JPS59151515A - Supporting structure of tuning fork type crystal oscillator - Google Patents

Supporting structure of tuning fork type crystal oscillator

Info

Publication number
JPS59151515A
JPS59151515A JP2520483A JP2520483A JPS59151515A JP S59151515 A JPS59151515 A JP S59151515A JP 2520483 A JP2520483 A JP 2520483A JP 2520483 A JP2520483 A JP 2520483A JP S59151515 A JPS59151515 A JP S59151515A
Authority
JP
Japan
Prior art keywords
tuning fork
type crystal
fork type
vibration
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2520483A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦博 高橋
Nobuyoshi Matsuyama
松山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2520483A priority Critical patent/JPS59151515A/en
Publication of JPS59151515A publication Critical patent/JPS59151515A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To prevent oscillation from being leaked by supporting a tuning fork type crystal oscillator utilizing torsional oscillation at a position where the displacement of a subordinate oscillation is small by two leads. CONSTITUTION:A tuning fork type crystal oscillator 81 utilizing torsional oscillation is supported by the leads 82, 83. The displacement by the subordinate oscillation specific to the torsional oscillation is smaller at a range between points D and E which are midpoints respectively between points B, C on a prolonged line of straight lines 86, 87 at the end in the broadwise direction of tuning fork arms 84, 85 and points F, G at the end in broadwise direction of the base. Further, the leads 82, 83 are provided at the inner side from the points D, E and on one face. Thus, the leakage of the oscillation through the leads 82, 83 is prevented. Thus, the supporting process is made simple with simple structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、捩れ振動を利用する音叉型水晶振動子の支持
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a support structure for a tuning fork crystal resonator that utilizes torsional vibration.

(従来技術) 近年、捩れ振動を利用する音叉型水晶撮動子が注目され
ている。捩れ撮動単独で利用する場合もまた、屈曲振動
と捩れ撮動の弾性結合を利用する場合も、共に注目され
ている。特に後者の場合、屈曲振動と捩れ撮動の弾性結
合の強さを適切に選び、前者の振動の周波数温度特性を
良好にして高精度腕時計用振動子とすることをねらって
いる。
(Prior Art) In recent years, tuning fork type crystal cameras that utilize torsional vibration have been attracting attention. Both the use of torsional imaging alone and the use of elastic coupling between bending vibration and torsional imaging are attracting attention. In particular, in the latter case, the aim is to appropriately select the strength of the elastic coupling between bending vibration and torsional imaging, and to improve the frequency-temperature characteristics of the former vibration to create a high-precision wristwatch vibrator.

第1図は、音叉型水晶撮動子を容器に封入した状態を示
している。11Fi音叉型水晶振動子、12は振動子の
支持を兼ねた電極リード、”Fi’)−ドを支えるステ
ム、14は振動子を封入する容器を表わす。振動子11
の振動がリード12とステム13を介して容器に伝わる
(以後、この現象を振動モレと呼ぶ)場合、その量が大
きいと、振動子110周波数温1特性や周波数経時変化
特性に多大な悪影響を与えることが知ら名でいる。振動
モレが大きい場合、第1図に示す様に、容器16に力F
を加えると、振動子の周波数は大きく変化する。
FIG. 1 shows a state in which a tuning fork type crystal sensor is enclosed in a container. 11Fi tuning fork type crystal resonator, 12 is an electrode lead that also supports the resonator, a stem that supports the "Fi')-de, and 14 is a container that encloses the resonator.Resonator 11
When vibrations are transmitted to the container via the reed 12 and stem 13 (hereinafter, this phenomenon is referred to as vibration leakage), if the amount is large, it will have a great negative impact on the frequency temperature characteristics and frequency change characteristics of the vibrator 110 over time. Giving is what I'm known for. If the vibration leakage is large, a force F is applied to the container 16 as shown in FIG.
, the frequency of the oscillator changes significantly.

第2図は、屈曲振動と捩れ振動の結合を利用する音叉型
水晶振動子の従来の支持構造を示した平面図である。第
3図に、第2図に示す従来の音叉型水晶振動子の支持構
造の側面図である。21と31は音叉型水晶振動子、2
2,26.32は振動子の支持をも兼ねた電極用リード
′5c表わしている。
FIG. 2 is a plan view showing a conventional support structure for a tuning fork type crystal resonator that utilizes a combination of bending vibration and torsional vibration. FIG. 3 is a side view of a support structure for the conventional tuning fork type crystal resonator shown in FIG. 2. 21 and 31 are tuning fork type crystal oscillators, 2
2, 26, and 32 represent electrode leads '5c which also serve as support for the vibrator.

