JPS59194472A - Forming method of gate oxidized film - Google Patents

Forming method of gate oxidized film

Info

Publication number
JPS59194472A
JPS59194472A JP6950283A JP6950283A JPS59194472A JP S59194472 A JPS59194472 A JP S59194472A JP 6950283 A JP6950283 A JP 6950283A JP 6950283 A JP6950283 A JP 6950283A JP S59194472 A JPS59194472 A JP S59194472A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
oxidized
gate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6950283A
Other languages
Japanese (ja)
Inventor
Hidekazu Okamoto
英一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP6950283A priority Critical patent/JPS59194472A/en
Publication of JPS59194472A publication Critical patent/JPS59194472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To simultaneously form gate oxidized films of different thicknesses in the same steps by utilizing a sacrificing oxidized film. CONSTITUTION:A selective oxidized mask layer 14 is attached through a pad oxidized film 12 on a semiconductor substrate 11. Then a thick field oxidized film 15 which is partly buried in the substrate 11 is formed on the substrate 11. In this step, precipitate 16 of silicon nitride is formed during selective oxidizing step, and must be removed. Subsequently, the layer 14 and the film 12 are removed by etching, and the element forming region 13 of the substrate 11 is exposed. Thereafter, a sacrificing oxidized film 17 is formed on the element forming region 13 of the substrate 11. As a result, the precipitate 16 is isolated from the substrate 11 by the sacrificing oxidation. Then, the sacrificing oxidized film 17 except the part converted with a photoresist layer 18 is etched. Then, the surface of the substrate 11 is gate-oxidized to form gate oxidized films 19 of different thicknesses.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はゲート酸化膜の形成方法、特に異なる厚みを有
するゲート酸化膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for forming a gate oxide film, and particularly to a method for forming gate oxide films having different thicknesses.

(ロ)従来技術 最近のMO8ICでは動作速度の高速化、大規模集積化
、低消費電力化の要求があり、ICを構成するMOSト
ランジスタの徽細化が急務となっている。この一方法と
して選択酸化技術が挙げられる。
(b) Prior Art Recent MO8ICs are required to have higher operating speeds, larger scale integration, and lower power consumption, and there is an urgent need to make the MOS transistors that make up the ICs finer. One such method is selective oxidation technology.

第1図A〜第1図Eを参照して選択酸化技術を説明する
。第1図Aでは、P型シリコン基板(1)の表面に薄(
パッド酸化膜(2)を形成した後素子形成領域(3)上
を選択的にシリコン窒化膜(4)を減圧cVD法により
付着する。
The selective oxidation technique will be explained with reference to FIGS. 1A to 1E. In Figure 1A, a thin (
After forming the pad oxide film (2), a silicon nitride film (4) is selectively deposited on the element formation region (3) by low pressure CVD method.

第1図Bでは、シリコン窒化膜(4)をマスクとして1
100.’Cの水蒸気雰囲気中で熱酸化処理を施して厚
さ約1趨の埋め込みフィールド酸化膜(5)を形成する
。なお本工程ではフィールド酸化膜(5)の形成中にパ
ッド酸化膜(2)のピンホールやその周端の基板(1)
表面にホワイトリボンあるいはホワイトスポットと呼ば
れるシリコン窒化物の析出物(6)が形成され、ゲート
酸化時の障害となるので除去する必要がある。
In FIG. 1B, the silicon nitride film (4) is used as a mask.
100. A buried field oxide film (5) having a thickness of about 1 line is formed by thermal oxidation treatment in a water vapor atmosphere of 'C. Note that in this step, during the formation of the field oxide film (5), pinholes in the pad oxide film (2) and the substrate (1) around the pinholes are removed.
A silicon nitride precipitate (6) called a white ribbon or white spot is formed on the surface and must be removed because it becomes an obstacle during gate oxidation.

第1図Cでは、シリコン窒化膜(4)およびパッド酸化
膜(2)をエツチング除去する。この際に析出物(6)
は除去できない。
In FIG. 1C, the silicon nitride film (4) and pad oxide film (2) are removed by etching. At this time, precipitate (6)
cannot be removed.

第1図りでは、基板(1)表面を犠牲酸化し、析出物(
6)も酸化する。犠牲酸化は1000℃のドライ02で
行い、500〜200OA厚の犠牲酸化膜(力を形成す
る。
In the first drawing, the surface of the substrate (1) is sacrificially oxidized, and the precipitates (
6) is also oxidized. Sacrificial oxidation is performed in dry 02 at 1000° C. to form a sacrificial oxide film with a thickness of 500 to 200 OA.

