JPS59195851A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59195851A
JPS59195851A JP58069907A JP6990783A JPS59195851A JP S59195851 A JPS59195851 A JP S59195851A JP 58069907 A JP58069907 A JP 58069907A JP 6990783 A JP6990783 A JP 6990783A JP S59195851 A JPS59195851 A JP S59195851A
Authority
JP
Japan
Prior art keywords
semiconductor device
resin
polymer
protective coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58069907A
Other languages
Japanese (ja)
Inventor
Akio Nishikawa
西川 昭夫
Yasuhide Sugawara
菅原 泰英
Tokuyuki Kaneshiro
徳幸 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58069907A priority Critical patent/JPS59195851A/en
Publication of JPS59195851A publication Critical patent/JPS59195851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the semiconductor device having a high humidity resistance by a method wherein a polymer comprising a repeating structural unit expressed by the specified general formulas is spread and is printed to form a protective coating on a surface of the semiconductor element which is sealed by use of a resin composition or ceramic after that. CONSTITUTION:The solution of a polymer comprising a repeating structural unit expressed by the general formulas ( I )-(III) (wherein R<1> and R<2> express the same or the different hydrocarbon radicals of one valency) is spread on surfaces of a semiconductor element 2, a lead wire 1 and so on. Next, a printing treatment is performed by heating with 100 deg.C or over, more preferably with 150- 300 deg.C. By this treatment, the polymer increases the molecular weight and crosslinking occurs to form a protective coating layer. The coating layer should be formed preferably so as to have a thickness of 10mum or less, more particularly of 1mum or less for obtaining good effects. This is attained by adjusting the concentration of the solution properly under 5wt% usually. Subsequently, the object composed of the element 2 and the lead wire 1 comprising a protective coating layer 3 is sealed, e.g. with an epoxy resin composition 6, thereby offering the semiconductor device.

Description

【発明の詳細な説明】 本発明は、高温高湿状態に長時間放置されても優れた動
作安定性を保つ半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device that maintains excellent operational stability even when left in high temperature and high humidity conditions for a long time.

耐湿性は、半導体装置に必須の特性であり、該装置の高
密度化、高信頼度化の進むにつれて、耐湿性についての
要求が益々厳しくなっている。
Moisture resistance is an essential characteristic of semiconductor devices, and as devices become more dense and reliable, requirements for moisture resistance are becoming increasingly strict.

特に、樹脂封止型半導体装置は、セラミックス封止型半
導体装置に比べて、高温高湿状態(例えば65〜85C
かつ相対湿度95%中、もしくは121U;2気圧の過
飽和水蒸気中)での動作信頼性の点で劣っていた。
In particular, resin-sealed semiconductor devices are more susceptible to high-temperature and high-humidity conditions (for example, 65 to 85C) than ceramic-sealed semiconductor devices.
In addition, the operation reliability was poor at a relative humidity of 95% or at 121 U (2 atmospheres of supersaturated steam).

その改善策として、半導体素子表面と封止樹脂との接着
性を高めて、封止装置内への水分の侵入を抑える方法が
提示されている。
As an improvement measure, a method has been proposed in which the adhesiveness between the surface of the semiconductor element and the sealing resin is increased to suppress the intrusion of moisture into the sealing device.

しかし、それら従来の対策では、半導体装置の高密度化
および高信頼度化に充分対応することができず、さらに
効果的な方法を開発する必要が感じられた。
However, these conventional measures have not been able to adequately cope with the increasing density and reliability of semiconductor devices, and it has been felt that there is a need to develop a more effective method.

本発明は、そのために検討を重ねた成果でちって、耐湿
性に優れた半導体装置、特に樹脂封止型半導体装置を提
供することを目的にしている。
The present invention is the result of repeated studies for this purpose, and an object of the present invention is to provide a semiconductor device, particularly a resin-sealed semiconductor device, with excellent moisture resistance.

その特徴は、少なくとも半導体素子の表面に保護被覆を
施したのち、それらを樹脂組成物またはセラミックス等
を用いて封止する半導体装置の製造方法において、保護
被覆として一般式(式中、1(1およびR2は同一もし
くは異なる1価の炭化水素基を表わす)で示されるくり
返し構造単位を有する重合体を塗布し焼付けることであ
る。
The feature is that in a method of manufacturing a semiconductor device in which a protective coating is applied to at least the surface of a semiconductor element and then sealed using a resin composition, ceramics, etc., the protective coating is formed using the general formula (1 (1) and R2 represent the same or different monovalent hydrocarbon groups) is coated and baked.