第2図から明らかな様に、電極用リード22と25は、
音叉型水晶振動子の基部(ここで基部とは、音叉型水晶
振動子の内、2本の音叉腕を除いた部分を言う。)の幅
方向端部において、音叉型水晶振動子を支持している。
As is clear from FIG. 2, the electrode leads 22 and 25 are
The tuning fork type crystal resonator is supported at the widthwise end of the base of the tuning fork type crystal resonator (here, the base refers to the part of the tuning fork type crystal resonator excluding the two tuning fork arms). ing.

この支持構造は、音叉型水晶機動子の一つの主面上にお
いて、2本σ)電極リードで支持しているため、簡単な
構造となっている。ここで主面とは、音叉型水晶振動子
の内、最も面積の広い面を言う。
This support structure has a simple structure because it is supported by two σ) electrode leads on one main surface of the tuning fork type crystal mover. Here, the main surface refers to the surface with the largest area in the tuning fork crystal resonator.

しかし、この支持方法では、後述する様に、捩れ振動独
特の基部におけるあおり振動の影響を直接受ける結果、
振動モレが非常に太きい。このため安定な周波数温度特
性や周波数エージング特性が得られない大きな欠点があ
った。
However, with this support method, as will be described later, as a result of being directly affected by the tilting vibration at the base, which is unique to torsional vibration,
Vibration leakage is very strong. For this reason, there was a major drawback in that stable frequency temperature characteristics and frequency aging characteristics could not be obtained.

第4図は、屈曲振動と捩れ撮動の結合を利用する音叉型
水晶振動子の従来の支持構造を示した平面図である。g
4cS図は、第4図に示す音叉型水晶振動子の従来の支
持構造の側面図である。41と51は音叉型水晶振動子
、42,52.55は振動子の支持をも兼ねた電極用リ
ードを表わしている。
FIG. 4 is a plan view showing a conventional support structure for a tuning fork crystal resonator that utilizes a combination of bending vibration and torsional imaging. g
FIG. 4cS is a side view of a conventional support structure for the tuning fork type crystal resonator shown in FIG. Reference numerals 41 and 51 represent tuning fork type crystal resonators, and reference numerals 42, 52, and 55 represent electrode leads that also serve as support for the resonators.

第4図と第5図に示す音叉型水晶振動子の支持構造は、
後述する捩れ振動の基部におけるあおり振動の影響を受
けない構造になっている。しかし、この支持構造は挾み
こみ支持のため、音叉型水晶振動子を2本のリードの間
に挾む工程と、リードを音叉型水晶振動子に接着する工
程が、非常に面倒である欠点を持っていた。
The support structure of the tuning fork crystal resonator shown in Figs. 4 and 5 is as follows:
It has a structure that is not affected by tilting vibration at the base of torsional vibration, which will be described later. However, since this support structure is supported by sandwiching, it has the disadvantage that the process of sandwiching the tuning fork crystal resonator between two leads and the process of gluing the leads to the tuning fork crystal resonator are extremely troublesome. had.

(発明の目的) 本発明は、これら従来の欠点を除き、振動子の基部にお
けるねじれ振動特有のあおり振動の影響を受けず、単純
な構造で、支持工程も簡単な音叉型水晶機動子の支持構
造を提供することを目的とする。
(Objective of the Invention) The present invention eliminates these conventional drawbacks and provides a support for a tuning fork type crystal mover that is not affected by the tilting vibration peculiar to torsional vibration at the base of the vibrator, has a simple structure, and has a simple supporting process. The purpose is to provide structure.

(発明の構成・作用) 以下、図面を参照し、本発明の詳細な説明する。(Structure and operation of the invention) Hereinafter, the present invention will be described in detail with reference to the drawings.

第6図は、音叉型水晶振動子の斜視図を表わしている。FIG. 6 shows a perspective view of a tuning fork type crystal resonator.

