agent),
The chemical affinity between the two is large, and the polar solvent is adsorbed and retained on the surface of the adsorbent, and remains without being desorbed even when the temperature is raised above the predetermined point by microwave dielectric heating. The remaining +11 polar solvent 'M does not reach more than 30% of the adsorbed amount. Furthermore, microwave dielectric heating of the residual polar solvent causes partial decomposition or polycondensation, resulting in a disadvantage that the per-capacity performance eventually decreases to less than 1%.

に収斤下の暗室m!、製奢1り 本発明はマイクロ波誘電加熱により、高濃度の有機性ガ
スを吸着剤上から直接脱着回収出来る特性を残し、残留
有機性ガスを々くするこ吉が出来ない欠点をなくし、多
成分混合ガスから水蒸気脱着筒の1/2〜1イ0の施設
規模で脱着と同時に成分ガス別に分離回収し、残留極性
溶剤の分解・重縮合による吸着剤の劣化を防止する方法
を提供するものである。
In the dark room under the aquarium! , Manufacture 1 The present invention retains the property of being able to directly desorb and recover high-concentration organic gases from the adsorbent using microwave dielectric heating, and eliminates the disadvantage of not being able to concentrate residual organic gases. To provide a method for separating and recovering component gases from a multicomponent mixed gas at the same time as desorption at a facility scale of 1/2 to 10 times the size of a steam desorption cylinder, and preventing deterioration of adsorbent due to decomposition and polycondensation of residual polar solvents. It is something.

予じめ液相を細孔容積の0.5〜60%付着した吸着剤
(以後付着吸着剤と呼称す)を使用することKより、吸
着剤のもつ化学的特性を殆んどなくすることが出来る。
By using an adsorbent to which 0.5 to 60% of the pore volume of the liquid phase is attached in advance (hereinafter referred to as an attached adsorbent), the chemical properties of the adsorbent are almost completely eliminated. I can do it.

液相付着量が60%以上に々れば吸朝景妙:減シ、05
チ以下では吸着剤の化学的特性をなくするとL!:が出
来ない。一般的に1−10俤が望ましい。液相を付着し
ていない吸着剤に極性溶剤を吸着させ、マイクロ波誘電
加熱により極性溶剤の沸点十〇〜5℃で脱着すると、殆
んどの極性溶剤は、吸着量の5〜30.%が残留する。
If the amount of liquid phase adhesion reaches 60% or more, the absorption rate will decrease, 05
If the chemical properties of the adsorbent are eliminated, L! : I can't do it. Generally, 1-10 yen is desirable. When a polar solvent is adsorbed onto an adsorbent to which no liquid phase is attached and desorbed by microwave dielectric heating at the boiling point of the polar solvent of 10 to 5 degrees Celsius, most of the polar solvents will be absorbed at 5 to 30 degrees Celsius of the adsorbed amount. % remains.

この極性溶剤を付着吸着剤に吸着させ、マイクロ波誘電
加熱すると残留する溶剤量を殆んど零に減らせることを
見出した。筐た脱着回数が増すにっれ残留吸着量が増加
する極性溶剤、たとえばシクロヘキサノンにあっては、
液相の付着しない吸着剤に吸着させ、マイクロ波誘電加
熱により脱着する操作を数回繰返すだけで60%の残留
吸着Ji)に達する。
It has been discovered that by adsorbing this polar solvent onto an adsorbent and heating it with microwave dielectric heating, the amount of remaining solvent can be reduced to almost zero. For polar solvents, such as cyclohexanone, where the amount of residual adsorption increases as the number of desorptions increases,
A residual adsorption Ji) of 60% can be reached by simply repeating the operation of adsorbing to an adsorbent to which no liquid phase adheres and desorbing by microwave dielectric heating several times.