本発明において、保護被覆として使用される重合体には
、例えばトリス(トリメトキシシリルオキシ)アルミニ
ウムとトリス(トリメチルシリル)ホスフェートとの重
縮合反応によって得られる重合体(式中Meはメチル基
を表わす)、n (Mess 1o)3At+n (M
e3SiO)3PO−> MesSjO4AL−0−P
−O’)−8jMes11   1 ’O8IMe3 08iMe:s’ nあるいはトリス
(トリエチルシリルオキシ)アルミニウムとトリエチル
シリルオキシホスフィン酸との重縮合反応によって得ら
れる重合体(式中、Etはエチル基を表わす)、 (n+t )(Et3SiO)aAt+n Ets S
iOP(OXOH)2あるいはまた、トリス(プリキシ
)アルミニウムとメチルブトキシホスフィン酸塩化物と
の反応(式中、Buはブチル基を表わす)、 に従い合成されるジブトキシ(メチルブトキシホスフィ
ノキシ)アルミニウムの逐次加水分解、重あるいは前記
と同様にして合成されるジイソグロボキシ(メチルクレ
ジルオキシホスフィノキシ)アルミニウムの重縮合体、
(式中、Prはi−グロビル基を表わす) Me n(PrO)2At OP  OC6H4Me−’1 などがちる。
In the present invention, the polymer used as the protective coating includes, for example, a polymer obtained by a polycondensation reaction between tris(trimethoxysilyloxy)aluminum and tris(trimethylsilyl)phosphate (wherein Me represents a methyl group). ,n (Mess 1o)3At+n (M
e3SiO)3PO->MesSjO4AL-0-P
-O')-8jMes11 1 'O8IMe3 08iMe:s' n or a polymer obtained by a polycondensation reaction of tris(triethylsilyloxy)aluminum and triethylsilyloxyphosphinic acid (in the formula, Et represents an ethyl group), (n+t)(Et3SiO)aAt+n Ets S
iOP(OXOH)2 or alternatively, the reaction of tris(proxy)aluminum with methylbutoxyphosphine acid chloride (wherein Bu represents a butyl group), the sequential reaction of dibutoxy(methylbutoxyphosphinoxy)aluminum synthesized according to A polycondensate of diisogloboxy(methylcresyloxyphosphinoxy)aluminum synthesized by hydrolysis, polyhydrolysis, or in the same manner as above;
(In the formula, Pr represents an i-globyl group) Men(PrO)2At OP OC6H4Me-'1 and the like.

これらの重合体は、それぞれの反応成分混合物をおよそ
120〜230Cにおいて重縮合させることによって、
有機溶媒に可溶性の状態で得られる。該重合体は溶液と
して半導体素子等の表面に適用されることが望ましく、
溶媒としては例えばベンゼン、トルエン等の芳香族炭化
水素、エタノール、2−グロパノールなどのアルコール
類のほかケト/類、塩化炭化水素、あるいN−メチルビ
ロリド/等の極性溶剤が挙げられる。
These polymers are prepared by polycondensing the respective reaction component mixtures at approximately 120-230C.
Obtained in a state soluble in organic solvents. The polymer is preferably applied as a solution to the surface of a semiconductor device, etc.
Examples of the solvent include aromatic hydrocarbons such as benzene and toluene, alcohols such as ethanol and 2-glopanol, and polar solvents such as keto/s, chlorinated hydrocarbons, and N-methyl birolide.

それら重合体の溶液は、半導体素子やリード線等の表面
に塗布される。(図1−3)塗布方法としては、該溶液
中への素子およびリード線の浸漬、素子およびリード線
上への該溶液の滴下、あるいはスプレー、スピンナ塗布
などの方法がある。
Solutions of these polymers are applied to the surfaces of semiconductor elements, lead wires, and the like. (FIGS. 1-3) As a coating method, there are methods such as dipping the element and lead wires in the solution, dropping the solution onto the element and lead wires, spraying, and spinner coating.