X e 7’l ”  軸社、方向はそれぞれ音叉型水
晶機動子の幅、長さ、厚み方向を表わしている。xll
IIは水晶の電気軸、y″及び2′軸はそわぞれ水晶の
機械軸と光軸を、X軸回りに任意の角度回転した方向を
持っている第61と62は2本の音叉腕を示している。
The directions represent the width, length, and thickness of the tuning fork-shaped crystal mover, respectively.xll
II is the electric axis of the crystal, the y'' and 2' axes are the mechanical axis and the optical axis of the crystal, respectively, and the directions are rotated by arbitrary angles around the X axis.No. 61 and 62 are the two tuning fork arms. It shows.

65と64はそれぞ第1の音叉腕の幅方向両端にある振
動子の長さ方向に沿つ7(2本の直線の内、内側の直線
全表わしている。
65 and 64 respectively represent the inner straight line 7 (out of the two straight lines) along the length direction of the vibrator at both ends in the width direction of the first tuning fork arm.

65と66は外側の直線を表わしている。点A。65 and 66 represent outer straight lines. Point A.

B、O,D、Eは、基部の長さ方向端部にある、振動子
の幅方向に沿った直線上にある。点Aは、振動子の幅方
向の中点にある。点Bと点Cはそれぞれ、直線63と6
4の延長線上にある。点Fと点Gt4振動子の幅方向端
部にある。点DFi点Bと点Fの中点にあり、点Eは点
Cと点Gの中点にある。
B, O, D, and E are on a straight line along the width direction of the vibrator, which is located at the longitudinal end of the base. Point A is located at the midpoint of the vibrator in the width direction. Points B and C are straight lines 63 and 6, respectively.
It is an extension of 4. Point F and point Gt4 are located at the ends in the width direction of the vibrator. Point DFi is located at the midpoint between points B and F, and point E is located at the midpoint between points C and G.

第7図は、第6図に示す音叉型水晶振動子の直線F′G
上における、捩れ振動の、振動子の幅方向変位u t+
、振動子の長さ方向変位uy’、振動子の厚み方向変位
u 、/の相対的な大きさを表わしている。第7図にお
いて、71はux、72はuy’。
Figure 7 shows the straight line F'G of the tuning fork crystal resonator shown in Figure 6.
The transducer width direction displacement u t+ of the torsional vibration above
, the longitudinal displacement uy' of the vibrator, the thickness direction displacement uy of the vibrator, and the relative magnitudes of /. In FIG. 7, 71 is ux and 72 is uy'.

73はull’?それぞれ表わしている。この結果は有
限要素法の計算により得らねたものである。第7図から
明らかな様に、音叉型水晶振動子の基部における捩れ振
動の変位tは、u11′が1)xとu y/に比較し、
非常に大きい。このため、捩れ振動の振動モレが大きい
原因は、音叉型水晶振動子の基部において、捩れ振動の
厚み方向変位u z /が非常に大きいからである。
73 is ull'? each represents. This result could not be obtained by calculation using the finite element method. As is clear from FIG. 7, the displacement t of the torsional vibration at the base of the tuning fork crystal resonator is as follows:
Very large. Therefore, the reason why the vibration leakage of torsional vibration is large is that the displacement u z / in the thickness direction of torsional vibration is very large at the base of the tuning fork type crystal resonator.

第7図の曲線75から明らかな如と、音叉型水晶据動子
が捩れ振動を行っている場合、基部の長さ方向端部にお
いて、基部の幅方向両端部と幅方向中央部のu 、 /
が異なるあおシ振動を行なっている。また、基部の長さ
方向端部において、基部の幅方向両端部に近づくにつれ
、uI+L′の大きさの変化の割合(以下、変化率と呼
ぶ)61大きくなシ、幅方向中央部においては、u g
 /の大きさの変化率は比較的小さいことがわかる。そ
して、点りがら点F及び点Eから点Gにがけ、ug’の
大きさは急激に変化している。
As is clear from the curve 75 in FIG. 7, when the tuning fork type crystal stander is torsionally vibrating, at the longitudinal ends of the base, u at both ends in the width direction and at the center in the width direction of the base, /
are performing different aoshi vibrations. In addition, at the longitudinal ends of the base, as the width approaches both ends of the base, the rate of change in the size of uI+L' (hereinafter referred to as the rate of change) 61 increases, and at the center of the width, ug
It can be seen that the rate of change in the size of / is relatively small. Then, from point F and point E to point G, the magnitude of ug' changes rapidly.