一方ポリエチレングリコール(PEG)を液相とする付
着吸着剤で、シクロへキサノンを上記と同様1汲・脱着
を数十回繰返しても残留吸♀”i’ jt’c h零に
抑えることが出来た。移動層式吸着・脱着装置i″IV
(おいて脱着筒は吸着層の下に設け、付@吸着剤は吸着
層から脱着筒に下降移動する。脱眉筒I″i、複数の磁
製の脱着管が縦に配列構成され、付着1汲泌1剤は脱着
管を下降移動する。脱M管の下部は脱肴層、上部は精留
層として利用する。脱酒管の外からマイクロ波照射し、
管内を移動する付着IJジ、着剤に吸着した有機性ガス
を脱着する。脱着管内を移動する付着吸着剤の脱着層に
おける滞留時間が脱眉時間である。
On the other hand, using an adhesive adsorbent with polyethylene glycol (PEG) as the liquid phase, the residual adsorption of cyclohexanone can be suppressed to zero even after one pumping and desorption of cyclohexanone is repeated dozens of times in the same manner as above. Moving bed type adsorption/desorption device i″IV
(The desorption tube is provided under the adsorption layer, and the adsorbent moves downward from the adsorption layer to the desorption tube.) In the desorption tube I''i, a plurality of magnetic desorption tubes are arranged vertically, and the adsorbent moves downward from the adsorption layer to the desorption tube. The 1 pump and 1 drug move down the desorption tube.The lower part of the desorption tube is used as a decoupling layer, and the upper part is used as a rectification layer.Microwave irradiation is applied from outside the desorption tube.
The attached IJ moving inside the pipe desorbs the organic gas adsorbed to the adhesive. The residence time of the adsorbent adsorbent moving in the desorption tube in the desorption layer is the removal time.

脱着にあたり、脱着管内にキャリヤーガスをS■=0.
1〜+000(i)で供給することにより、脱着した有
機性ガスを系外にとり出すことが容易−なった。しかし
、キャリヤーガスを通じなくとも連続的に脱着する場合
は、後からの脱着ガスが先に脱着した脱着ガスをピスト
ン弐に押し出すから、必ずしもキャリヤーガスを必要と
しない。
During desorption, a carrier gas is introduced into the desorption tube at S■=0.
By supplying at 1 to +000 (i), it became easy to take out the desorbed organic gas out of the system. However, in the case of continuous desorption without passing through the carrier gas, the carrier gas is not necessarily required because the subsequent desorption gas pushes out the desorption gas that was desorbed earlier toward the second piston.

脱着管内の付着吸着剤の温度制御は、キャリヤーガスと
脱着管内を充填移動する吸着剤との熱伝達係数が大きい
から、脱着温度に近似する管内の脱着ガス温度および/
筐たけキャリヤーガスの温度を指標としてマイクロ波電
力を制御す乙ことにより達成出来る。
Since the heat transfer coefficient between the carrier gas and the adsorbent filling and moving in the desorption tube is large, temperature control of the adsorbent adhering in the desorption tube is performed by controlling the temperature of the desorption gas in the tube close to the desorption temperature and/or
This can be achieved by controlling the microwave power using the temperature of the carrier gas as an index.

付着吸着剤に吸着された2種以上の沸点の異なる極性溶
剤を脱着し、キャリヤーガスで押し出す場合に、付着吸
着剤の液相が分配剤の働きを示すこと、マイクロ波照射
により極性溶剤が直接昇温されるため、熱媒による管外
加熱にくらべ管径が太くても、管壁と管中軸部との間に
温度差が出来ないこと、捷たl〜数分の短時間で完全脱
着出来るから、脱着筒が小型化出来ることから、管径を
細くして0.5m数mと長くとれる。管が長いと上層部
に精留効果があられれ、理論段数を大きくとることが出
来る。管内を定常速度で移tJrhする伺着吸着剤は5
V=0.5〜1000(蒔)のキャリヤーガス捷たけ脱
着ガスによって脱着ガスが精釉層で展開しく各極性溶剤
の液相への溶解性の差により移動速度に差が生じ)各極
性溶剤を工業的規模で成分側に完全に分離することが出
来るようになった。
When two or more polar solvents with different boiling points adsorbed on an adsorbent are desorbed and extruded with a carrier gas, the liquid phase of the adsorbent acts as a distributing agent, and microwave irradiation directly removes the polar solvent. Because the temperature is raised, there is no temperature difference between the tube wall and the center shaft of the tube, even if the tube diameter is larger than when heating the outside of the tube with a heating medium, and complete desorption is possible in a short time of 1 to several minutes after breaking. Since it is possible to do so, the detachable tube can be made smaller, and the diameter of the tube can be reduced to a length of 0.5 meters. If the tube is long, a rectification effect will be produced in the upper layer, and the number of theoretical plates can be increased. The adsorbent that moves at a steady rate in the pipe is 5
The desorption gas is developed in the fine glaze layer by the carrier gas and the desorption gas of V=0.5 to 1000 (soldering).Differences in movement speed occur due to the difference in solubility of each polar solvent in the liquid phase. It has now become possible to completely separate the components into their components on an industrial scale.