第1図Eでは、この犠牲酸化膜(7)をエツチング除去
し、同時に析出物(6)も除去す唇にの結果ゲート酸化
時に問題となる析出物(6)は完全に除去でき、続いて
所望の厚みのゲート酸化膜を形成している。
In Figure 1E, as a result of etching away this sacrificial oxide film (7) and removing the precipitates (6) at the same time, the precipitates (6), which pose a problem during gate oxidation, can be completely removed. A gate oxide film of desired thickness is formed.

指上した犠牲酸化により極めて薄いゲート酸化膜が安定
に形成されそれを用いたMOS)ランジスタのゲート耐
圧も均一化できる。
Through the sacrificial oxidation, an extremely thin gate oxide film is stably formed, and the gate breakdown voltage of a MOS transistor using it can be made uniform.

しかしながら最近のMO8ICでは同一チップ内にゲー
ト耐圧の異なるMOS)ランジスタを集積化する要望が
ある。すなわち入出力用のMOSトランジスタは外部回
路との結合を行うので高耐圧を要求されるのである。
However, in recent MO8ICs, there is a demand for integrating MOS transistors with different gate breakdown voltages in the same chip. That is, input/output MOS transistors are required to have a high breakdown voltage since they are coupled to external circuits.

(ハ)発明の目的 本発明は指点に鑑みてなされ、犠牲酸化膜を利用するこ
とにより同一工程で異なる膜厚のゲート酸化膜を同時に
形成することを目的とする。
(c) Purpose of the Invention The present invention has been made in view of the point of view, and an object of the present invention is to simultaneously form gate oxide films of different thicknesses in the same process by using a sacrificial oxide film.

に)発明の構成 本発明は第2図A−Eの如く、以下の工程より構成され
ている。
B) Structure of the Invention The present invention is comprised of the following steps as shown in FIGS. 2A to 2E.

(1)半導体基板Qlj上にパッド酸化膜αりを介して
選択的に選択酸化マスク層a優を付着する工程。
(1) Step of selectively depositing a selective oxidation mask layer a on the semiconductor substrate Qlj via the pad oxide film α.

(2)基板住1)にその一部を埋め込んだ厚いフィール
ド酸化膜Q5)を形成する工程。
(2) Step of forming a thick field oxide film Q5) partially buried in the substrate layer 1).

(3)基板(111表面を犠牲酸化する工程。(3) Step of sacrificial oxidation of the substrate (111 surface).

(4)基似Q])表面の犠牲酸化膜(1′7)を選択的
に除去する工程。
(4) Base Q]) Step of selectively removing the sacrificial oxide film (1'7) on the surface.

(5)基板(11)表面をゲート酸化して異なる膜厚の
ゲート酸化膜(19を形成する工程。
(5) A step of gate oxidizing the surface of the substrate (11) to form gate oxide films (19) of different thicknesses.

(ホ)実施例 本発明の一実施例を第2図A乃至第2図Eを参照して詳
述する。
(E) Embodiment An embodiment of the present invention will be described in detail with reference to FIGS. 2A to 2E.

本発明の第1の工程は半導体基板(11)上にパッド酸
化膜aりを介して選択的に選択酸化マスク層Iを付着す
ることにある(第2図A)。すなわち比抵抗2Ω、cI
ILのP型シリコン基板Ql)表面全面に熱酸化により
約70OAの薄いパッド酸化膜a2を形成し、その上に
約70OA厚のシリコン窒化物Q4)を減圧CVD法に
より付着する。シリコン窒化膜a4は周知のホトエツチ
ングにより素子形成領域Q3上忙選択的に残し、選択酸
化マスク層α荀とする。
The first step of the present invention consists in selectively depositing a selective oxidation mask layer I on a semiconductor substrate (11) via a pad oxide film (FIG. 2A). That is, specific resistance 2Ω, cI
A thin pad oxide film a2 of about 70 OA is formed on the entire surface of the IL P-type silicon substrate Ql) by thermal oxidation, and silicon nitride Q4) of about 70 OA thick is deposited thereon by low pressure CVD. The silicon nitride film a4 is selectively left on the element forming region Q3 by well-known photoetching, and is used as a selective oxidation mask layer α.