上記のような方法によって重合体溶液を塗布された半導
体素子やリード線は、次に、少なくとも1000以上、
特に好ましくは150〜300tTで加熱焼付は処理さ
れる。この処理によって、重合体はよシ高分子量化、は
しがけされて保護被覆層を形成する。被覆層は、良好な
効果を発揮するためには厚さ10μm以下、特に1μm
以下に形成されることが好ましく、それは、溶液の濃度
を通常5重量%以下で、適宜に調整することによって、
達成される。
The semiconductor elements and lead wires coated with the polymer solution by the method described above are then coated with at least 1000 or more
Particularly preferably, heat baking is performed at 150 to 300 tT. This treatment increases the molecular weight of the polymer and allows it to be brushed to form a protective coating layer. The coating layer should have a thickness of 10 μm or less, especially 1 μm in order to exhibit a good effect.
It is preferable to form the following by adjusting the concentration of the solution appropriately, usually below 5% by weight.
achieved.

次いで、第1図に示すように、例えば下記エポキシ樹脂
組成物6で、前記保護被覆層3を有する素子2およびリ
ード線りからなるものを封止することにより、本発明の
半導体装置を得る。
Next, as shown in FIG. 1, the semiconductor device of the present invention is obtained by sealing the element 2 having the protective coating layer 3 and the lead wires with, for example, the following epoxy resin composition 6.

封止用エポキシ樹脂酸物 ノボラック型エポキシ樹脂   100重量部フェノー
ル〜ホルムア〃デヒド樹脂  55重量部イミダゾール
系触媒       3重量部溶融石英ガラス粉   
    480重量部エボ岑ジシラン        
 2重量部へキストワックスモ       2i、を
部カーボンブラック        1重量部上記配合
組成物を、70〜80Cに加勢した2本ロールにて10
分間、混練した後、粗粉砕して封止用樹脂組成物を作成
した。
Epoxy resin for sealing Acid novolac type epoxy resin 100 parts by weight Phenol-formadehyde resin 55 parts by weight Imidazole catalyst 3 parts by weight Fused silica glass powder
480 parts by weight Evosha disilane
2 parts by weight to 2 parts by weight to 2 parts by weight to 1 part by weight to carbon black.
After kneading for a minute, the mixture was roughly pulverized to prepare a sealing resin composition.

本発明において、該被覆を施された半導体素子を封止す
る方法としては、樹脂封止の他、キャン、半田融着セラ
ミック、ガラス融着セラミックなどを用いた封止が採用
出来る。
In the present invention, as a method for sealing the coated semiconductor element, in addition to resin sealing, sealing using can, solder-fused ceramic, glass-fused ceramic, etc. can be adopted.

上記の封止方法の中でも特に樹脂封止された半導体装置
に於いて、本発明の効果が著るしい、封止用樹脂組成物
としては、熱硬化性樹脂、例えばエポキシ樹脂、フェノ
ール樹脂、メラミン樹脂、尿素樹脂、ジアリルフタレー
ト樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、付加
型ポリイミド樹脂、シリコーン樹脂、ポリバラビニルフ
ェノール樹脂などを用いた組成物があり、また熱可塑性
樹脂、例えばポリエチレン、ポリスチレン、ポリプタジ
エ/、パーフルオロエチレン、ポリアミド、ポリエーテ
ル、ポリエステル、ポリアミドエーテル、ポリアミドエ
ステル、ポリイミドエーテル、ポリアミドエーテルなど
がある。
Among the above-mentioned sealing methods, examples of sealing resin compositions that are particularly effective in the present invention for resin-encapsulated semiconductor devices include thermosetting resins such as epoxy resins, phenol resins, and melamine resins. There are compositions using resins, urea resins, diallyl phthalate resins, unsaturated polyester resins, urethane resins, addition type polyimide resins, silicone resins, polyvarabinylphenol resins, etc., and thermoplastic resins such as polyethylene, polystyrene, polyptadiene resins, etc. /, perfluoroethylene, polyamide, polyether, polyester, polyamide ether, polyamide ester, polyimide ether, polyamide ether, etc.

上記の中でも、エポキシ樹脂組成物は特に好ましい。Among the above, epoxy resin compositions are particularly preferred.