分離展開した極性溶剤は精留層上層より、下層にかけて
、低沸点から高沸点極性溶剤が層別に配置されるから、
各層毎に脱着ガスを排出・凝縮することによシ熱効率よ
く極性溶剤を成分側に分限回収することが出来る。
The separated and developed polar solvent is arranged in layers from the upper layer to the lower layer of the rectification layer, from low boiling point to high boiling point polar solvent.
By discharging and condensing the desorption gas for each layer, it is possible to selectively recover the polar solvent into its components with thermal efficiency.

キャリヤーガスは5V=0.5(4)より少いと糸外に
脱着ガスを完全に排出出来ない。5V=1000(i)
を超えると脱着ガスを冷却する施設が大きくなり経済的
でない。混合ガスを成分側に分離するには5V=5〜2
00(蒔)か一般的に使用される。
If the carrier gas is less than 5V=0.5 (4), the desorption gas cannot be completely discharged to the outside of the yarn. 5V=1000(i)
If the amount exceeds 100%, the facility for cooling the desorbed gas will become large and uneconomical. To separate mixed gas into component side, 5V = 5~2
00 (Maki) is commonly used.

付着吸着剤を使用しなければ、吸着された混合極性溶剤
を精留層内で成分側に層別出来ないから脱着筒からは混
合ガスとして排出されると、!:になる。
If an adsorbent is not used, the adsorbed mixed polar solvent cannot be stratified into components in the rectification layer, so it is discharged from the desorption column as a mixed gas! :become.

混合する疎水性有機性ガスにあっても、付着吸着剤を使
用すれば、各成分の分離性能が、液相を付着しないIl
l剤の3〜IO倍も高いから、石油化学における炭化水
素のガス分離に使用される移動層にくらべて、脱着筒、
精留層の規模は14〜し1゜に低減出来る。
Even when mixing hydrophobic organic gases, using an adhesion adsorbent can improve the separation performance of each component without adhering the liquid phase.
Since it is 3 to IO times higher than the l agent, the desorption cylinder,
The size of the rectifying layer can be reduced to 14 to 1°.

固定床弐回分脱着簡にあっては、精留層における分離性
能が混合ガスの分離を支配する。水蒸気と極性溶剤の混
合ガスであっても、予じめ水蒸気を選択吸着除去する必
要がない。
In fixed-bed two-batch desorption systems, the separation performance in the rectifying layer governs the separation of the mixed gas. Even if the gas is a mixture of water vapor and a polar solvent, there is no need to selectively adsorb and remove water vapor in advance.

例えばFluorolube HG−] 200 (信
相化工KK)1.2%をアルミナゲル4〜8メツシュ粒
上に付着し更にP、E、G・分子量1000を5.4%
付着した吸着剤に、メタノール・水の混合ガスを吸着さ
せた後複数の吸着管が縦に配列構成された脱着筒に移す
For example, 1.2% of Fluorolube HG-] 200 (Shinsou Kako KK) was adhered onto 4 to 8 mesh grains of alumina gel, and 5.4% of P, E, G, molecular weight 1000 was added.
After a mixed gas of methanol and water is adsorbed onto the attached adsorbent, it is transferred to a desorption cylinder having a plurality of adsorption tubes arranged vertically.

脱着は磁製脱着管(径25wX1゜5m)の管外からマ
イクロ波照射し誘電加熱して行う。管下部305が脱着
層、管上部が精留層として働く、キャリヤーガス(Nz
)を5V=lO(i)で管底から通じ、精留層は68〜
70℃に、脱着層は98〜+03°Cに維持した。
Desorption is performed by irradiating microwaves from the outside of a magnetic desorption tube (diameter 25w x 1°5m) and dielectrically heating it. A carrier gas (Nz
) is passed from the bottom of the tube at 5V=lO(i), and the rectification layer is 68~
At 70°C, the desorption layer was maintained at 98-+03°C.

キャリヤーガスを通じはじめて3〜5分でメタノールが
、その3分後に水が脱着され、分別回収力;出来る。
Methanol is desorbed within 3 to 5 minutes after passing the carrier gas, and water is desorbed after 3 minutes, resulting in fractional recovery.

付着吸着剤の液相は次の特性をもったものをさす。The liquid phase of the adsorbent has the following characteristics.