本発明の第2の工程は半導体基板(11)&Cその一部
を埋め込んだ厚いフィールド酸化膜ミツを形成すること
にある(第2図B)。選択酸化は酸化雰囲気中で行なわ
れ、選択酸化マスク層α荀のない基板(11)表面に約
1μmの厚いフィールド酸化膜を形成する。この構造は
周知のLOCO8構造を構成する。
The second step of the present invention consists in forming a thick field oxide layer that embeds a portion of the semiconductor substrate (11) (FIG. 2B). Selective oxidation is performed in an oxidizing atmosphere to form a thick field oxide film of about 1 μm on the surface of the substrate (11) without the selective oxidation mask layer α. This structure constitutes the well-known LOCO8 structure.

なお本工程では選択酸化処理中にパッド酸化膜αりのビ
ーンホールやその周端の基板(111表面にホワイトリ
ボンあるいはホワイトスポットと呼ばれるシリコン窒化
物の析出物αeが形成され、ゲート酸化一時の障害とな
り除去する必要がある。更に本工程では選択酸化マスク
層Iおよびパッド酸化膜a2をエツチング除去し、基板
(11)の素子形成領域側を露出する。このときホワイ
トリボンあるいはホワイトスポット等の析出物tteは
除去できない。
In addition, during the selective oxidation process in this process, silicon nitride precipitates αe, called white ribbons or white spots, are formed on the bean hole in the pad oxide film α and on the substrate (111) surface at the peripheral edge thereof, which may cause a temporary hindrance during gate oxidation. Further, in this step, the selective oxidation mask layer I and the pad oxide film a2 are removed by etching to expose the element forming area side of the substrate (11).At this time, precipitates such as white ribbons or white spots are removed by etching. tte cannot be removed.

本発明の第3の工程は半導体基板Ql)表面を犠牲酸化
すること。(ある(第2図C)。犠牲酸化は約1000
℃でドライ0.雰囲気で行い、5oo〜2000Aの犠
牲酸化膜aηを基板α1)の素子形成領域03表兜に形
成する。この結果前述した析出物(I6)も犠牲酸化膜
より基板αI)表面より分離される。
The third step of the present invention is sacrificial oxidation of the surface of the semiconductor substrate Ql). (There is (Figure 2C).Sacrificial oxidation is about 1000
Dry at 0°C. A sacrificial oxide film aη of 500 to 2000 Å is formed on the surface of the element formation region 03 of the substrate α1). As a result, the aforementioned precipitate (I6) is also separated from the surface of the substrate αI) by the sacrificial oxide film.

本発明の第4の工程は半導体基板0.1)表面の犠牲酸
化腹鰭を選択的に除去されることにある(第2図D)。
The fourth step of the present invention consists in selectively removing the sacrificial oxidized pelvic fins on the surface of the semiconductor substrate 0.1) (FIG. 2D).

本工程は本発明の最も特徴とする工程である。即ち、犠
牲酸化膜aηを残す部分は図示の如くホトレジスト層鱈
で被覆し、て酸化膜のエツチング処理を行うと、露出さ
れている犠牲酸化膜αηはエツチング除去されて素子形
成領域0を露出する。
This step is the most characteristic step of the present invention. That is, the portion where the sacrificial oxide film aη is left is covered with a photoresist layer as shown in the figure, and when the oxide film is etched, the exposed sacrificial oxide film αη is etched away, exposing the element forming region 0. .

このエツチング時に析出物a6Jも同時虻エツチング除
去され、露出した素子形成領域Q3表面にはゲート酸化
に障害となるホワイトリボンあるいはホワイトスポット
等の析出物α0は完全に除去される。
During this etching, the precipitates a6J are also removed by etching, and the precipitates α0, such as white ribbons or white spots, which are obstacles to gate oxidation, are completely removed from the surface of the exposed element forming region Q3.

一方犠牲酸化膜αηを残した部分ではこの析出物αeの
影響により犠牲酸化膜(lηの膜厚が薄(なっている。
On the other hand, in the portion where the sacrificial oxide film αη remains, the thickness of the sacrificial oxide film (lη) becomes thin due to the influence of the precipitates αe.