エポキシ樹脂としては、例えばビスフェノールAのジグ
リシジルエーテル、ブダジエンジエボキサイド、3,4
−エポキシシクロヘキシルメチル−(3,4−エポキシ
)シクロヘキサンカルボキシレート、ビニルシクロヘキ
サンジオキサイド、4.4′−ジ(1,2−エポキシエ
チル)ジフェニルエーテル、4..4’−(1,2−エ
ポキシエチル)ビフェニル、2.2−ビス(3,4−エ
ポキシシクロヘキシル)プ′ロパン、レソtvシンのグ
リシジルエーテル、フロログルシンのジグリシジルエー
テル、メチルフロログルシ/のジグリシジルエーテル、
ビス−(2,3’−エポキシシクロベンチル)エーテル
、2−(3,4−エポキシ)シクロヘキサ7−5.5−
スピロ(3,4−エポキシ)−シクロヘキサ7− m−
ジオキサ/、ビス−(3,4−エポキシ−6−メチルシ
クロヘキシル)アジペート、N、N’ −m−フェニレ
ンビス(4,5−エポキシ−1,2−シクロヘキサ/)
ジカルボキシイミドなどの官能のエポキシ化合物、バラ
アミノフラノールのトリグリシジルエーテル、ポリアリ
ルグリシジルエーテル、1,3.5−トリ(1,2−エ
ポキシエチル)ベンゼン、2121’4.4′−テトラ
グリシドキンベンゾフェノン、フェノールホルムルデヒ
ドノボラックのポリグリシジエーテル、グリセリンのト
リグリシジルニー7−ル、) I)メチロールプロパン
のトリグリシジルエーテルなど3官能以上のエポキシ化
合物が用いられる。上記化合物は、用途、目的に応じて
1種以上併用して使用することも出来る。これらのエポ
キシ樹脂には硬化剤が併用される。それらは、垣内弘著
;エポキシ樹脂(昭和45年9月発行)109〜149
ページ、Lee 、Nevi l le著;Epoxy
 l(、e3in3 (MCQr3W −Ht + +
 Book c兜anyInc、New york、 
1957年発行)63〜141ページ、p、 E、 B
runis著 ;Epoxy R,esins Tec
hnology(Interscience pubf
ishers 、New York 。
Examples of the epoxy resin include diglycidyl ether of bisphenol A, butadiene dieboxide, 3,4
-Epoxycyclohexylmethyl-(3,4-epoxy)cyclohexanecarboxylate, vinylcyclohexane dioxide, 4.4'-di(1,2-epoxyethyl)diphenyl ether, 4. .. 4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane, glycidyl ether of lesotvsin, diglycidyl ether of phloroglucin, dimethyl phloroglucin/ glycidyl ether,
Bis-(2,3'-epoxycyclobentyl)ether, 2-(3,4-epoxy)cyclohexa7-5.5-
Spiro(3,4-epoxy)-cyclohexa7-m-
Dioxa/, bis-(3,4-epoxy-6-methylcyclohexyl)adipate, N,N'-m-phenylenebis(4,5-epoxy-1,2-cyclohexyl)
Functional epoxy compounds such as dicarboximide, triglycidyl ether of paraaminofuranol, polyallyl glycidyl ether, 1,3.5-tri(1,2-epoxyethyl)benzene, 2121'4,4'-tetraglycidyl quine Tri- or higher functional epoxy compounds such as benzophenone, polyglycidyl ether of phenolformaldehyde novolac, triglycidyl ether of glycerin, and triglycidyl ether of methylolpropane are used. One or more of the above compounds can be used in combination depending on the use and purpose. A curing agent is used in combination with these epoxy resins. They are written by Hiroshi Kakiuchi; Epoxy Resin (published September 1970) 109-149
Page, Lee, Nevi le; Epoxy
l(, e3in3 (MCQr3W −Ht + +
Book c any Inc, New York,
(published in 1957) pages 63-141, p, E, B
by Epoxy R, esins Tec
hnology(Interscience pubf
ishers, New York.

1968年発行)45〜111ページなどに記載のfヒ
合物であり、例えば脂肪族ポリアミン、芳香族ポリアミ
ノ、第2および第3アミンを含むアミン類、カルボン酸
類、カルボン酸無水物類、脂肪族および芳香族ポリアミ
ドオリゴマ〜およびポリマー類、三フッ化ホウ素−アミ
ンコンプレックス類、フェノール樹脂、メラミン樹脂、
ウレア樹脂、ウレタン樹脂などの合成樹脂初期縮合物類
、その他、ジンアンジアミド、カルボン酸ヒドラジド、
ポリアミノマレイミド類などがある。
(published in 1968), pages 45 to 111, such as aliphatic polyamines, aromatic polyaminos, amines including secondary and tertiary amines, carboxylic acids, carboxylic acid anhydrides, aliphatic polyamines, etc. and aromatic polyamide oligomers and polymers, boron trifluoride-amine complexes, phenolic resins, melamine resins,
Synthetic resin initial condensates such as urea resin and urethane resin, others, dianediamide, carboxylic acid hydrazide,
Examples include polyaminomaleimides.

