JPS5919419A - Supporting structure of tuning fork type oscillator - Google Patents

Supporting structure of tuning fork type oscillator

Info

Publication number
JPS5919419A
JPS5919419A JP12939382A JP12939382A JPS5919419A JP S5919419 A JPS5919419 A JP S5919419A JP 12939382 A JP12939382 A JP 12939382A JP 12939382 A JP12939382 A JP 12939382A JP S5919419 A JPS5919419 A JP S5919419A
Authority
JP
Japan
Prior art keywords
tuning fork
fork type
base
vibration
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12939382A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦博 高橋
Nobuyoshi Matsuyama
松山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP12939382A priority Critical patent/JPS5919419A/en
Publication of JPS5919419A publication Critical patent/JPS5919419A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever

Abstract

PURPOSE:To attain stable fT characteristics and frequency change characteristics due to the lapse of time, by providing a recessed part to a base of a tuning fork type oscillator and supporting the oscillator between the recessed part and the base, for decreasing the leakage of vibration to a case. CONSTITUTION:Bases A-B-...-E-F of the tuning fork type oscillator using torsional vibration are provided with recessed parts N-Q-R-P (or L-J-H-I-K-M), and a support 122 (or 132) serving also as a lead is fixed between the recessed part and the base and fixed to a case (not shown). The torsional vibration at the base (H-I) is decreased in comparison with the case without the provision of the recessed parts, and the leakage of the vibration to the case is decreased, because the oscillator is supported between the recessed part and the base. Further, the leakage of vibration is prevented further by forming the support into a U shape in the broadwise direction as the support 142.

Description

【発明の詳細な説明】 本発明は捩れ振動を利用する音叉型振動子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tuning fork type vibrator that utilizes torsional vibration.

近年、捩れ振動を利用する音叉型水晶撮動子が注目され
ている。捩れ振動単独で利用する場合も又、屈曲振動と
捩れ振動の弾性結合を利用する場合も共に注目されてい
る。特に後者の場合、屈曲振動と捩れ振動の弾性結合の
強さを適切に選び、前者の振動の周波数温度特性(以後
、fT特性と呼ぶ)を良好にして高精度腕時計用振動子
とする華をねらったものである。
In recent years, tuning fork type crystal cameras that utilize torsional vibration have attracted attention. Both the use of torsional vibration alone and the use of elastic coupling of bending vibration and torsional vibration are attracting attention. In particular, in the latter case, the strength of the elastic coupling between bending vibration and torsional vibration should be appropriately selected to improve the frequency-temperature characteristics (hereinafter referred to as fT characteristics) of the former vibration, making it possible to use a vibrator for a high-precision wristwatch. It was targeted.

第1図は音叉型水晶撮動子を容器に封入した状態を示し
ている。11は音叉型水晶振動子、12は振動子の支持
を兼ねた電極リード、13は+7−ドを支えるステム、
14は振動子を封入する容器を表わす。振動子11の振
動がリード12とステム13’i介して容器14に伝わ
る(以後、この現象を振動モレと呼ぶ)場合、その量が
大きいと振動子11のfT%性や周波数経時変化特性に
多大な悪影響を与える事が知られている。振動モレが大
きいIa合、第1図に示す様に、容器13に力Fを加え
ると振動子の周波数は大きく変化する。
FIG. 1 shows a state in which a tuning fork type crystal sensor is sealed in a container. 11 is a tuning fork type crystal oscillator, 12 is an electrode lead that also supports the oscillator, 13 is a stem that supports the +7- cord,
14 represents a container that encloses the vibrator. When the vibration of the vibrator 11 is transmitted to the container 14 via the reed 12 and stem 13'i (hereinafter, this phenomenon is referred to as vibration leakage), if the amount of vibration is large, it may affect the fT% characteristic and frequency change characteristics over time of the vibrator 11. It is known to have significant negative effects. When the vibration leakage is large Ia, as shown in FIG. 1, when force F is applied to the container 13, the frequency of the vibrator changes greatly.

第2図は、屈曲振動と捩れ振動の結合を利用する従来の
音叉型水晶#R動子の支持構造を示した平面図である。
FIG. 2 is a plan view showing a support structure for a conventional tuning fork type crystal #R mover that utilizes the combination of bending vibration and torsional vibration.