本発明の第5の工程は半導体基板(11)表面をゲート
酸化して異なる厚みのゲート酸化膜a匂を形成すること
にある(第2図E)。すなわち熱酸化により基板α1)
の素子形成領域(1国表面にゲート酸化膜を生成すると
、露出された素子形成領域(13)にはゲート酸化のみ
による薄いゲート酸化膜部が形成され、犠牲酸化膜<1
7)を残存させた素子形成領域(131には犠牲酸化お
よびゲート酸化による厚いゲート酸化膜部が同時に形成
される。犠牲酸化膜a特の厚みをToXI、ゲート酸化
のみのゲート酸化膜Q9の厚みをT0工、とすると、厚
いゲート酸化膜部の厚みT0工は、TOX ” TOX
I + TOX2 の関係が成立する。具体的には (1) Toxt ” 500 A、  Toxt =
50OA のとき、To!=70OA (2) Tox+= 50OA、  Toxt= 30
OA のとき、T、X:: 600A (3) l]:10工1=100OA、  T、工、=
 50OA のとき、Tox:1100 A となる。この結果薄いゲート酸化膜(LIは犠牲酸化に
より析出物Q6)の影響を完全に除去して極めて薄く形
成でき、厚いゲート酸化膜(LSIは犠牲酸化膜だけ厚
く形成されるので欠陥密度の減少により析出物α6)に
よる耐圧不良を補うことができるのである。
The fifth step of the present invention consists in gate oxidizing the surface of the semiconductor substrate (11) to form gate oxide films of different thicknesses (FIG. 2E). In other words, by thermal oxidation, the substrate α1)
When a gate oxide film is formed on the surface of the element formation region (13), a thin gate oxide film portion is formed only by gate oxidation in the exposed element formation region (13), and the sacrificial oxide film <1
In the element formation region (131) where 7) remains, a thick gate oxide film part is simultaneously formed by sacrificial oxidation and gate oxidation.The thickness of the sacrificial oxide film a is ToXI, and the thickness of the gate oxide film Q9 with only gate oxidation Assuming that T0 is the thickness of the thick gate oxide film, the thickness of the thick gate oxide film is TOX ” TOX
The relationship I + TOX2 holds true. Specifically, (1) Toxt ” 500 A, Toxt =
When 50OA, To! =70OA (2) Tox+=50OA, Toxt=30
When OA, T,
At 50OA, Tox: 1100A. As a result, it is possible to form an extremely thin gate oxide film (LI is formed thickly by the sacrificial oxide film) by completely removing the influence of the thin gate oxide film (LI is a precipitate Q6 due to sacrificial oxidation), and a thick gate oxide film (LSI is formed thick only by the sacrificial oxide film, so the defect density is reduced) This makes it possible to compensate for the poor pressure resistance caused by the precipitates α6).

(へ)効果 本発明に依れば、第1に同一工程で同時に厚さの異なる
ゲート酸化膜a91を実現できるので、極めて製造容易
である。第2に素子の微細化に伴い薄いゲート酸化膜を
要求され・るが、この薄いゲート酸化膜αωを犠牲酸化
により安定して製造できる。
(f) Effects According to the present invention, firstly, gate oxide films a91 having different thicknesses can be realized at the same time in the same process, so manufacturing is extremely easy. Second, thin gate oxide films are required as devices become smaller, and this thin gate oxide film αω can be stably manufactured by sacrificial oxidation.

第3に犠牲酸化を利用することによりフィールド酸化膜
aつのエツチング量を最小限に抑えることができる。第
4に異なる厚みのゲート酸化膜部により同一チップに異
なるゲート耐圧のMOS )ランジスタを集積化でき、
特に微細化した低耐圧の素子と高耐圧の素子とを同一チ
ップに形成できる。
Third, by using sacrificial oxidation, the amount of etching of the field oxide film can be minimized. Fourth, gate oxide film parts with different thicknesses allow MOS transistors with different gate breakdown voltages to be integrated on the same chip.
In particular, miniaturized low-voltage elements and high-voltage elements can be formed on the same chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A乃至第1図Eは従来のゲート酸化膜の形成方法
を説明する断面図、第2図A乃至第2図Eは本発明のゲ
ート酸化膜の形成方法を曲、明する断面図である。 主な図番の説明 (11)は半導体基板、03は素子形成領域、Iは選択
酸化マスク層、a!19はツーイールド酸化膜、側は析
出物、αηは擬牲酸化膜、α9はゲート酸化膜である。
1A to 1E are cross-sectional views illustrating a conventional method for forming a gate oxide film, and FIGS. 2A to 2E are sectional views illustrating a method for forming a gate oxide film according to the present invention. It is. Explanation of main figure numbers (11) is a semiconductor substrate, 03 is an element formation region, I is a selective oxidation mask layer, a! 19 is a two-yield oxide film, the side is a precipitate, αη is a pseudo oxide film, and α9 is a gate oxide film.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上にパッド酸化膜を介して選択的に選
択酸化マスク層を付着する工程、前記基板を選択酸化し
て基板にその一部を埋め込んだ厚いフィールド酸化膜を
形成する工程、前記選択酸化マスク層及びパッド酸化膜
を除去し露出した基板表面を犠牲酸化する工程、犠牲酸
化膜を選択的に除去する工程、前記犠牲酸化膜を除去し
た基板表面および前記犠牲酸化膜を残した基板表面にゲ
ート酸化膜を形成する工程を具備することを特徴とする
ゲート酸化膜の形成方法。
(1) a step of selectively depositing a selective oxidation mask layer on a semiconductor substrate via a pad oxide film; a step of selectively oxidizing the substrate to form a thick field oxide film partially buried in the substrate; A step of removing the selective oxidation mask layer and the pad oxide film and sacrificially oxidizing the exposed substrate surface, a step of selectively removing the sacrificial oxide film, a substrate surface from which the sacrificial oxide film has been removed, and a substrate with the sacrificial oxide film remaining. A method for forming a gate oxide film, comprising the step of forming a gate oxide film on a surface.
JP6950283A 1983-04-19 1983-04-19 Forming method of gate oxidized film Pending JPS59194472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6950283A JPS59194472A (en) 1983-04-19 1983-04-19 Forming method of gate oxidized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6950283A JPS59194472A (en) 1983-04-19 1983-04-19 Forming method of gate oxidized film