上記硬化剤は、用途、目的に応じて1程以上便用するこ
とが出来る。
The above-mentioned curing agent can be used in one or more forms depending on the use and purpose.

特に、フェノールボラック樹脂は、硬化樹脂の金属イン
サートに対する密着性、成形時の作業性などの点から、
上記半導体封止用材料の硬化剤成分として、好適である
In particular, phenol borac resin is highly effective in terms of adhesion of the cured resin to metal inserts and workability during molding.
It is suitable as a curing agent component of the above-mentioned semiconductor encapsulation material.

該樹脂組成物には、エポキシ化合物と7ボラツク型フエ
ノール樹脂の硬化反応を促進する効果が知られている公
知の触媒を使用することが出来る。
In the resin composition, a known catalyst known to be effective in accelerating the curing reaction between the epoxy compound and the heptaboric phenol resin can be used.

かかる触媒としては、例えば、トリエタノールアミン、
テトラメチルブタンジアミン、テトラメチルブタンジア
ミン、テトラメチルヘキサ/ジアミン、トリエチレンジ
アミン、ジメチルアニリンなどの三級アミン、ジメチル
アミノエタノール、ジメチルアミノペタノールなどのオ
キシアルキルアミンやトリス(ジメチルアミンメチル)
フェノール、N−メチルモルホリン、N−エチルモルホ
リンなどのアミン類がある。
Such catalysts include, for example, triethanolamine,
Tertiary amines such as tetramethylbutanediamine, tetramethylbutanediamine, tetramethylhex/diamine, triethylenediamine, dimethylaniline, oxyalkylamines such as dimethylaminoethanol, dimethylaminopetanol, and tris(dimethylaminemethyl)
There are amines such as phenol, N-methylmorpholine, and N-ethylmorpholine.

また、セチルトリメチルアンモニウムブロマイド、セチ
ルトリメチルアンモニウムクロライド、ドデシルトリメ
チルアンモニウムアイオダイド、トリメチルドデシルア
ンモニウムクロライド、ベンジルジメチルテトラデシル
アンモニウムクロライト、へ/シルメチルパルミチルア
ンモニウムクロライド、アリルドデシルトリメチルアン
モニウムブロマイド、ベンジルジメチルステアリルアン
モニウムブロマイド、ステアリルトリメチルアンモニウ
ムクロライド、べ/ジルジメチルテトラデシルアンモニ
ウムアセテートなどの第4級アンモニウム塩がある。
Also, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, dodecyltrimethylammonium iodide, trimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chlorite, he/cylmethylpalmitylammonium chloride, allyldodecyltrimethylammonium bromide, benzyldimethylstearylammonium Examples include quaternary ammonium salts such as bromide, stearyltrimethylammonium chloride, and be/zyldimethyltetradecylammonium acetate.

また、2−エチルイミダゾール、2−クンデシルイミダ
ゾール、2−ヘプタデシルイミダゾール、2−メチル−
4−エチルイミダゾール、1−ブチルイミダゾール、1
−プロピル−2−メチルイミダゾール、1−ベンジル−
2−メチルイミダゾール、1−シアノエチル−2−メチ
ルイミダゾール、1−シアンエチル−2−ウンデシルイ
ミダゾール、1−77ノエチルー2−フェニルイミダゾ
ール、1−アジ/−2−メチルイミダゾール、1−アジ
ン−2−ウンデシルイミダゾールなどのイミダゾール類
、トリフェニルホスフィンテトラフェニルボレート、テ
トラフェニルホスホニウムテトラフェニルボレート、ト
リエチルアミンテトラフェニルボレート、N−メチルモ
ルホリンテトラフェニルボレート、2−エチル−4−メ
チルイミダゾールテトラフェニルボレート、2−エチル
−1,4−ジメチルイミダゾールテトラフェニルボレー
トナトノテトラフェニルボロン塩などがある。
Also, 2-ethylimidazole, 2-cundecylimidazole, 2-heptadecyl imidazole, 2-methyl-
4-ethylimidazole, 1-butylimidazole, 1
-Propyl-2-methylimidazole, 1-benzyl-
2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-77noethyl-2-phenylimidazole, 1-azi/-2-methylimidazole, 1-azine-2- Imidazoles such as undecyl imidazole, triphenylphosphine tetraphenylborate, tetraphenylphosphonium tetraphenylborate, triethylamine tetraphenylborate, N-methylmorpholine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, 2-ethyl -1,4-dimethylimidazole tetraphenylborate natonotetraphenylboron salt and the like.