21は音叉型水晶振動子、22と23は励振電極への電
気的接続を兼ねた支持材である。
21 is a tuning fork type crystal resonator, and 22 and 23 are support members that also serve as electrical connections to the excitation electrodes.

第3図は音叉型水晶振動子の平面図を表わす。FIG. 3 shows a plan view of a tuning fork type crystal resonator.

6点A、B、O,D、Ei、F’にLシ囲まれた部分全
音叉型振動子の基部という。即ち、音叉型振動子の基部
は、音叉型振動子の内、2本の振動腕を除いた部分音い
う。
It is called the base of a partial diatune-fork vibrator surrounded by six points A, B, O, D, Ei, and F'. That is, the base of the tuning fork type vibrator is a partial tone of the tuning fork type vibrator excluding two vibrating arms.

第2図に示す支持構造を有する音叉型水晶撮動子け、屈
曲振動の容器への振動モレが非常に大きかった。その理
由は、基部における捩れ撮動の撮動変位が非常に大きく
、そのため捩れ振動と弾性結合している屈曲撮動の基部
における撮動変位が非常に大きいからである。その結果
、屈曲振動と捩れ振動の結合全利用する音叉型水晶振動
子は、安定なfT特性や安定な周波数経時変化特性が得
られない欠点を持っていた。本発明は、従来のこの欠点
を改善し、撮動モレの少ない捩れ振動単独を、あるいは
屈曲撮動と捩れ振動の弾性結合を利用する音叉型振動子
を提供する墨を目的とするものである。以下図面を参照
し、本発明の詳細な説明する。
In the tuning fork type crystal camera having the support structure shown in FIG. 2, vibration leakage into the container due to bending vibration was extremely large. The reason for this is that the imaging displacement of the torsional imaging at the base is very large, and therefore the imaging displacement of the base of the bending imaging, which is elastically coupled to the torsional vibration, is very large. As a result, a tuning fork type crystal resonator that makes full use of the combination of bending vibration and torsional vibration has the disadvantage that stable fT characteristics and stable frequency change characteristics over time cannot be obtained. The present invention aims to improve this conventional drawback and provide a tuning fork type vibrator that uses torsional vibration alone with less imaging leakage or utilizes elastic coupling of bending imaging and torsional vibration. . The present invention will be described in detail below with reference to the drawings.

第4図は音叉型水晶振動子の斜視図を表わしている。”
 r 7Z ”軸方向は、それぞれ音叉型水晶振動子の
幅、長さ、厚み方向を表わしている。X軸は水晶の電気
軸、y及び2′軸はそれぞれ水晶の機械軸と光軸qx軸
回りに任意の角度回転した方向を持っている。
FIG. 4 shows a perspective view of a tuning fork type crystal resonator. ”
The r 7Z ” axis directions represent the width, length, and thickness directions of the tuning fork crystal resonator, respectively. It has a direction rotated by an arbitrary angle around it.

第5図は、第4図に示す基部端の直線[(I上における
捩れ振動の、振動子の幅方向変位ut(以後、urと略
す)、振動子の長さ方向変位u 、/(以後、u y/
と略す)、及び振動子の厚み方向変位u Z / (以
後、u g /と略す)の相対的な大きさを表わしてい
る。第5図において、51けuX、52はuy’、53
はuz′をそれぞれ表わしている。この結果は有限髪累
法に工υ得られたものである。
FIG. 5 shows the widthwise displacement ut (hereinafter abbreviated as ur) of the vibrator of torsional vibration on the base end straight line [(I) shown in FIG. ,u y/
It represents the relative magnitude of the displacement u Z / (hereinafter abbreviated as ug /) of the vibrator in the thickness direction. In Figure 5, 51 is uX, 52 is uy', 53
represent uz', respectively. This result was obtained using the finite hair accumulation method.