■多成分有機性ガスのうち最高のd(1点を示す成分ガ
スより沸点が高いこと、@吸着剤のもつ化学的特性を抑
えること、の多成分ガスの分離にあたってはMe Re
ynolds Con5tant (J、Chroma
togr、 SCi 8685(1977)’:lの高
い(極性が強い)こと付着吸着剤の極性溶剤に対する液
相について1例をあげる。
■Me Re
ynolds Con5tant (J, Chroma
togr, SCi 8685 (1977)': One example will be given regarding the liquid phase of an adhering adsorbent with a high l value (strong polarity) for a polar solvent.

アルコールに対1.て、アルキレングリコールフタル酸
エステル、アルキルフクル酸エステル、ポリアルキレン
クリコール、アルキル(Cs以上)アルコールエステル
、アルキル(08以上)アミン、アルキレンジアミン、
六→キシポリアルキレングリコール。
1 to alcohol. Alkylene glycol phthalate ester, alkyl fucurate ester, polyalkylene glycol, alkyl (Cs or higher) alcohol ester, alkyl (08 or higher) amine, alkylene diamine,
Six → xypolyalkylene glycol.

ポリアルキレングリコール、ポリオキシアルキ1/ン脂
肪酸エステル、 アルデヒドに対して、ポリアルキレングリコール、+十
キシポリアルギレングリコール、アルキレングリコール
脂肪酸エステル、ポリオキシアルキレン脂肪酸エステル
、 アミン・アンドに対して、アルキルアミン、アルキレン
アミン、ポリアルキレングリコール、アルキレンジアミ
ンアルキレングリコール脂肪酸エステル、アルキレング
リコールフタル酸エステル、 有機酸に対して、アルキレングリコールフタル酸エステ
ル(AGPE)、ポリオキシアルキレン脂肪酸エステル
、ポリアルキレングリコール、AGPE+H3PO4、
アルキレンシリコンポリマー エステルに対して、ポリアルキレングリコール、ジアル
キレンクリコール、ジアルキレンクリコール脂肪i1エ
ステル、アルキルフタル酸、AGPE、  アルキレン
グリコオキシケト酸に対して、AGPE+H3PO4、
ポリオキシアルキレン脂肪酸エステル ホスフェート、 ハロゲン化合物に対して、弗素樹脂オイル、シリコンオ
イル、AGPE、ポリオキシアルキンン脂肪酸エステル
含水極性溶剤に対して、弗素樹脂オイル、アクリル樹脂
型エステル、 疎水性有機性ガスに対し、下記液相を使用すれば混合ガ
スの分離効率が向」ニし、残留疎水性有機性ガスが無く
なる。
Polyalkylene glycol, polyoxyalkylene fatty acid ester, aldehyde, polyalkylene glycol, +dexypolyalgylene glycol, alkylene glycol fatty acid ester, polyoxyalkylene fatty acid ester, amine/and, alkyl amine , alkylene amine, polyalkylene glycol, alkylene diamine alkylene glycol fatty acid ester, alkylene glycol phthalate ester, for organic acids, alkylene glycol phthalate ester (AGPE), polyoxyalkylene fatty acid ester, polyalkylene glycol, AGPE+H3PO4,
For alkylene silicone polymer ester, polyalkylene glycol, dialkylene glycol, dialkylene glycol fatty i1 ester, alkylphthalic acid, AGPE, for alkylene glycoxyketo acid, AGPE+H3PO4,
For polyoxyalkylene fatty acid ester phosphate, halogen compounds, fluororesin oil, silicone oil, AGPE, polyoxyalkylene fatty acid ester hydrous polar solvent, fluororesin oil, acrylic resin type ester, hydrophobic organic gas On the other hand, if the following liquid phase is used, the separation efficiency of the mixed gas will be improved and residual hydrophobic organic gas will be eliminated.

炭化水素に対して、シリコンオイル、ポリアルキレンク
’)コール、ジアルキルフタル酸エステル、トリアルキ
ルフクル酸エステル、ジアルキレンクリコール、スタソ
ラン、 芳香族炭化水素に対して、ベンゾキノン、ポリフェニー
ルエーテル 以上の液相と吸着剤の組合わせは極性浴剤の種類により
選定することが必要である。
For hydrocarbons, silicone oil, polyalkylene glycol, dialkyl phthalate ester, trialkyl fucurate ester, dialkylene glycol, statholane, for aromatic hydrocarbons, benzoquinone, polyphenyl ether or more. The combination of liquid phase and adsorbent must be selected depending on the type of polar bath agent.