本発明においては樹脂組成物に、目的と用途に応じて、
各種の無機物質や添加剤を配合して用いることが出来る
。それらの具体例をあげればジルコン、シリカ、溶融石
英ガラス、アルミナ、水酸化アルミニウム、ガラス、石
英ガラス、ケイ酸カルシウム、石コウ、炭酸カルシウム
、マグネサイト、クレー、カオリン、タルク、鉄粉、銅
粉、マイカ、アスベスト、炭化珪素、窒化ホウ素、二硫
化モリブデン、鉛化合物、鉛酸化物、亜鉛華、チタン白
、カーボンブラックなどの充填剤、あるい。
In the present invention, depending on the purpose and use of the resin composition,
Various inorganic substances and additives can be mixed and used. Specific examples include zircon, silica, fused silica glass, alumina, aluminum hydroxide, glass, quartz glass, calcium silicate, gypsum, calcium carbonate, magnesite, clay, kaolin, talc, iron powder, copper powder. , mica, asbestos, silicon carbide, boron nitride, molybdenum disulfide, lead compounds, lead oxides, zinc white, titanium white, carbon black, and other fillers.

は、高級脂肪酸、ワックス類などの離を剤、エポキシシ
ラ/、ビニルシラ/、アミノシラ/、ポラン系化合物、
アルコキシチタネート系化合物、アルミニウムキレート
化合物などのカップリング剤などである。さらに、アン
チモン、膜化合物、臭素や塩素を含む公知の難燃化剤を
用いることが出来る。
are higher fatty acids, release agents such as waxes, epoxysila/, vinylsila/, aminosila/, poran compounds,
These include coupling agents such as alkoxy titanate compounds and aluminum chelate compounds. Additionally, known flame retardants including antimony, membrane compounds, bromine and chlorine can be used.

実施例1 トリス(トリエチルシリルオキシ)アルミニウムトトリ
エチルシリルオキシホスフィン酸とo等モル混合物を2
00Cにおいて、副生物を留出させながら重縮合させて
得た式 0 で表わされる重合体(平均分子量約5600)を、2−
グロバノールとトルエンの等量混合溶媒に溶解して0.
5重量%溶液を調製した。
Example 1 An equimolar mixture of tris(triethylsilyloxy)aluminum triethylsilyloxyphosphinic acid and o
At 00C, a polymer represented by the formula 0 (average molecular weight about 5600) obtained by polycondensation while distilling by-products was 2-
Dissolved in a mixed solvent of equal amounts of globanol and toluene to 0.
A 5% by weight solution was prepared.

該樹脂溶液を、多層(2層)配線絶縁膜として用いた場
合の素子構造を、第2図、第3図に示した。
The device structure when the resin solution is used as a multilayer (two-layer) wiring insulating film is shown in FIGS. 2 and 3.

素子の構成は、Si素子基板上に、SiOx絶縁層、ポ
リシリコン層、更に第1層目のアルミニウム配線(4−
I )を形成した後に、上記樹脂溶液を塗布(スピンナ
ー梗用)、焼付け(270C。
The device consists of a Si device substrate, a SiOx insulating layer, a polysilicon layer, and a first layer of aluminum wiring (4-
After forming I), the above resin solution was applied (for spinner stems) and baked (270C).

60分間)したのち(3−1層)、ポジレジストを塗布
して、スルホールのパターニングを行なった。その桑と
、CF402を反応ガスとして、プラズマエッチした。
After 60 minutes) (layer 3-1), a positive resist was applied and patterning of through holes was performed. Plasma etching was performed using the mulberry and CF402 as a reaction gas.

次いで02を反応ガスとするプラズマアッシャ−によっ
てポジレジストを除去した。
The positive resist was then removed using a plasma asher using 02 as a reactive gas.