第5図から明らかな様に、音叉型水晶振動子の基部にお
ける捩れ振動の変位量は、uz’がuxとu 、 /に
比較し非常に大きい。このため、捩れ撮動の振動モレが
大きい原因は音叉型水晶撮動子の基部において、捩れ振
動の厚み方向変位ug’が非常に大きいからである。又
、捩れ振動と弾性結合した屈曲振動の撮動モレが大きか
った理由も同様に、捩れ振動の基部における厚み方向u
z’が大きいために、JilII[t11振動自身も基
部において大きな厚み方向変位uz′を持つからでおる
。この様に、捩れ振動単独あるいは捩れ撮動と弾性結合
した屈曲振動の振動モレを小さくするには、振動子の基
部における厚み方向変位uii”fir小さくすれば良
い。
As is clear from FIG. 5, the amount of displacement due to torsional vibration at the base of the tuning fork type crystal resonator is extremely large in uz' compared to ux and u, /. Therefore, the reason why the vibration leakage in torsional imaging is large is that the displacement ug' in the thickness direction due to torsional vibration is extremely large at the base of the tuning fork type crystal sensor. Also, the reason why the imaging leakage of the bending vibration that is elastically coupled with the torsional vibration was large is also due to the thickness direction u at the base of the torsional vibration.
Since z' is large, the JilII[t11 vibration itself also has a large thickness direction displacement uz' at the base. In this way, in order to reduce the vibration leakage of torsional vibration alone or of bending vibration elastically coupled with torsional imaging, it is sufficient to reduce the thickness direction displacement uii''fir at the base of the vibrator.

第6図は基部に四部を設けた音叉型水晶振動子の平面図
を示している。但し、第6図に示す音叉型水晶振動子の
外形寸法は、基部に四部が設けられている他Fi第4図
に示す音叉型水晶撮動子と同じとする。
FIG. 6 shows a plan view of a tuning fork type crystal resonator having four parts at its base. However, the outer dimensions of the tuning fork type crystal resonator shown in FIG. 6 are the same as the tuning fork type crystal resonator shown in FIG. 4 except that four parts are provided at the base.

第7図は、第4図に示す音叉型水晶振動子の基部端HI
上と第6図に示す音叉型水晶振動子の基部端H′工′上
における捩れ振動の厚み方向変位u zZを表わしてい
る。71は第4図のHI上、72は第6図のH’I’上
におけるus’e表わしている。
Figure 7 shows the base end HI of the tuning fork type crystal resonator shown in Figure 4.
It represents the thickness direction displacement u zZ of torsional vibration on the base end H' of the tuning fork type crystal resonator shown above and in FIG. 71 represents us'e on HI in FIG. 4, and 72 represents us'e on H'I' in FIG.

第7図から明らかな様に、基部に四部を設けると、捩れ
振動の基部端部におけるuz’は、基部に 5− 四部を設けない場合に比べ非常に小さくなる。又、基部
に四部を設けない第4図に示す音叉型水晶振動子が捩れ
振動をする時、基部幅方向両端部においてu g /が
非常に大きく、基部幅方向に太きなおおシの振動を行な
っている。ところが、基部に四部を設けた第6図の音叉
型水晶撮動子が捩れ撮動をする時、基部端部においてあ
おりの振動はなくなっている。この様に、基部に四部を
設けると、振動モレを小さくする上で非常に大きな効果
を持っている。
As is clear from FIG. 7, when the four parts are provided at the base, the torsional vibration uz' at the end of the base becomes much smaller than when the four parts are not provided at the base. In addition, when the tuning fork type crystal resonator shown in FIG. 4, which does not have four parts at the base, torsively vibrates, u g / is very large at both ends in the width direction of the base, and the vibration is caused by a thick canopy in the width direction of the base. is being carried out. However, when the tuning fork type crystal camera shown in FIG. 6, which has four parts at its base, performs torsional imaging, the tilting vibration disappears at the end of the base. Providing the four parts at the base in this way has a very large effect in reducing vibration leakage.

第8図は、第6図に示す基部に四部を持つ音叉型水晶振
動子が捩れ撮動をする時、直線LM上と直線JK土にお
ける捩れ撮動のu m /を示している。
FIG. 8 shows u m / of torsional imaging on straight line LM and straight line JK when the tuning fork type crystal resonator having four parts at the base shown in FIG. 6 performs torsional imaging.

第8図から明らかな様に、四部の音叉腕側にある直線L
M上におけるu15′と凹部の基部端側にある直線JK
上におけるu z /の大きさは極端に異なる。
As is clear from Figure 8, the straight line L on the tuning fork arm side of the fourth part
u15' on M and the straight line JK on the base end side of the recess
The magnitude of u z / above is extremely different.