この事から、捩れ振動音する音叉型水晶振動子の振動モ
レ合手きくするには、ui”の小さい、しかもす′の大
きさの変化率の小さい幅方向中央部付近、即ち、点A付
近で支持する事が望ましい。
From this fact, in order to avoid vibration leakage in a tuning fork crystal resonator that produces torsional vibration noise, it is necessary to locate the area near the center in the width direction where ui'' is small and the rate of change in the size of s is small, that is, near point A. It is desirable to support it.

この点から、第4商と第5図に示す従来例は、振mモレ
を小さくする上で侵れでいる。しかし、この場合、支持
する工程が面倒で、振動子の信頼性や量産性に劣る欠点
を持っている。本発明は、u m /の大きさが小さく
、シがもu g /の大きさの変化率の少ない箇所を、
振動子の同一主面において2本のリードにより支持する
ことを特徴とする。
From this point of view, the conventional example shown in the fourth quotient and in FIG. 5 is unsuccessful in reducing vibration leakage. However, in this case, the supporting process is troublesome, and the reliability and mass production of the vibrator are poor. In the present invention, the magnitude of um / is small and the rate of change in the magnitude of ug / is small,
The vibrator is characterized by being supported by two leads on the same main surface.

前述した様に、u11′の大きさとuIl′の大きさの
変化率の小さい箇所は、音叉腕の幅方向の内側端部にあ
る撮動子の長さ方向に沿った直線の延長線が基部端に交
わる点から、基部の幅方向中部迄の距離のおよそ係の距
離迄の箇所である。即ち、本発明は、第6図において、
点りと点Eの間で2本のリードにより同一主面において
支持することを特徴とする。
As mentioned above, the point where the rate of change in the magnitude of u11' and the magnitude of uIl' is small is that the extension line of the straight line along the length direction of the sensor at the inner end in the width direction of the tuning fork arm is at the base. This is the distance from the point where the ends intersect to the middle of the base in the width direction. That is, in the present invention, in FIG.
The feature is that the point and point E are supported on the same main surface by two leads.

(実施例) 第8図は、本発明の一実施例を示す平面図である。第9
図は第8図の側面図を示している。
(Embodiment) FIG. 8 is a plan view showing an embodiment of the present invention. 9th
The figure shows a side view of FIG.

81と91は音叉型水晶振動子、82,83.92はリ
ードを示している。点A、B、C!、D、E。
81 and 91 are tuning fork crystal resonators, and 82, 83, and 92 are leads. Points A, B, C! ,D,E.

F、Gは、第6図において説明した点A−Gにそれぞれ
対応している。2本のリードは点りと点Eの間にある。
F and G correspond to points A-G explained in FIG. 6, respectively. The two leads are between the dot and point E.

第10図は、本発明の音叉型水晶振動子の他の実砲例を
示す平面図である。第11図なま第10図の側面図を示
している。101と111は音叉型水晶振動子、102
,103,112はリードを示している。点A、B、O
,D、Eは、第6図において説明した点A−EKそれぞ
れ対応している。
FIG. 10 is a plan view showing another example of an actual gun using the tuning fork type crystal oscillator of the present invention. FIG. 11 shows a side view of FIG. 101 and 111 are tuning fork type crystal oscillators, 102
, 103, and 112 indicate leads. Points A, B, O
, D, and E correspond to points A-EK explained in FIG. 6, respectively.

但し、音叉型水晶j7jji勤子101の基部の幅方向
中央部の距離は、点G′と点F′の間の距離で定義する
However, the distance between the widthwise center of the base of the tuning fork type crystal j7jji 101 is defined as the distance between the point G' and the point F'.

$10図に示す音叉型水晶振動子は基部の長さ方向端部
で、しかも幅方向両端部を切り落した形状となっている
。この形状の音叉型水晶s動子は、捩れ機動のu 、′
とu ts /の大きさの変化率が大きい基部の幅方向
両端部を切り落し、捩れ撮動特有の基部におけるあおり
振動を防ぐ°効果金持っている。
The tuning fork type crystal resonator shown in Figure $10 has a shape in which both ends in the length direction and both ends in the width direction of the base are cut off. This shape of tuning fork crystal s-movement has torsional motion u,′
By cutting off both ends in the width direction of the base where the rate of change in the magnitude of and u ts / is large, this has the effect of preventing tilting vibrations at the base that are specific to torsional imaging.