次いで、第2鳩目のアルミニウム配線(4−II )を
形成したのち、さらに上記樹脂溶液を塗布、焼料け(前
記条件と同じ)した。(3−n層)なお、第3図は、第
2層目の皮覆樹脂として、ポリイミド系樹脂(日立化成
社:PIQ)を用いた場合(5層)を示している。
Next, after forming the second eyelet aluminum wiring (4-II), the above resin solution was further applied and baked (under the same conditions as above). (3-n layer) FIG. 3 shows a case (5 layers) in which a polyimide resin (Hitachi Chemical Co., Ltd.: PIQ) is used as the coating resin for the second layer.

本発明の半導体装置を、ガジス融着セラミックパッケー
ジしたメモリ用LSI製品(64にビットD−B、AM
メモリ)は、121C,2気圧過飽和水蒸気中放置試験
(PCT)5000時間後も、At配線の腐食による断
線故障もなく、倍額性にすぐれたLSIを得た。
A memory LSI product in which the semiconductor device of the present invention is packaged in a gas-fused ceramic package (64 bits D-B, AM
Even after 5,000 hours of storage test (PCT) in supersaturated steam at 121C and 2 atm, there was no disconnection failure due to corrosion of the At wiring, and an LSI with excellent multiplicity was obtained.

実施例2 トリイングロボキシアルミニウムとフェノキシメチルホ
スフィ/酸塩化物とを実質上等モルの割合にとり、13
0C付近から200tltで昇温させながら重縮合させ
て得た固状の重合体、を、2−グロバノールーキシレン
混合溶媒ヲ用いて、1重量褒溶液に調製した。該溶液を
実施例1におけると同様に半導体素子に塗布し、溶媒を
蒸発後230Cまで加熱し焼付けた結果、素子に密着し
た被覆層が形成された。
Example 2 Triing globoxyaluminum and phenoxymethylphosphine/acid chloride were taken in substantially equimolar proportions, and 13
A solid polymer obtained by polycondensation while raising the temperature from around 0C to 200 tlt was prepared into a 1 weight solution using a 2-globanol-xylene mixed solvent. The solution was applied to a semiconductor element in the same manner as in Example 1, and after the solvent was evaporated, it was heated to 230C and baked, resulting in the formation of a coating layer that adhered to the element.

実施例3 メチル、プトキシホスフイノキシアルミニウムジプトキ
シドのキシレン溶液に、含水ブタノールを、該アルミニ
ウム化合物に対し水分かや\温剰になるように加えQ\
、120〜130Cで重縮合させて式 で表わされる固状の重合体を得た。
Example 3 Water-containing butanol was added to a xylene solution of methyl, poxyphosphinoxyaluminum diptoxide so that it became warm compared to the aluminum compound.
, 120 to 130C to obtain a solid polymer represented by the formula.

この重合体をトルエンに溶解して、1重量%の樹脂溶液
を調製した。該溶液を、多層(2層)配線絶縁膜として
用いた場合の素子構造を、第1図。
This polymer was dissolved in toluene to prepare a 1% by weight resin solution. FIG. 1 shows an element structure when the solution is used as a multilayer (two-layer) wiring insulating film.

第2図に示した。It is shown in Figure 2.

素子の構成は、Si素子基板上に、5I02絶縁層、ポ
リシリコン層、更に第一層目のアルミニウム配線(2−
I )を形成した後に、上記樹脂被膜材料を塗布(スビ
/ナー筺用)、焼付け(250C160分間)した(5
−I)のち、ポジレジストを塗布して、マルホールのパ
ターニングを行なツタ。次イで、CF4−O2を反応ガ
スとしてプラズマエッチした。次いで0.を反応ガスと
するプラズマアッシャ−によってポジレジストを除去し
た。
The device consists of a Si device substrate, a 5I02 insulating layer, a polysilicon layer, and a first layer of aluminum wiring (2-
After forming I), the above resin coating material was applied (for tinted/nerar cabinets) and baked (250C for 160 minutes) (5
-I) After that, a positive resist was applied and patterned with multi-holes. Next, in step A, plasma etching was performed using CF4-O2 as a reactive gas. Then 0. The positive resist was removed by a plasma asher using as a reactive gas.

次いで、第2層目のアルミニウム配!(2−n)を形成
した後、さらに、上記樹脂液を塗布、焼付け(前記条件
と同じ)した。(3−n層)なお、第2図は、第2層目
の被覆樹脂として、ポリイミド樹脂(日立化成製PIQ
)を用いた場合(4層)を示した。
Next, the second layer of aluminum! After forming (2-n), the above resin liquid was further applied and baked (under the same conditions as above). (3-n layer) In addition, in Figure 2, polyimide resin (Hitachi Chemical PIQ) is used as the coating resin for the second layer.
) is used (4 layers).