本発明について詳し〈実施例で説明する。The present invention will be explained in detail with reference to Examples.

実施例−1 無機系吸着剤耐水性シリカゲル(化学組成A12031
2チ、5F0288%、 Na2O0’i6気孔率0.
51見掛比重1.1)アルミナ(化学組成AJ2038
8 %、 5i029襲Na2O3%、気孔率0.7見
掛比重1.0)K液相P E、G(分子量400のをそ
れぞれ3.7%付着したもの液相を付着しないものを使
用しで、シクロヘキサノン酢酸エチルエステルを20℃
平衡吸着後マイクロ波照射(マイクロ波発生するマグネ
トロンは周波数2450±50メガヘルツ出力5 k’
W ) L、誘電加熱によシ脱着させた。マイクロ波照
射時聞は6分とし、脱着温度はシクロへキサノン156
〜158℃とし、酢酸エチルエステル78°Cとした。
Example-1 Inorganic adsorbent Water-resistant silica gel (chemical composition A12031
2chi, 5F0288%, Na2O0'i6 porosity 0.
51 apparent specific gravity 1.1) alumina (chemical composition AJ2038
8%, 5i029, Na2O3%, porosity 0.7 apparent specific gravity 1.0) K liquid phase PE, G (3.7% each of molecular weight 400 attached). , cyclohexanone acetate ethyl ester at 20℃
Microwave irradiation after equilibrium adsorption (the magnetron that generates microwaves has a frequency of 2450 ± 50 MHz and an output of 5 k'
W) L, desorbed by dielectric heating. The microwave irradiation time was 6 minutes, and the desorption temperature was cyclohexanone 156.
~158°C and ethyl acetate 78°C.

吸着、脱脂−回#、1回、6回の吸着率と脱着後の溶剤
残留率を表−1に示した。
Adsorption and degreasing - adsorption rates for #, 1st and 6th times, and solvent residual rate after desorption are shown in Table 1.

以下余白 表−1 液相が付着しない吸着剤の残留率は付着吸着剤のそれに
くらべて大きく、シクロへキサノン、酢酸エチルエステ
ルとも脱着回数か増えれば残留率が増し、6回目の吸着
4!−は、付着V着剤の方が大きくなっている。
Margin table below - 1 The residual rate of the adsorbent to which no liquid phase adheres is higher than that of the adherent adsorbent, and for both cyclohexanone and acetic acid ethyl ester, the residual rate increases as the number of desorptions increases, and the 6th adsorption 4! - is larger for the adhered V adhesive.

実施例−2 無機系吸着剤アルミナ(化学組成Al2O390%5i
0210%No200%気孔率0.71見掛比Wj 0
.9 ) K 4.4%液相ポリプロピレングリコール
(PPG−’1025)’を付着した付着吸着剤に、極
性溶剤、酢酸ブチル、シクロヘキサノン、2ヘキザノー
ル、クロトンアルデヒドをそれぞれ吸着処理し囚、上記
アルミナに同じ極性溶剤をそれぞれ同様処理した(B)
、耐水性′、シリカゲル(化学組成AI!20311%
5i0289%Na2O0%見掛比重1.3気孔率0.
41 ) K 4.8%液相エチレングリコール7タル
酸エステル(EGPE)を付着した付着吸着剤に、極性
溶剤酢酸ブチル、シクロヘキサノン、クロトンアルデヒ
ド、2−ヘキサノールをそれぞれ吸着処理した(C)、
耐水性シリカゲルに上記極性溶剤をそれぞれ同様処理し
た(D)、上記(5)、(B)、(C)、(D)につい
て、マイクロ波誘電加熱により脱着させた。
Example-2 Inorganic adsorbent alumina (chemical composition Al2O390%5i
0210% No200% Porosity 0.71 Apparent ratio Wj 0
.. 9) A polar solvent, butyl acetate, cyclohexanone, 2-hexanol, and crotonaldehyde were each adsorbed on the adsorbent to which K 4.4% liquid phase polypropylene glycol (PPG-'1025)' was attached, and the same as the above alumina was used. Polar solvents were treated in the same way (B)
, water resistance', silica gel (chemical composition AI! 20311%
5i0289% Na2O0% Apparent specific gravity 1.3 Porosity 0.
41) Polar solvents butyl acetate, cyclohexanone, crotonaldehyde, and 2-hexanol were adsorbed on the adsorbent adsorbed with 4.8% K 4.8% liquid phase ethylene glycol heptatarate (EGPE) (C),
For (D), (5), (B), (C), and (D) in which water-resistant silica gel was treated with the above polar solvent in the same manner, it was desorbed by microwave dielectric heating.