四部の基部端側で振動変位ug’は非常に小さくなって
いる。更に、捩れ振動特有の基部におけるあおりの振動
も凹部ニジ基部R4側において殆んど消失している。
The vibration displacement ug' is very small on the base end side of the four parts. Further, the tilting vibration at the base, which is characteristic of torsional vibration, almost disappears on the side of the concave base R4.

 6 − 第9図は凹部を基部端に設けた音叉型水晶振動子の平面
図を示している。
6-FIG. 9 shows a plan view of a tuning fork type crystal resonator having a recessed portion at the base end.

第10図は、第9図に示す音叉型水晶撮動子の基部に設
けた四部の直fi!NP上と@線QR上における捩れ撮
動のug’の大きさを表わしている。
FIG. 10 shows the four straight fi! It represents the magnitude of ug' of torsional imaging on NP and @ line QR.

101は@線NP上の、102は直線QR上におけるu
g′をそれぞれ表わしている。第10図から明らかなよ
うに、直線QR上におけるug’に比べ非常に小さくな
っている。更に、面mNp上における捩れ振動特有のあ
おりの振動も直線QR上において殆んど消失している。
101 is u on the @ line NP, 102 is u on the straight line QR
g' respectively. As is clear from FIG. 10, ug' is much smaller than ug' on the straight line QR. Furthermore, the tilt vibration peculiar to the torsional vibration on the plane mNp has almost disappeared on the straight line QR.

故に、基部端部に凹部を設けても撮動モレ全減少させる
効果は大きい。
Therefore, even if a concave portion is provided at the base end, the effect of completely reducing imaging leakage is significant.

第11図は本発明の一実施例を示す平面図である。11
1は痔文型水晶振動子、112は振動子上に設けた励振
電極と電気的導通をも兼ねた支持材を示している。支持
材112は振動子の基部に設けた四部と基部端部の間に
おいて音叉型水晶振動子を支持している。
FIG. 11 is a plan view showing an embodiment of the present invention. 11
Reference numeral 1 indicates a hemorrhoid-shaped crystal resonator, and reference numeral 112 indicates a support material that also serves as electrical continuity with an excitation electrode provided on the resonator. The support member 112 supports the tuning fork crystal resonator between the four parts provided at the base of the resonator and the end of the base.

第12図は本発明の他の実施例を示す平面図である。1
21は音叉型水晶振動子、122は邊動子上に設けた励
振電極と電気的導通をも兼ねた支持材を示している。支
持材122は振動子の基部端に設けた四部と基部端部に
おいて音叉型水晶振動子を支持している。
FIG. 12 is a plan view showing another embodiment of the present invention. 1
Reference numeral 21 indicates a tuning fork type crystal resonator, and reference numeral 122 indicates a support member that also serves as electrical continuity with the excitation electrode provided on the side element. The support member 122 supports the tuning fork type crystal resonator at the four parts provided at the base end of the resonator and at the base end.

第13図と第14図は、本発明の他の実施列を示してい
る。第13図はその平面図、第14図は側面図を表わし
ている。131と141は音叉型水晶撮動子、132と
142は振動子上に設けた励振電極と電気的導通をも兼
ねた支持材を示している。支持材132と142は音叉
型水晶撮動子の基部に設けた四部と基部端の間において
、音叉型水晶撮動子を支持している。しかも、振動子の
厚み方向にU字状の形状を一箇所持っている。支持材1
32と142は、振動子の厚み方向にU字状の形状を持
つ事により、撮動モレを防ぐ上で非常に大きな効果を持
つ。
Figures 13 and 14 show other implementations of the invention. FIG. 13 shows a plan view thereof, and FIG. 14 shows a side view thereof. Reference numerals 131 and 141 indicate tuning fork type crystal sensors, and reference numerals 132 and 142 indicate support members that also serve as electrical continuity with excitation electrodes provided on the vibrator. The supporting members 132 and 142 support the tuning fork type crystal sensor between the four parts provided at the base of the tuning fork type crystal sensor and the base end. Furthermore, the vibrator has a U-shape at one point in the thickness direction. Support material 1
32 and 142 have a U-shaped shape in the thickness direction of the vibrator, which has a very large effect in preventing leakage during imaging.