本発明の半導体装置を、フェノールノボラック樹脂を硬
化剤としたエポキシ系樹脂成形材料を用いて樹脂パッケ
ージしたメモリ用LSI製品(16にビットD−RAM
メモリ)は、85C,85チ相対湿度中でバイアス印加
放置で2000時間後も、At配線の腐食による断線故
障の発生はなく、耐湿信頼性にすぐれたLSIを得た。
A memory LSI product in which the semiconductor device of the present invention is resin packaged using an epoxy resin molding material using phenol novolac resin as a hardening agent (16 bits D-RAM)
Even after 2,000 hours of bias application at 85C and 85C relative humidity, there was no disconnection failure due to corrosion of the At wiring, and an LSI with excellent humidity resistance and reliability was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例になる半導体装置の断面図
、第2図、第3図は、本発明に係わる半導体装置の素子
部分の一部断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention, and FIGS. 2 and 3 are partial cross-sectional views of an element portion of the semiconductor device according to the present invention.

Claims (1)

【特許請求の範囲】 1、少なくとも半導体素子の表面に保護被覆を施したの
ち、それらを樹脂組成物またはセラミックス等を用いて
封止する半導体装置の製造方法において、保護被覆とし
て一般式 (式中、R1およびR2は同一もしくは異なる1画の炭
化水素基を表わす)で示されるくシ返し構造単位を有す
る重合体を塗布し焼付けることを特徴とする半導体装置
の製造方法。
[Claims] 1. In a method for manufacturing a semiconductor device, in which a protective coating is applied to at least the surface of a semiconductor element and then sealed using a resin composition, ceramics, etc., the protective coating is formed by the general formula (in the formula , R1 and R2 represent the same or different one-stroke hydrocarbon groups) A method for manufacturing a semiconductor device, comprising applying and baking a polymer having a repeating structural unit.
JP58069907A 1983-04-22 1983-04-22 Manufacture of semiconductor device Pending JPS59195851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58069907A JPS59195851A (en) 1983-04-22 1983-04-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069907A JPS59195851A (en) 1983-04-22 1983-04-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59195851A true JPS59195851A (en) 1984-11-07

Family

ID=13416234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069907A Pending JPS59195851A (en) 1983-04-22 1983-04-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59195851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619607A2 (en) * 1993-03-15 1994-10-12 International Business Machines Corporation Method for improved adhesion of polymeric adhesive and encapsulating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619607A2 (en) * 1993-03-15 1994-10-12 International Business Machines Corporation Method for improved adhesion of polymeric adhesive and encapsulating material
EP0619607A3 (en) * 1993-03-15 1994-11-02 International Business Machines Corporation Method for improved adhesion of polymeric adhesive and encapsulating material

Similar Documents

Publication Publication Date Title
JPS59195851A (en) Manufacture of semiconductor device
JPS62108555A (en) Semiconductor device
JPH0224324A (en) Composition and polymer obtained from same
JPS62184012A (en) Heat-resistant resin composition
JPH01108221A (en) Epoxy resin composition and material for sealing semiconductor device and material for laminate
JPS5917266A (en) Semiconductor device
JPS6357632A (en) Epoxy resin composition, semiconductor device sealing agent and material for laminate
JPS621609B2 (en)
JPS6351415A (en) Epoxy resin composition and semiconductor device covered and/or sealed with epoxy composition
JP2585310B2 (en) Laminated board
JPS6369255A (en) Semiconductor device
JPH0455483A (en) Heat-resistant and insulating varnish composition and formation of coating film using the same
JPH0234624A (en) Epoxy resin composition
JPH02124930A (en) Glycidylamine compound having thioether bond, composition thereof and use thereof
JPS6218055A (en) Semiconductor device
JPS61265847A (en) Resin sealed type semiconductor device
JPS62171146A (en) Resin seal type semiconductor device
JPS62159436A (en) Semiconductor device
JPS63160366A (en) Manufacture of semiconductor device
JPS58167614A (en) Resin composition for sealing semiconductor
JPH02123128A (en) Epoxy resin composition
JPH0721048B2 (en) Epoxy resin composition and use thereof
JPS62108556A (en) Semiconductor device
JPS61174654A (en) Resin-sealed type semiconductor device
JPS5934649A (en) Resin sealed type semiconductor device