基部の長さ方向端部にある直腺H工上に“ひけるu薩′
は、第7図のグラフの内、第10図に示す基部の切りと
られた部分を除いた特性と定性的に一致する。故に、第
10図に示す形状を持つ音叉型水晶振動子においても、
リードの位置が点りと点Eの間にあれば、振動モレが少
ない特性になる。
On the straight gland H at the longitudinal end of the base, there is a
qualitatively matches the characteristics of the graph of FIG. 7 excluding the cut-off portion of the base shown in FIG. Therefore, even in the tuning fork type crystal resonator having the shape shown in Fig. 10,
If the lead position is between the dot and point E, vibration leakage will be reduced.

ところで、第7図に示した捩れ機動をする音叉型水晶振
動子の基部における変位の様子を示すグラフは、音叉型
水晶振動子の形状が、以下の条件の時のものである。即
ち、音叉腕の長さと幅をそれぞれLとWとし、基部の長
さを2bとした時、w/R″;o、1.  fib/J
!=o、4  、音叉型水晶振動子の形状が異なれば、
捩it振動の基部における変位の太きさけ当然第7図の
ものと異なってくる。しかし、変位の絶対値は異なって
も、基部の長さ方向端部におけるuX 、 u7’、 
u!’の変位の大きさの相対的な関係及び基部の長さ方
向端部におけるu z/の撮動子の幅方向に沿った変化
の様子は、第7図に示す結果と殆ど等しい。故に、前述
した本発明の議論は、捩れ振動をする音叉型水晶振動子
に対して一般的にあてはまるものである。
By the way, the graph shown in FIG. 7 showing the state of displacement at the base of the tuning fork type crystal resonator that undergoes torsional movement is obtained when the shape of the tuning fork type crystal resonator is under the following conditions. That is, when the length and width of the tuning fork arm are L and W, respectively, and the length of the base is 2b, w/R'';o, 1.fib/J
! = o, 4, if the shape of the tuning fork type crystal oscillator is different,
The thickness of the displacement at the base of the torsional IT vibration naturally differs from that shown in FIG. However, even if the absolute values of the displacements are different, uX, u7',
u! The relative relationship between the magnitude of displacement of ' and the change in u z / at the longitudinal end of the base along the width direction of the sensor are almost the same as the results shown in FIG. Therefore, the above discussion of the present invention generally applies to tuning fork type crystal resonators that undergo torsional vibration.

また、以上の説明において、捩れ振動単独を利用する音
叉型水晶振動子金側に挙げて説明してきた。しかし、前
述した様に、高楕度振動子として屈曲振動と捩れS勤の
弾性結合全利用する音叉型水晶振動子が考えられている
。この振動子を発振回路に組んだ場合、発振する振動モ
ードは屈曲撮勤であるが、捩れ撮動との弾性結合を利用
している結果、基部において屈曲振動自体も捩れ振動の
変位成分を多かれ少なかれ持つことになる。故に、本発
明に関する以上の議論は、屈曲振動と捩れ振動の弾性結
合を利用する音叉型水晶振動子に対しても、あてはまる
Furthermore, in the above description, the tuning fork type crystal resonator using only torsional vibration has been described on the gold side. However, as mentioned above, a tuning fork type crystal resonator that fully utilizes the elastic coupling of bending vibration and torsional S-shifting has been considered as a highly elliptic resonator. When this vibrator is assembled into an oscillation circuit, the vibration mode that oscillates is bending vibration, but as a result of using elastic coupling with torsional vibration, the bending vibration itself has a large displacement component of torsional vibration at the base. I'll have at least a few. Therefore, the above discussion regarding the present invention also applies to a tuning fork type crystal resonator that utilizes elastic coupling of bending vibration and torsional vibration.

(発明の効果) ところで、屈曲振動と捩れ撮動の弾性結合を利用する場
合、従来主に、屈曲の二次振動と捩れの基本振動の弾性
結合を利用することが考えられてきた。ところが、屈曲
の基本振動と@れの基本振動の弾性結合金利用すると、
屈曲の二次振動と捩れの基本振動の弾性結合を利用する
場合に比較し、屈曲振動の周波数を同一にする時、撮動
子の厚みを薄くすることができる。そのためフォトリソ
グラフィを利用して振動子を作る場合、エツチング時間
が少々〈て済み、しかも振動子を小型にできる有利な特
長を持っている。
(Effects of the Invention) By the way, when utilizing the elastic coupling between bending vibration and torsional imaging, conventionally it has been mainly considered to utilize the elastic coupling between the secondary vibration of bending and the fundamental vibration of torsion. However, when using the elastic coupling of the fundamental vibration of bending and the fundamental vibration of @re,
Compared to the case where elastic coupling of the secondary vibration of bending and the fundamental vibration of torsion is used, when the frequency of the bending vibration is made the same, the thickness of the camera element can be made thinner. Therefore, when making a vibrator using photolithography, it requires less etching time and has the advantage of allowing the vibrator to be made smaller.