Publications (1)

Publication Number Publication Date
JPS59194472A true JPS59194472A (en) 1984-11-05

Family

ID=13404564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6950283A Pending JPS59194472A (en) 1983-04-19 1983-04-19 Forming method of gate oxidized film

Country Status (1)

Country Link
JP (1) JPS59194472A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271963A (en) * 1987-04-28 1988-11-09 Nec Corp Manufacture of semiconductor device
KR20010045448A (en) * 1999-11-05 2001-06-05 박종섭 Method of forming gate oxide layer
KR100342641B1 (en) * 1998-07-21 2002-07-04 가네꼬 히사시 Method of manufacturing a semiconductor device
US7084035B2 (en) 2004-04-13 2006-08-01 Ricoh Company, Ltd. Semiconductor device placing high, medium, and low voltage transistors on the same substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271963A (en) * 1987-04-28 1988-11-09 Nec Corp Manufacture of semiconductor device
KR100342641B1 (en) * 1998-07-21 2002-07-04 가네꼬 히사시 Method of manufacturing a semiconductor device
KR20010045448A (en) * 1999-11-05 2001-06-05 박종섭 Method of forming gate oxide layer
US7084035B2 (en) 2004-04-13 2006-08-01 Ricoh Company, Ltd. Semiconductor device placing high, medium, and low voltage transistors on the same substrate

Similar Documents

Publication Publication Date Title
JPH04348077A (en) Thin-film transistor
JPS59194472A (en) Forming method of gate oxidized film
JPS61247051A (en) Manufacture of semiconductor device
US8044487B2 (en) Semiconductor device and method of manufacturing the same
JP3203048B2 (en) Semiconductor device and method of manufacturing the same
JP3189284B2 (en) Method for manufacturing semiconductor device
JPS62216246A (en) Manufacture of semiconductor device
US4317276A (en) Method of manufacturing an insulated gate field-effect transistor therefore in a silicon wafer
JP2005353745A (en) Manufacturing method of semiconductor device
JPS59194473A (en) Manufacture of mos semiconductor device
JPH08298314A (en) Nonvolatile semiconductor memory and its manufacture
JPS63116470A (en) Manufacture of semiconductor device provided with memory transistor
JPH04337672A (en) Semiconductor storage device and its manufacture
JP3176697B2 (en) Method for manufacturing semiconductor device
JPH07161809A (en) Semiconductor integrated circuit device and its manufacture
JPS6237546B2 (en)
JP3583093B2 (en) Method for manufacturing semiconductor device
JP3688860B2 (en) Manufacturing method of semiconductor integrated circuit
JPH09232443A (en) Semiconductor device
JPH06181310A (en) Manufacture of semiconductor device
KR19980027830A (en) Method of forming an isolation region of a semiconductor device
JPH065622A (en) Manufacture of polyside gate structure of semiconductor device
JPS6354769A (en) Manufacture of semiconductor device
JPH02865B2 (en)
JPH01202865A (en) Semiconductor device and manufacture thereof