誘電加熱時間は6分間とし、この間N2ガスで5V=5
(i)とし、脱着ガス温度は酢酸ブチル127℃シクロ
へキサノン156℃、2−ヘキサノール140℃、クロ
トンアルデヒド105℃に維持した吸着・脱着を6回繰
返しだときの残留率吸着率を表−2に示しだ。
The dielectric heating time was 6 minutes, during which time 5V = 5 was applied with N2 gas.
Table 2 shows the residual adsorption rate when adsorption and desorption are repeated 6 times with the desorption gas temperature maintained at 127°C for butyl acetate, 156°C for cyclohexanone, 140°C for 2-hexanol, and 105°C for crotonaldehyde. It shows.

マグネトロンは周波&2450±50メガヘルツ出力5
罰を使用した。
Magnetron has frequency &2450±50 MHz output 5
used punishment.

表−2 付着吸着剤に対する各極性溶剤の吸着率は、1回目と6
回目とも差がない。一方眼着剤け2ヘキサノールを除い
て吸着率が低下し、残留率が大きい。
Table 2 The adsorption rate of each polar solvent on the adsorbent is the 1st and 6th adsorption rate.
There is no difference the second time. On the other hand, the adsorption rate decreased and the residual rate was large except for eye patch 2 hexanol.

実施例−3 無機系吸着剤シリカ−アルミナゲル(S−A)(化学組
成5iOz51%、Al2O345%Fg2034%気
孔率0.4見掛比重1.0)に液相ジエチレングリコー
ルサクシネート(DEGS、)を4.4%付着し、プロ
ピオン酸エチルを吸着させ、S−Aに液相ポリフェニー
ルエーテル(PPE 6リング)を5.8%付着し、m
−キシレンを吸着させSAに液相シリコンオイル(DC
−200信和化工KK )を38%付着しトリクロール
エタンを吸着させ、S−A K EGPE 4.2 %
+H3PO40,2%付着し、フェノールを吸着させ活
性ボーキサイト(化学組成5i0223%AI!203
60%Fe2O317%気孔率0.42見掛比重1.9
)にPPE3.5%付着し、キシレンを吸着させた。上
記極性溶剤を吸着させた付着吸着剤に6分間マイクロ波
照射し、誘電加熱により脱着させた。脱着管にキャリヤ
ーガス(N2)をSV−+0(−!−)で送気し、管内
のガス温度を各極性溶剤時 の沸点+1〜3°Cに維持した。各極性溶剤の脱猫温度
は表−3に示した。液イ目を付着しない吸着剤S−Aと
活性ボーキサイトについて、同じ極性溶剤で同じ吸・脱
着操作を行い表−3に吸着率、脱着率を示した。
Example-3 Liquid phase diethylene glycol succinate (DEGS) was added to the inorganic adsorbent silica-alumina gel (S-A) (chemical composition: 5iOz 51%, Al2O3 45%Fg2034%, porosity 0.4, apparent specific gravity 1.0). 4.4% was attached, ethyl propionate was adsorbed, 5.8% of liquid phase polyphenyl ether (PPE 6 rings) was attached to S-A, m
-Liquid phase silicone oil (DC) adsorbs xylene to SA
-200 Shinwa Kako KK) was deposited at 38% to adsorb trichloroethane, and S-AKEGPE 4.2%
+H3PO40.2% attached, adsorbs phenol and activates bauxite (chemical composition 5i0223%AI!203
60% Fe2O3 17% Porosity 0.42 Apparent specific gravity 1.9
) was attached to 3.5% PPE to adsorb xylene. The adhered adsorbent adsorbed with the polar solvent was irradiated with microwaves for 6 minutes and desorbed by dielectric heating. A carrier gas (N2) was fed into the desorption tube at SV-+0 (-!-), and the gas temperature inside the tube was maintained at +1 to 3° C. above the boiling point of each polar solvent. The removal temperature of each polar solvent is shown in Table 3. The same adsorption/desorption operations were performed using the same polar solvent for adsorbent S-A, which does not adhere to liquid, and activated bauxite, and the adsorption and desorption rates are shown in Table 3.