ところで、屈曲の基本振動と二次振動を同一の周波数に
しようとする時、屈曲の基本振動を利用する音叉型水晶
振動子は、屈曲の二次振動を利用する音叉型水晶振動子
に比較し、音叉腕の長さを短かく、音叉腕の幅を広くし
なければならない。
By the way, when trying to make the fundamental vibration of bending and the secondary vibration the same frequency, a tuning fork crystal resonator that uses the fundamental vibration of bending has a lower frequency than a tuning fork crystal resonator that uses the secondary vibration of bending. , the length of the tuning fork arm must be shortened and the width of the tuning fork arm must be widened.

その結果、振動子全体の幅寸法は、屈曲の二次振動を利
用する場合に比べ、大分広くなる。振動子全体の幅寸法
が広くなると、捩れ撮動をする時の基部におけるあおり
振動は大きくなる。即ち、基部の幅方向端部におけるu
 w /は非常に大きくなる。このため、基部の幅方向
中央部に近い箇所で撮動子を支持することを特徴とする
本発明は、特に屈曲の基本撮動と捩れの基本撮動を利用
する音叉型水晶振動子に対し、優れた性質を示す。
As a result, the width of the entire vibrator becomes much wider than that in the case where secondary vibration of bending is used. As the width of the entire vibrator increases, tilting vibration at the base during torsional imaging increases. That is, u at the widthwise end of the base
w/ becomes very large. For this reason, the present invention, which is characterized in that the camera element is supported at a location close to the center of the base in the width direction, is particularly suitable for tuning fork-type crystal resonators that utilize the basic photography of bending and the basic photography of torsion. , exhibiting excellent properties.

以上詳細に説明した様に、本発明は、振動モレが少なく
、しかも支持する工程が簡単な支持構造を有する捩れ振
動を利用する音叉型水晶振動子全作製する上で大きな効
果を持つ。
As described in detail above, the present invention has great effects in manufacturing all tuning fork type crystal resonators that utilize torsional vibration and have a support structure with less vibration leakage and a simple supporting process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は音叉型□水晶振動子と容器の構造を示す側面図
。第2図は従来の音叉型水晶振動子の支持構造を示す平
面図。第5図は第2図に示す従来例の側面図。第4図は
従来の音叉型水晶振動子の他の支持構造を示す平面図。 第5図は第4図に示す従来例の側面図。第6図は音叉型
水晶振動子の方位を示す斜視図。第7図は、第6図に゛
示す音叉型水晶振動子の基部におけるux 、 uy’
 、 us’の大きさを示すグラフ。第8図は本発明の
一実施例を示す平面図。第9図は第8図に示す本発明の
実施例の側面図。第10図は、本発明の他の実施例を示
す平面図。第11図は第10図に示す本発明の実施例の
側面図。 81.91,101,111・・・音叉型水晶振動子8
2.83,92,102,103,112 ・・・リー
ド以上 出願人 株式会社第二精工合 第1図 第21文I 卯;3図゛ 3/、。 「暮E門]二] 第4図 滴 2・    第6図 Bt      6.) 第7図 第8図 第10図 @11図 、/・写/    l“ 77、Ill
FIG. 1 is a side view showing the structure of a tuning fork type □ crystal resonator and a container. FIG. 2 is a plan view showing the support structure of a conventional tuning fork type crystal resonator. FIG. 5 is a side view of the conventional example shown in FIG. 2. FIG. 4 is a plan view showing another support structure for a conventional tuning fork type crystal resonator. FIG. 5 is a side view of the conventional example shown in FIG. 4. FIG. 6 is a perspective view showing the orientation of a tuning fork type crystal resonator. FIG. 7 shows ux and uy' at the base of the tuning fork crystal resonator shown in FIG.
, a graph showing the size of us'. FIG. 8 is a plan view showing an embodiment of the present invention. 9 is a side view of the embodiment of the invention shown in FIG. 8; FIG. FIG. 10 is a plan view showing another embodiment of the present invention. FIG. 11 is a side view of the embodiment of the invention shown in FIG. 10. 81.91,101,111... Tuning fork type crystal resonator 8
2.83,92,102,103,112 ... Reed and above Applicant Daini Seiko Co., Ltd. Figure 1, Sentence 21, Figure 3 ゛3/,. ``Kure E Gate] 2] Figure 4 Drop 2 / Figure 6 Bt 6.) Figure 7 Figure 8 Figure 10 @ Figure 11, // copy / l" 77, Ill