第11図から第14図に示した本発明の音叉型水晶t=
wth子の支持構造は、音叉型水晶撮動子の基部に設け
た凹部と基部端部の間において、即ち、捩れ振動の厚み
方向変位ug5’が非常に小さく、しかも捩れ振動特有
の基部におけるあおりの振動を持たない箇所において振
動子を支持しているために、振動モレの少ない音叉型水
晶撮動子を提供できる。メ徴を持っている。
Tuning fork type crystal t= of the present invention shown in FIGS. 11 to 14
The support structure of the wth element is such that between the recess provided in the base of the tuning fork type crystal sensor and the end of the base, the displacement ug5' in the thickness direction due to torsional vibration is extremely small, and the tilting at the base unique to torsional vibration is prevented. Since the vibrator is supported at a location where vibration does not occur, it is possible to provide a tuning fork type crystal camera element with less vibration leakage. It has a characteristic.

以上の説明において、振動子として水晶撮動子全例にし
て説明してきたが、本発明の効果は振動子の材料として
水晶以外の音叉型撮動子にもあてはする。故に、本発明
は、振動子の材料として水晶以外の物も含む。
In the above description, all examples have been made of crystal cameras as vibrators, but the effects of the present invention also apply to tuning fork type cameras other than crystal as the material of the vibrators. Therefore, the present invention includes materials other than crystal as the material of the vibrator.

以上詳細に説明した様に、本発明の音叉型撮動子の支持
構造は振動モレの少ない、それ故に安定なfT特性と周
波数経時変化特性を有する捩れ撮動単独あるいは屈曲振
動と捩れ振動の弾性結合を利用する音叉型振動子を提供
できる浸れた特徴を持っている。
As explained in detail above, the support structure of the tuning fork type sensor of the present invention has less vibration leakage, and therefore has stable fT characteristics and frequency change characteristics over time. It has an immersed feature that allows it to provide a tuning fork type oscillator that utilizes coupling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は音叉型振動子と容器の構造を示す側面図。第2
図は従来の音叉型振動子の支持構造を示す平面図。M3
図は音叉型振動子の平面図。第49 − 図は音叉型水晶振動子の形状と方位を示す斜視図。 紺5図は、音叉型水晶振動子の基部端面における捩れ撮
動の変位の6方向成分金示すグラフ。第6図は音叉型水
晶撮動子の平面図。第7図は、第4図と第6図に示す音
叉型水晶振動子の基部端部における捩れ振動の変位を示
すグラフ、第8図は、第6図に示す音叉型水晶撮動子の
基部の三箇所における捩れ振動の変位を示すグラフ。第
9図は、音叉型水晶撮動子の平面図。第10図は、第9
図に示す音叉型水晶振動子の基部の三筒ff1vSおけ
る捩れ振動の変位を示すグラフ。第11図、第12図、
m13図は本発明の実施例を示す音叉型水晶振動子の平
面図。第14図は、第13図に示す本発明の実施例であ
る音叉型水晶撮動子の側面図。 111、121.131.141・・・音叉型水晶振動
子112、122.132.142・・・支持材以  
 上 出願人 株式会社 第二精工舎 代理人弁理士 最上  務 −10− 男10図 第1/図 ll ¥/2111D 第73図 /、& 千74図 t 95
FIG. 1 is a side view showing the structure of a tuning fork type vibrator and a container. Second
The figure is a plan view showing the support structure of a conventional tuning fork type vibrator. M3
The figure is a plan view of a tuning fork type vibrator. Figure 49 is a perspective view showing the shape and orientation of a tuning fork type crystal resonator. Figure 5 is a graph showing the six-direction components of displacement during torsional imaging at the base end face of a tuning fork type crystal resonator. FIG. 6 is a plan view of a tuning fork type crystal camera. FIG. 7 is a graph showing the displacement of torsional vibration at the base end of the tuning fork type crystal resonator shown in FIGS. 4 and 6, and FIG. Graph showing displacement of torsional vibration at three locations. FIG. 9 is a plan view of a tuning fork type crystal camera. Figure 10 shows the 9th
A graph showing the displacement of torsional vibration in the three cylinders ff1vS at the base of the tuning fork type crystal resonator shown in the figure. Figure 11, Figure 12,
Figure m13 is a plan view of a tuning fork type crystal resonator showing an embodiment of the present invention. FIG. 14 is a side view of the tuning fork type crystal camera according to the embodiment of the present invention shown in FIG. 13. 111, 121.131.141... Tuning fork type crystal oscillator 112, 122.132.142... Support material
Applicant Daini Seikosha Co., Ltd. Patent Attorney Agent Tsutomu Mogami-10- Male 10 Figure 1/Figure ll ¥/2111D Figure 73/, & 1,74 Figure t 95