マグネトロンは周波12450±50メカヘルツ出力5
KWを使用した。
The magnetron has a frequency of 12450 ± 50 mechahertz output 5
KW was used.

表−3 東脱着温度を示す。Table-3 Indicates the east desorption temperature.

付着吸着剤には、1回目と6回目の吸着率に差が認めら
れない。一方吸着剤はm−キシレンを除いて吸着率が低
下し、残留率が大きい。
There is no difference in the adsorption rate between the first and sixth times for the adhered adsorbent. On the other hand, with the exception of m-xylene, the adsorption rate of adsorbents decreases and the residual rate is large.

実施例−4 吸着剤、住友アルミナDT(化学組成Aj’20310
0チ、気孔率0.57見掛比重1.3 ) S 1IJ
JI K液相ポリオキシエチレンソルビクンエステル(
PO5E)4.8%とH3PO40,25%を付着し、
酢酸(110〜1501%)さ酪酸(30〜351)と
空気との混合ガスを移動層式吸着・脱着装置で処理し酢
酸と酪酸を分離回収した。吸着・脱着装置は吸着層の下
部に脱着筒を設け、脱着筒は複数の磁製の脱着管(25
Mil ×2m)が縦に配列され、各脱着管下部30m
の層が脱着層、その上の層が精留層である。各精留層の
最上層部30cm1i管外からマイクロ波照射して11
6℃に維持した。脱着管下部より160℃に加熱したN
2ガスを5V=5(4)で送風し、脱着層30口の管外
からマイクロ波照射して165℃に脱着層30口を制御
した。脱着時間は8分間とした。
Example-4 Adsorbent, Sumitomo Alumina DT (chemical composition Aj'20310
0chi, porosity 0.57 apparent specific gravity 1.3) S 1IJ
JI K liquid phase polyoxyethylene sorbicne ester (
Attach PO5E) 4.8% and H3PO40.25%,
A mixed gas of acetic acid (110-1501%), butyric acid (30-351%), and air was treated with a moving bed adsorption/desorption device to separate and recover acetic acid and butyric acid. The adsorption/desorption device is equipped with a desorption tube below the adsorption layer, and the desorption tube consists of a plurality of magnetic desorption tubes (25
Mil x 2m) are arranged vertically, and each desorption tube has a 30m bottom section.
The layer above is the desorption layer, and the layer above it is the rectification layer. The top layer of each rectification layer was irradiated with microwaves from outside the 30cm1i tube.
It was maintained at 6°C. N heated to 160℃ from the bottom of the desorption tube
Two gases were blown at 5V=5(4), and microwave irradiation was applied from outside the tube of the 30 ports of the desorption layer to control the temperature of the 30 ports of the desorption layer to 165°C. The desorption time was 8 minutes.

精留施膜上層部から酢酸を、精留層膜下層部から酪酸を
排出する排出口を設け、脱イ′1された付着吸着剤は脱
着筒底部から定常的に収出した。各シl−1..lj口
の脱石ガス組成さ脱着された付A9吸眉パリに残留する
酸を表4に示した。
A discharge port was provided to discharge acetic acid from the upper layer of the rectifying membrane and butyric acid from the lower layer of the rectifying membrane, and the deionized adsorbent was constantly collected from the bottom of the desorption column. Each sil-1. .. Table 4 shows the composition of the de-stone gas at the lj port and the acid remaining in the desorbed A9 suction gas.

マグネトロンは周波数24 s o±50メガヘルツ出
力SKWを使用した。
The magnetron used was a frequency 24 s o ±50 MHz output SKW.