Claims (3)

【特許請求の範囲】[Claims] (1)  捩れ振動を利用する音叉型水晶振動子におい
て、この振動子を同一主面において2本のリードにより
支持する場合、音叉型水晶撮動子の音叉腕の幅方向両端
にある振動子の長さ方向に沿った2本の直線の′内、内
側の直線の延長線が基部端に交わる点から基部の幅方向
端部迄の距離の棒の距離の位置より内側において支持し
たことを特徴とする音叉型水晶撮動子の支持構造。
(1) In a tuning fork type crystal resonator that uses torsional vibration, when this resonator is supported by two leads on the same principal surface, the resonator at both widthwise ends of the tuning fork arm of the tuning fork type crystal camera is It is characterized by being supported within the distance between the two straight lines along the length, and the distance of the rod from the point where the extension of the inner straight line intersects with the base end to the widthwise end of the base. A support structure for a tuning fork type crystal camera.
(2)振動子は屈曲振動と、捩れ振動の弾性結合を利用
したことを特徴とする特許請求の範囲第1項記載の音叉
型水晶振動子の支持構造。
(2) A support structure for a tuning fork type crystal resonator according to claim 1, wherein the resonator utilizes elastic coupling of bending vibration and torsional vibration.
(3)  振動子は屈曲振動の基本振動と捩れ振動の基
本振動の弾性結合を利用したことを特徴とする特許請求
の範囲第2項記載の音叉型水晶振動子の支持構造。
(3) A support structure for a tuning fork crystal resonator according to claim 2, wherein the vibrator utilizes elastic coupling of fundamental vibrations of bending vibration and torsional vibration.
JP2520483A 1983-02-17 1983-02-17 Supporting structure of tuning fork type crystal oscillator Pending JPS59151515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2520483A JPS59151515A (en) 1983-02-17 1983-02-17 Supporting structure of tuning fork type crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2520483A JPS59151515A (en) 1983-02-17 1983-02-17 Supporting structure of tuning fork type crystal oscillator

Publications (1)

Publication Number Publication Date
JPS59151515A true JPS59151515A (en) 1984-08-30

Family

ID=12159417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2520483A Pending JPS59151515A (en) 1983-02-17 1983-02-17 Supporting structure of tuning fork type crystal oscillator

Country Status (1)

Country Link
JP (1) JPS59151515A (en)

Similar Documents

Publication Publication Date Title
US4900971A (en) Face shear mode quartz crystal resonator
JP4211578B2 (en) Piezoelectric vibrating piece, manufacturing method thereof, piezoelectric device, mobile phone device using piezoelectric device, and electronic apparatus using piezoelectric device
JP4629094B2 (en) Piezoelectric vibrating piece, piezoelectric device and manufacturing method thereof
JPH0352249B2 (en)
US4771202A (en) Tuning fork resonator
JPH05152886A (en) Quartz resonator vibrating according to torsional basic mode
JPH0514442B2 (en)
JP2002158559A (en) Lame-mode crystal vibrator
JPS5923909A (en) Piezoelectric resonator
JPS59151515A (en) Supporting structure of tuning fork type crystal oscillator
JP3255502B2 (en) Highly stable surface acoustic wave device
JPS5853215A (en) Tuning fork type crystal oscillator
JP2008026110A (en) Gyro vibrating reed
JP3010922B2 (en) Crystal resonator for temperature detection and method of manufacturing the same
JPS59202720A (en) Tuning fork type crystal resonator
JPS5944118A (en) Tuning fork type vibrator
JPS5824503Y2 (en) Width-slip crystal oscillator
JPS5919419A (en) Supporting structure of tuning fork type oscillator
JPS587702Y2 (en) Width-slip crystal oscillator
JPS5950128B2 (en) Support structure of vertical vibrator
JP2668697B2 (en) Contour-slip crystal unit
JPS5936413A (en) Tuning fork vibrator
JP3135286B2 (en) Torsional crystal oscillator
JPH0218595Y2 (en)
JPS6324659Y2 (en)