Claims (3)

【特許請求の範囲】[Claims] (1)捩れ振動を利用し、しかも基部に凹部が設けられ
ている音叉型振動子において、前記凹部から基部端の間
において支持した事を特徴とする音叉型振動子の支持構
造。
(1) A support structure for a tuning fork vibrator that utilizes torsional vibration and has a recessed portion in its base, which is supported between the recessed portion and the end of the base.
(2)振動子は屈曲振動と捩れ振動の弾性結合を利用す
る振動子である事を特徴とする特許請求範囲第1項記載
の音叉型振動子の支持構造。
(2) A support structure for a tuning fork type vibrator according to claim 1, wherein the vibrator is a vibrator that utilizes elastic coupling of bending vibration and torsional vibration.
(3)振動子が水晶振動子である事を特徴とする特許請
求範囲第1項または第2項記載の音叉型振動子の支持構
造。
(3) A supporting structure for a tuning fork type vibrator according to claim 1 or 2, wherein the vibrator is a crystal vibrator.
JP12939382A 1982-07-23 1982-07-23 Supporting structure of tuning fork type oscillator Pending JPS5919419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12939382A JPS5919419A (en) 1982-07-23 1982-07-23 Supporting structure of tuning fork type oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12939382A JPS5919419A (en) 1982-07-23 1982-07-23 Supporting structure of tuning fork type oscillator

Publications (1)

Publication Number Publication Date
JPS5919419A true JPS5919419A (en) 1984-01-31

Family

ID=15008459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12939382A Pending JPS5919419A (en) 1982-07-23 1982-07-23 Supporting structure of tuning fork type oscillator

Country Status (1)

Country Link
JP (1) JPS5919419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9319022B2 (en) 2012-07-26 2016-04-19 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic apparatus
US10181836B2 (en) 2012-12-19 2019-01-15 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic device, and moving object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228552A (en) * 1975-08-29 1977-03-03 Asahi Glass Co Ltd Process for producing pulverized polytetrafluoroethylene powder
JPS5241110A (en) * 1975-09-30 1977-03-30 Kusaka Reametaru Kenkyusho:Kk Treating process of molten pig iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228552A (en) * 1975-08-29 1977-03-03 Asahi Glass Co Ltd Process for producing pulverized polytetrafluoroethylene powder
JPS5241110A (en) * 1975-09-30 1977-03-30 Kusaka Reametaru Kenkyusho:Kk Treating process of molten pig iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9319022B2 (en) 2012-07-26 2016-04-19 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic apparatus
US10181836B2 (en) 2012-12-19 2019-01-15 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic device, and moving object

Similar Documents

Publication Publication Date Title
JP3969824B2 (en) Angular velocity sensor
JPS5937722A (en) Longitudinal oscillation type piezoelectric oscillator
JPH09269228A (en) Tuning fork type vibrating gyroscope
JPH04361165A (en) Oscillator type accelerometer
JPS5919419A (en) Supporting structure of tuning fork type oscillator
JPH1188104A (en) At cut crystal vibrator
JPH0279511A (en) Longitudinal crystal resonator
JPS5853215A (en) Tuning fork type crystal oscillator
JPH0241206B2 (en)
JPS6365243B2 (en)
JPH0218595Y2 (en)
JPS5944118A (en) Tuning fork type vibrator
JPH01227515A (en) Piezoelectric oscillator
JPS5838015A (en) Piezoelectric oscillator
JPS5950128B2 (en) Support structure of vertical vibrator
JPS5824968B2 (en) Onsagata Atsudenshindoushi
JPS5824503Y2 (en) Width-slip crystal oscillator
JPS59151515A (en) Supporting structure of tuning fork type crystal oscillator
JPS5818806B2 (en) Tuning fork piezoelectric vibrator
JPH0528818Y2 (en)
JPS5834971B2 (en) Atsumi Beriketsuyoushindoushi
JPH04220009A (en) High-frequency piezoelectric resonator
JPH0843105A (en) Vibrating gyro
JP2536407Y2 (en) Piezoelectric vibrator gyro
JPS5936413A (en) Tuning fork vibrator