表−4 以上Table-4 that's all

Claims (1)

【特許請求の範囲】 l)吸着剤が有機性ガスを吸脱着するにあたり、予じめ
液相を付着させた無機系吸着剤を使用し、吸着した有機
性ガスをマイクロ波誘電加熱により脱着することを特徴
とする有機性ガスの吸・脱着法 2)無機系吸着剤を付着させた液相量は細孔容積の0.
5〜60%とすることを特徴とする第1項記載の有機性
ガスの吸・脱着法 3)有機性ガスを吸着した付着吸着剤からマイクロ波誘
電加熱により脱着するにあたり、脱着筒内に5V=0.
5〜1000(−)キャリヤーガスを通ずると時 と全特徴とする第】項記載の有機性ガスの吸・脱着法 4)ユ数の混合有機性ガスを吸着した付着吸着剤から脱
着するにあたり、脱着管上に精留層を設は脱着ガスを精
留層で各成分ガスに分離する第1項記載の有機性ガスの
吸・脱着法
[Claims] l) When an adsorbent adsorbs and desorbs an organic gas, an inorganic adsorbent to which a liquid phase has been attached in advance is used, and the adsorbed organic gas is desorbed by microwave dielectric heating. 2) An organic gas adsorption/desorption method characterized by the following: 2) The amount of liquid phase to which the inorganic adsorbent is attached is 0.0% of the pore volume.
3) Organic gas adsorption/desorption method as described in item 1, characterized in that the organic gas is adsorbed by microwave dielectric heating. =0.
5 to 1000 (-) When a carrier gas is passed through the organic gas adsorption/desorption method described in Section 4), when desorbing a mixed organic gas from an adsorbed adsorbent, The organic gas adsorption/desorption method described in item 1, wherein a rectification layer is provided on the desorption tube and the desorption gas is separated into each component gas by the rectification layer.
JP58069628A 1983-04-19 1983-04-19 Adsorption and desorption of organic gas Pending JPS59196716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58069628A JPS59196716A (en) 1983-04-19 1983-04-19 Adsorption and desorption of organic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069628A JPS59196716A (en) 1983-04-19 1983-04-19 Adsorption and desorption of organic gas

Publications (1)

Publication Number Publication Date
JPS59196716A true JPS59196716A (en) 1984-11-08

Family

ID=13408317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069628A Pending JPS59196716A (en) 1983-04-19 1983-04-19 Adsorption and desorption of organic gas

Country Status (1)

Country Link
JP (1) JPS59196716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568845A (en) * 1991-09-13 1993-03-23 Agency Of Ind Science & Technol Method for controlling adsorption and desorption of gas
JP2014012241A (en) * 2012-07-03 2014-01-23 Daifuku Co Ltd Apparatus for treatment of concentration object constituent in gas to be treated, and method for treatment of concentration object constituent in the gas to be treated using the treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568845A (en) * 1991-09-13 1993-03-23 Agency Of Ind Science & Technol Method for controlling adsorption and desorption of gas
JP2014012241A (en) * 2012-07-03 2014-01-23 Daifuku Co Ltd Apparatus for treatment of concentration object constituent in gas to be treated, and method for treatment of concentration object constituent in the gas to be treated using the treatment apparatus

Similar Documents

Publication Publication Date Title
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
CN102179129B (en) Treatment process for absorbed condensate waste gas
CN105413226B (en) Air separator of oxygenerator and technique based on embrane method coupling condensation adsorption
Xu et al. Effect of textural properties on the adsorption and desorption of toluene on the metal-organic frameworks HKUST-1 and MIL-101
CN1379732A (en) Abatement of effluents from chemical vapor deposition processes using organome tallicsource reagents
JP2011152526A (en) Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower
CN103447015A (en) Desorption and regeneration method for organic matter adsorbent
CN101439236A (en) Device for executing recovery processing of organic discharge gas produced in coating procedure
CN105214439A (en) Oil-gas recovery processing device and method
KR20140009270A (en) Method for removing organic solvent, and removal device
JPS59196716A (en) Adsorption and desorption of organic gas
JP2008161743A (en) Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent
JP6733091B2 (en) Dehydration membrane separation system and dehydration membrane separation method
JPS61227821A (en) Removing method for carbonic acid gas
EP1492610B1 (en) Method and system for desorption and recovery of desorbed compounds
JP2014014760A (en) Method and apparatus for concentrating and recovering volatile organic compound
CN108745295B (en) Siloxane adsorption material and application thereof
FI20195941A1 (en) Method and apparatus for recovering carbon dioxide and use of the method
CN105854510B (en) A kind of VOCs processing equipment and method
CN101518706B (en) Adsorption device and adsorbent regeneration method
JP2018030052A (en) Organic solvent recovery system
CN211302563U (en) Oil gas treatment system
JP6582851B2 (en) Organic solvent recovery system
CN1009163B (en) Method of regenerating zeolite
KR100905796B1 (en) The method to recover the waste-polar solvents using continuous adsorption/desorption process